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Abstract
With the always increasing availability of sensor
devices, there is constant unseen monitoring of our
environment. A physical activity has an impact on
more sensor modalities than we could imagine. It
is so vivid that distinctive patterns in the data look
almost interpretable. Such knowledge, which is
innate to humans, ought to be encoded and rea-
son upon declaratively. We demonstrate the power
of Markov Logic Networks for encoding uncertain
knowledge to discover interesting situations from
the observed evidence. We formally relate distin-
guishable patterns from the sensor data with knowl-
edge about the environment and generate a rule ba-
sis for verifying and explaining occurred phenom-
ena. We demonstrate an implementation on a real
dataset and present our results.

1 Introduction
With the always-changing physical environments, uncertainty
and incompleteness are innate in them. Context-aware perva-
sive systems have been the centre of research regarding ap-
proaches to modelling uncertain contextual information and
reasoning upon it [Bettini et al., 2010]; moving from low-
level contextual data (i. e., sensors) to higher-level contextual
information, where it is most commonly referred to as “sit-
uation” [Dey, 2001; Gellersen et al., 2002]. Setting up sys-
tems to observe an environment includes deploying probes
(e. g., sensors) tailored to specific situations. Today, such
efforts fell under the terms “internet of things” and “smart
homes”. Many situations are worth identifying using sensors
in a single room, ranging from “is someone present” to “wa-
ter boiling”. Considering an entire home, we may end up
with hundreds of such situations. An office building could
have thousands, increasing dedicated sensors to cover all the
above situations, driving higher economic and maintenance
costs.

A compelling method in such deployments is to use indi-
rect sensing, which is employed when the property in need
(e. g., a situation) is not attainable to direct sense, either due
to sensor malfunctions, connectivity issues or energy loss.
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In the literature, indirect sensing is interwoven with remote
sensing or sensing from afar [Zhang et al., 2019]. In our
study, we translate indirect sensing to a cooperative model
of sensor fusion [Durrant-Whyte, 1990], where surrounding
heterogeneous sensors capture different aspects of the same
phenomenon (i. e., activity1). Activity is often described by a
specific temporal organisation of low-level sensor data, or as
we call it, a “dimensional footprint”(DF). The low-level sen-
sor data in a DF are the primary source of information used as
evidence to understand and recognise the observed situation.
Such techniques following a bottom-up approach to recog-
nising situations are well-established in the area of context-
aware pervasive computing [Schmidt, 2003]. Dealing with a
concept as the DF requires handling both uncertainty and the
relational organisation. Existing approaches for an indirect
sensing task typically fail to capture such aspects at the same
time.

For the mechanics of an indirect sensing task, recent re-
search targets data analysis techniques employing machine
learning to train complex models labelling the property they
want to infer from the data. For example, in [Laput et al.,
2017] the authors train Support Vector Machine (SVM) mod-
els, in an automatic learning mode à la “programming by
demonstration” [Dey et al., 2004; Hartmann et al., 2007],
with raw sensor data while performing the activity of interest.
The major limitation of such systems is that they use repre-
sentations that are not relatable to humans. In addition, they
do not support explicit encoding of knowledge about the en-
vironment. Background knowledge (e. g., contextual, domain
or commonsense) may describe situations absent in training
data or challenging to grasp and annotate. In addition, apart
from the definition of knowledge, the occurred observables
(i. e., events) in sensor data may be uncertain, as much as the
manifestations of knowledge are (i. e., rules) in an analytical
reasoning process.

We address these limitations by choosing a probabilistic
logic-based approach using an amalgam of Event Calculus
(EC) [Kowalski and Sergot, 1989] and Markov Logic Net-
work (MLN) [Richardson and Domingos, 2006] to model un-
certain knowledge about the relational manifestations of dif-
ferent and heterogeneous sensors reasoning to infer interest-
ing situations. EC drives the modelling task by a set of meta-

1A situation, in that case, is the state of activity.
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rules that encode the interaction between the sensor events
and their effects over discrete time. One of the exciting prop-
erties of EC is that a situation of interest persists over time
unless it gets interrupted by the occurrence of other events.
On the other hand, MLN combines first-order logic and con-
cepts from probability theory to tackle uncertainty, which has
received considerable attention in recent years with applica-
tions in video activity analysis [Cheng et al., 2014], mar-
itime surveillance [Snidaro et al., 2015], music analysis [Pa-
padopoulos and Tzanetakis, 2016] and others. Our goal is
to design a reasoning mode for indirect sensing that han-
dles uncertainty and uses interpretable representations from
data. To this end, we make the following contributions: (1)
We model existing sensor data into interpretable symbolic
representations as elements in a narrative on a running sce-
nario (cf. Section 2.2), (2) design a knowledge base (KB)
within MLN for supporting indirect sensing while emulat-
ing commonsense reasoning, (3) evaluate the realisation of
the approach using an open-source implementation of MLN,
(4) demonstrate how the probability of an occurred situation
changes over time while using different combinations of sen-
sors.

Section 2 provides the terminology used in this document,
including the running example and background information
on Event Calculus and Markov Logic Networks. This leads
to Section 3 where we introduce the concept of DF and how
to model it. In Section ,4 we elaborate on MLN definitions,
while in Section 5, we present the results and experiments.
Section 6 provides a brief related work around the topic of
event modelling and recognition. In Section 7, we summarise
the main contributions and discuss details, including future
work.

2 Preliminaries
2.1 Terminology
The Oxford English Dictionary gives a general definition for
an event as “a thing that happens or takes place, especially
one of importance”. In our context, a “thing” is represented
by a (sensor) data pattern. “Importance” matches the (subjec-
tive) interest in finding an explanation for this pattern. Many
researchers try to use the term event in their way, depending
on the context and the investigated environment, even though
the definition of the word event remains the same.

We assume that an (interesting) event occurred on iden-
tifying a visible change in the sensor data. The identi-
fication involves a pre-processing step using some pattern
extraction techniques [Patel et al., 2002; Lin et al., 2003;
Yeh et al., 2016]. Therefore, the timestamps for the respective
pattern represents the event’s temporality. This work clari-
fies a time point and a series of time points (exhibiting the
concept of duration) bounded by a predefined window value.
For example, the increase in the temperature readings is an
interesting event and reflects the development of sensing data
(temperature) over time. Therefore, a representation should
semantically annotate an event’s time point.

Interpreting symbols as representations of objects is a
proxy to describe something instead of the actual thing. For

example, if something is an ambient “high” temperature2, that
temperature does not reside in our heads when we think of
it. The “it” of the temperature is a representation of the ac-
tual natural environmental property. This representation of
something is an entity that transmits to us the idea of the
real something. Perhaps we think of our discomfort or imag-
ing ourselves reacting to this phenomenon (e. g., sweating) to
represent the high ambient temperature. Alternatively, we use
the colour red accompanied by the temperature degree.

An event representation in our work is a lexical word em-
bedded in a “sentence” among other additional contextual
words, which we understand. Therefore, the development of
sensing data over time (i. e., a time series) is wrapped in a
word that best describes its nature (e. g., data pattern). The
event representation has two lexical parts. The one part is the
trend of the pattern, and the other one is the type of the pat-
tern. The trend of a pattern is represented by the words up-
ward or downward. The patterns we may derive in the sensor
readings could resemble a shape currently named shapeoid.
For the sake of presentation, the lexical shapeoids are the fol-
lowing:

ANGLE A gradual, continuous line with an increasing (up-
ward) or a decreasing (downward) trend in the sensor
readings.

HOP A stage shift in the sensor readings, where the data
have an apparent difference between two consecutive
recognition time points (e. g., binary sensor values).

HORN This pattern is a transient increase or decrease in the
sensor readings curve.

FLAT A horizontal line in the data, with either unchangeable
values in the pattern duration or minimal changes.

We extract the shapeoids using the Symbolic Aggregate
Approximation (SAX) technique. Many time series represen-
tation alternatives exist, but most of them result in a down-
sampled real-valued representation. In contrast, SAX boils
down to a symbolic discretised form of the time series, which
is abstract enough to extract the shapeoids generally. The
paper’s focus is not to describe how to obtain the proposed
patterns from the sensor data but to put forward a concept of
using temporal organisations of such representations to rea-
son in a robust and declarative way.

2.2 Running Example
In Figure 1, we illustrate the activity of opening and closing
a window and its impact (i. e., their DF) on five surrounding
sensor types that happen to be in the same room. Later in
the paper (cf. Section 3.3), we will showcase the extracted
shapeoids from the raw data, which put forward a sufficient
abstraction, serving as an input for a reasoning task.

The data are from a real-world public dataset [Birnbach
et al., 2019], where the authors collected sensor data while
performing different activities. The data timeline spawns over
two minutes, sufficient for demonstrating the essence of our
approach.

2We use a threshold-based term to describe the comfort level for
a human to endure.
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Figure 1: An example of how the activity of opening/closing a win-
dow affects the listed surrounding sensors.

2.3 Event Calculus
Representing and reasoning about actions and temporally-
scoped relations has been a critical research topic in the area
of Knowledge Representation and Reasoning (KRR) since
the 60s [Shoham and McDermott, 1988]. Since then, vari-
ous approaches have been proposed to overcome the Frame
Problem in classical Artificial Intelligence (AI) [McCarthy
and Hayes, 1981; Shanahan, 2006]; the challenge of rep-
resenting the effects of actions. Among them, EC, which
Kowalski and Sergot have initially proposed in 1986 [Kowal-
ski and Sergot, 1989], is a system for reasoning about events
(or actions) and their effects in the scope of Logic Pro-
gramming. It comprises excellent expressiveness with intu-
itive and readable representations, making it feasible to ex-
tend reasoning. It is an adequate tool to fit domain knowl-
edge representing how an entity progresses in time using
events. It has found applications ranging from the scope
of robotics [Russel et al., 2013], game design [Nelson and
Mateas, 2008] and commonsense reasoning [Shanahan, 2004;
Mueller, 2014] to name a few.

From a technical point, the core ontology of the EC in-
volves events, fluents and time points. The continuum of
time is linear, and integers or real numbers represent the time
points. A fluent can be whatever whose value is subject to
change over time. At the occurrence of an event, it may
change the value of a fluent. This could be a quantity, such
as “the temperature in the room”, whose value varies in num-
bers, or a proposition, such as “the window is open”, whose
truth state changes from time to time. In EC, the core axioms
are domain-independent and define whether a fluent holds or
not at a particular time point. In addition, these axioms can
capture what is known as the common sense law of inertia;
formal logic is a way of declaring that an event is assumed not
to change a given property of a fluent unless there is evidence
to the contrary [Shanahan and others, 1997].

We use a simplified version of EC (named MLN-EC),
based on a discrete-time reworking of EC [Mueller, 2008],
which was proven to work in a probabilistic setting [Skar-

Predicate Meaning
Happens(e, t) Event e happens at time t
HoldsAt(f, t) Fluent f holds at time t
InitiatedAt(f, t) Fluent f is initiated at time t
TerminatedAt(f, t) Fluent f is terminated at time t

Axioms
HoldsAt (f, t+ 1)⇐

InitiatedAt (f, t)
HoldsAt (f, t+ 1)⇐

HoldsAt (f, t) ∧
¬TerminatedAt (f, t)

¬HoldsAt (f, t+ 1)⇐
TerminatedAt (f, t)

¬HoldsAt (f, t+ 1)⇐
¬HoldsAt (f, t) ∧
¬ InitiatedAt (f, t)

Table 1: The core predicates and domain-independent axioms of the
EC dialect, MLN-EC.

latidis et al., 2015]. Other dialects may have additional re-
strictions (e. g., complex time quantification) that hinder the
realisation of the approach. For more information, we point
the reader to this paper [Mueller, 2004]. The basic predicates
and the domain-independent axioms are presented in Table 1.
One can read the upper line of two axioms from left to right:
(1) a fluent f holds at time t if it was initiated at a previous
time point, and (2) that the fluent f continues to hold, provid-
ing it was not previously terminated. The domain-dependent
predicates initiatedAt/2 and terminatedAt/2 are expressed
in an application-specific manner guiding the logic behind the
occurrence of events and some contextual constraints. One
example of a common rule for initiatedAt/2 is:

InitiatedAt (f, t)⇐
Happens (e, t) ∧
Constraints[t]

(1)

The above definition states that a fluent f is initiated at time
t if an event e happens, and some optional constraints depend
on the domain. EC supports default reasoning via circum-
scription, representing that the fluent continues to persist un-
less other events happen. Therefore, in our definition of the
event narrative, we assume these are the only events that oc-
curred.

2.4 Markov Logic Networks
A Markov Logic Network (MLN) amalgam of a Markov Net-
work (aka. Markov Random Field) and a first-order logic
KB [Richardson and Domingos, 2006]. Specifically, it soft-
ens the constraints posed by the formulas with weights that
support (positive weights) or penalise (negative weights)
worlds in which they are satisfied. As opposed to classical
logic, all the statements are hard constraints (i. e., preserving
truthfulness).

The formulas, being first-order logic objects [Genesereth
and Nilsson, 1987], are constructed using four symbols: con-
stants, variables, functions and predicates. Predicates and
constants start with an upper-case letter, whereas the func-
tions and variables have lower-case letters. The variables are
quantifiable over the given domain (e. g., type={Temperature,
Humidity} ). The constants are objects in the respective do-
main (e. g., sensor types: Temperature, Air Quality, Micro-
phone etc.). Variables are ranges over the objects of the
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domain. The functions (e. g., downwardAngleTemp) repre-
sent actual mappings from a single object to a value or an-
other object. Finally, the predicate symbols represent rela-
tions among objects associated with truth values(e. g., Hap-
pens(DownwardAngle_Temp,4)).

A KB in MLN consists of both hard- and soft-constrained
formulas. Hard constraints (clauses with infinite weight) are
interwoven with unequivocal knowledge. Therefore, an ac-
ceptable world fulfils all of the hard constraints. By contrast,
the soft constraints are related to the imperfect knowledge of
the domain, which can be falsified in the world’s existence in
discourse. This means that when a world violates a formula,
it is less probable but not impossible.

Formally, a MLN is a set of pairs (Fi, wi), where Fi is a
first-order logic formula and wi is a real numbered weight.
The KB L, with the weighted formulas together with a fi-
nite set of constants C =

{
c1, c2, . . . , c|C|

}
, defines a ground

Markov Network ML,C as follows [Richardson and Domin-
gos, 2006]:

• ML,C has one binary node for each possible grounding
of each predicate in L. The value of the node is 1 if the
grounded atom is true and 0 otherwise.

• ML,C contains one feature for each possible grounding
of each formula Fi in L. The value of this feature is 1
if the formula is true and 0 otherwise. The weight of the
feature is the wi associated with Fi in L.

An MLN is a template for constructing Markov networks:
it will produce different networks given different constants.
The grounding process is the replacement of variables with a
constant in their domain. The nodes of ML,C correspond to
all ground atoms that can be generated by grounding a for-
mula Fi in L, with constants of C. Thus there is an edge
between two nodes of ML,C iff the corresponding ground
predicates are conditionally dependant on a grounding of a
formula Fi in L. A possible world from the MLN must sat-
isfy all of the hard-constrained formulas and be proportional
to the exponential sum of the weights of the soft-constrained
formulas satisfied in this world (cf. Equation 2). Hence, a
MLN defines a log-linear probability distribution over Her-
brand interpretations(i. e., possible worlds).

In an indirect sensing task context, we know a priori that
we will have two kinds of predicates; the evidence variable
X , containing the narrative of real-time input events, trans-
lated with the Happens predicates of EC, and the set of query
HoldsAt predicates Y , as well as other groundings of “hid-
den” predicates (i. e., neither query nor evidence); in EC these
are the InitiatedAt and TerminatedAt predicates. Finally,
the conditional likelihood of Y given X is defined as fol-
lows [Singla and Domingos, 2005]:

P (y | x) = 1

Zx
exp

(∑

i∈FY

wini(x, y)

)
(2)

x ∈ X and y ∈ Y represent the possible assignment of
the evidence set X and the query set Y , respectively. FY

is the set of all MLN clauses produced from the KB L and
the finite set of constants C. The ni(x, y) is the number of
true groundings of the i-th clause involving the query atoms y

given the evidence atoms x. Finally, Zx is a partition function
that normalises for all the possible assignments of x.

Equation 2 shows the probability distribution of the set
of query variables conditioned over the set of observations.
By modelling the conditional probability directly, the model
remains agnostic about potential dependencies between the
variables in X , and any factors that depend on X are elim-
inated. Instead, the model makes conditional independence
assumptions among the Y and assumptions on its inherent
structure with dependencies of Y on X . Therefore, in such a
way, the number of the possible words is constrained [Singla
and Domingos, 2005; Sutton and McCallum, 2006] and the
inference is much more efficient. However, calculating ex-
actly the formula might become intractable even for a small
domain. Consequently, other approximate inference methods
are preferred.

Originally, the authors in [Richardson and Domingos,
2006] propose to use Gibbs sampling to perform inference,
but they found out that the sampling breaks down when the
KB has deterministic dependencies3 [Poon and Domingos,
2006; Domingos and Lowd, 2009]. The authors proposed
another Markov Chain Monte Carlo method called MC-
SAT [Poon and Domingos, 2006] based on satisfiability with
slice-sampling. Another type of inference is the Maximum A
Posteriori (MAP) which described the problem of finding the
most probable state of the world given some evidence, which
reduces to find the truth assignment that maximises the sum
of weights of satisfied clauses (i. e., argmax

y
p(y | x)).

The problem is generally NP-hard, but both exact and ap-
proximate satisfiability solvers exist [Domingos and Lowd,
2009]. In our experiments, we run approximate inference us-
ing the MC-SAT algorithm.

3 Modelling a DF
An activity affects various fundamental environmental prop-
erties, such as speed, pressure, temperature, luminosity, etc.
Surrounding sensors may capture the various changes (form-
ing the activity’s DF), which depends on different contextual
information, such as their proximity from the occurred phe-
nomenon and their type (cf. Section 3.1). In addition, a sen-
sor may observe ambient values (e. g., temperature) or require
manual intervention to observe a change (e. g., separating the
two magnetic elements of a contact sensor) (cf. Section 3.2).

This “change” (i. e., the forming pattern) is the “interest-
ing event” we want to focus on. This observed change mostly
stays unobserved. Thus, the emitted DF indicates its occur-
rence. In addition, its state is a continuous value in time,
which is tracked under the definition of the “fluent”. With
no sensor modality to identify the occurrence of an activity,
due to its unavailability at the given time, or by simply stating
that there does not exist any direct one, we account its DF as
a space with equivalent options that “indirectly” account for
the same activity.

Our work uses commonsense knowledge (CK) to charac-
terise how activity affects its environment. From the running

3They are formed from hard-constrained formulas in the KB.
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example in Section 2.2, some distinct data patterns exist, al-
most as recognisable to the human eye where one may exer-
cise a hypothesis against the data. We consider that a data-
processing step is viable to extract such patterns, but it is out
of the scope of the current paper. The abstracted representa-
tions (cf. Section 2.1) from low-level sensor data reflect their
organisations in shapes and trends (e. g., an increasing angle
in the sensor data). Therefore, one with a naive knowledge
of physics can make hypotheses about the occurrence of an
activity using the abstractions from sensor data as evidence
(cf. Section 3.3).

3.1 Contextual Constraints
Sensors are interfaces that serve as occurrence indicators for
various monitored situations. The sensor numbers could in-
crease accordingly as their numbers increase, making the
instrumentation, deployment and maintenance cumbersome
tasks. A sensor primarily measures an environmental change
as accurate as possible, varying between the different manu-
facturers. Selecting a sensor to monitor a situation ought to
obey some criteria, which formulate the sensing fidelity of its
output. In this paper, we propose the following criteria:

Type There exist different vendors for various sensors.
Nonetheless, the type of sensor is of key importance.
There is no doubt that different manufacturers may offer
a better sensor device, affecting accuracy. Semantically,
the sensor type determines if the sensor participates in
the verification process, not its model.

Location The location is another important aspect of deter-
mining the credibility of the sensor output. Either the
physical location or the position of the sensor in the
space should affect the decision of selecting any sensor
of a given type in a location (e. g., a room).

As discussed later in the paper, the above criteria are mini-
mal constraints for a sensor to participate in reasoning. How-
ever, the sensors have a fundamental high-level classification,
making the shapeoid extraction from their data clearer and
focused.

3.2 Sensor Classification
A sensor is an interface between the physical and the digital
world. The raw sensor data rarely matches human semantics,
but the representations of patterns in them are. The kind of
sensor classification the paper foresees, bases on the nature of
the resulting sensor data, is as follows:

Binary sensors restrict their result to two possible values.
Usually, the values resemble the category itself (i. e., be-
ing binary); thus, one and zero. Furthermore, depending
on the context4 the result may take values from it. For
example, the output of a physical switch is “on” or “off”,
the result of a motion sensor may be “present” or “not
present”, and so on. The suitable data patterns for the
binary sensors are the HOP and FLAT representations.

4Context is any information that one can use to characterise the
situation of an entity. An entity is a person, place, or object consid-
ered relevant to the interaction between a user and an application,
including the user and application themselves [Dey, 2000]

Numerical sensors are almost every sensor with an arith-
metic output in the set of real numbers R. Some ex-
amples of quantifiable sensors are an accelerometer, hu-
midity, temperature, pressure sensor etc.. Accordingly,
the data patterns, which we found in the raw sensor data,
are those of ANGLE, HORN and FLAT.

One could say that a binary sensor is a subset of numerical
sensors. However, we make the distinction explicit, as the bi-
nary sensors are semantically a practical standalone class. In
the running example, we use numerical sensors. The sensor
data’s available observations (i.e., shapeoids) are the simple
events with their respective time point in the focused bounded
time window. We represent them with the Happens predi-
cate, where finally a collection of such predicates form the
so-called “narrative” in EC.

3.3 The Narrative of Events in EC
An event “just” happens, with an accompanied discrete time
point to keep a reference in the timeline. The chosen repre-
sentation of it, according to the dialect of EC, is the predicate
Happens(e, t). Time t can be quantified over the spectrum
of integers, exhibiting coherence among the occurred events.
The events in the sensing timeline are the formed shapeoids,
and by using lexical words for the symbolic representation,
the intuition behind them is human-readable (e. g., downward
ANGLE). For example, in Figure 1, the two activities of open-
ing and closing the window produce an impact in the five sur-
rounding sensors. We observe that around the time of opening
the window, distinct patterns are forming. Figure 2 contains
in separate graphs a more clear view of the data in Figure 1,
after performing a dimensionality reduction step (e. g., Piece-
wise Aggregate Approximation (PAA) [Ding et al., 2008]).
The patterns were extracted empirically, resembling the pro-
posed lexical shapeoids (cf. Section 2.1):

. . .

Happens(Flat_Mic,3)
Happens(Flat_Hum,3)
Happens(DownwardAngle_Temp,4)
Happens(DownwardAngle_Aq,4)
Happens(UpwardHorn_Mic,4)
. . .

Happens(UpwardHorn_Temp,11)
Happens(UpwardAngle_Hum,11)
Happens(Flat_Mic,11)
. . .

Happens(DownwardAngle_Temp,14)
Happens(DownwardAngle_Pres,14)
Happens(Flat_Hum,15)
Happens(UpwardHorn_Mic,15)
Happens(UpwardAngle_Temp),15)
. . .

(3)
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Figure 2: The z-normalised sensor data (in 20 data points) from Figure 1, after a dimensionality reduction step.

4 Probabilistic Indirect Sensing via MLN
definitions

.
In the following, we elaborate on constructing the KB con-

taining the representations of the sensor events, using contex-
tual words in “sentences” that comply with the formalism of
EC and are expressed in first-order logic.

4.1 Knowledge Base
For our purposes, the KB, or the so-called “theory”, contains
a few function definitions, predicate definitions, as well as the
inertia laws axioms of EC5 as seen in (2). We consider the
observed patterns as a continuous narrative of Happens pred-
icates (cf. (3)). InitiatedAt and TerminatedAt determine un-
der which factors a fluent is initiated or terminated at a given
time point, using the form in (1). Finally, the query predicate
HoldsAt incorporate a possible quantification over the verifi-
cation of a monitored situation (i. e., a fluent).

Table 2 shows a fragment of the KB and the associated
weights. The formulas are converted to a clausal form dur-
ing the grounding phase, also known as conjunctive normal
form (CNF), a disjunction of literals. The next step is the
replacement of the variables with the constants, which for-
mulate grounded predicates. As such, the construction of the
Markov Network consists of one binary node V for each pos-
sible grounding of each predicate. A world is an assignment
of a truth value to each of these nodes.

The definition of the indirect sensing rules follow CK rep-
resented as a theory in MLN enacting it as part of common-
sense reasoning (CR)6; the sort of reasoning people perform
in daily life [Mueller, 2014], which is vague and uncertain.
For example, the Table 2 contains two separate rules, which
reflect an atomic instruction of the DF, using a temperature
sensor and a microphone. For our purposes, we consider that
the events in the narrative are the only one occurred.

A rise in the temperature readings, or a sudden spike in the
sound pressure levels, could be anything in an open world,
including the opening/closing of a door in a room. However,
with the help of context, we may exercise the hypothesis that
a temperature sensor close to the window could indicate its

5They should remain hard-constrained; otherwise, the recogni-
tion of the situation will converge to be uncertain up to the horizon
of probability.

6CR is implemented as a valid (or approximately valid) infer-
ence [Davis, 2017] in MLN as part of the EC law of inertia.

state. The hypothesis is asked in the form of a query, rep-
resenting the probability for the situation of an opened win-
dow to be true for the given observations (i. e., ground truth).
For example, if we require to encode an “opened door”, we
may include the same rule with a lower weight encoding our
confidence for the result. Then, using the background knowl-
edge that the sensors are closer to the window, we encode this
with a higher weight value to the opened window rule. MLN
has many learning algorithms [Richardson and Domingos,
2006] to determine the weight assignment; however, as we
do not intend to select the absolute probabilities of a specific
occurred situation, we opt for the most likely situation given
the evidence.

4.2 Evidence
The evidence contains ground predicates (facts) (e. g., the nar-
rative of events in Section 3.3) and optionally ground function
mappings. A function mapping is a process of mapping a
function to a unique identifier. For example, the first formula
in Table 2 contains the function downwardAngleTemp(r).
During the grounding phase, constants from the domain of
the variable r substitute it7. Thus, a function mapping could
be the following: DownwardAngle_Temp_LocA = down-
wardAngleTemp(LocationA). All the events of the grounded
Happens predicates in Section 3.3 follow the same procedure
for their function mappings.

5 Experiments and Results
In this section, we evaluate our approach in the domain of
smart homes. As presented in Section 2.2, we use a publicly
available dataset. The data timeline spawns over twelve con-
secutive full days. The dataset was in a zip format, which
contains multiple comma-separated value (CSV) files with a
total size of approximately 50 Gigabytes (GB)8. We selected
one device close to the interest situation (i.e., close to the win-
dow). We extracted the relevant data points using the five
sensors capturing the DF of opening/closing the room’s win-
dow. We do not process the raw data points, but instead, we
use the shapeoids from the data; their extraction was possible
via our tool Scotty9. The total number of shapeoid events are
4393, where the ground truth events from the window contact
sensor are 87.

7We assume a single room and its context is not reflected in the
naming scheme of the function.

8The actual size of the raw data exceeds the 250 GB.
9This work is meant to be published in a forthcoming conference.
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FOL formula Weight
InitiatedAt (openedWindow (r) , t)⇒Happens (downwardAngleTemp (r) , t)∧

Happens (flatTemp (r) , t− 1)
2.1

InitiatedAt (openedWindow (r) , t)⇒Happens (upwardHornMic (r) , t)∧
Happens (flatMic (r) , t− 1)

0.2

Table 2: An excerpt of the first-order KB and the corresponding weights in the MLN.

Scenario Description Duration
S#1 Two sensors with weak and strong

weights.
1 m 45 s

S#2 Three sensors with one weak and
two strong weights.

1 m 9 s

Table 3: The described scenarios with their inference duration times.
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Figure 3: F1 scores using various threshold values for the situation
recognition of the opened window.

We put forward two scenarios (cf. Table 3), which contain
rules for declaring the alternatives in recognising the situation
of an opened/closed window. The purpose of the scenarios
is to run the computation against the existing narrative with
the discovered events but using different sensor compositions.
Each recognition rule also contains a weight value, which was
empirically assigned, as we consider them confidence values
of the rule.

We implemented the KB and the narrative evidence file
to demonstrate the approach’s feasibility using an open-
source implementation of Markov Logic Networks, named
LoMRF [Skarlatidis and Michelioudakis, 2014]. Together
with the domain-dependent rules for each scenario, the full
KB and the evidence file are publicly available online10, en-
abling the reproducible results. The KB, given the evidence,
is transformed into a Markov Network of 26353 ground
clauses and 13177 ground predicates. We run marginal in-
ference from the developed MLN on vanilla runs without any
interference from other processes. All the results are averaged
over five runs with a corresponding standard deviation. The
experiments are executed on a virtual machine(VM) running
in a self-hosted data centre at the University of Ulm running
on OpenStack under the series “Victoria”. The VM runs with
8 cores (16 threads) and 16 GB of RAM.

10https://osf.io/n3ury/

Scenario TP TN FP FN Precision Recall F1

S#1 288 2039 174 1892 0.6234 0.1321 0.2180
S#2 1016 1554 659 1164 0.6066 0.4661 0.5271

Table 4: Performance results using the marginal inference and a
threshold of 0.6.

In the experimental analysis, we present the results for the
marginal inference in terms of F1 score for a range of thresh-
olds between 0.0 and 1.0. We consider the situation recog-
nition task successful with a probability above the specified
threshold. In Table 4, we present a snapshot of the perfor-
mance using the threshold value 0.6 in terms of True Posi-
tives (TP), True Negatives (TN), False Positives (FP), False
Negatives (FN), Precision, Recall and F1 score.

The scenarios have a certain flavour. The basic intuition
from the experiments is to showcase that we may use sen-
sors that have an obscure interpretation (e. g., a spike in the
microphone can be anything, even being next to the win-
dow) and sensors that act as a more direct verification step
(e. g., air quality, temperature). We assume that the shapeoid
events are the only ones that happen in the environment in fo-
cus. More alternative sentences may be encoded accordingly,
using shapeoids of the humidity or the air pressure sensor.
Based on the inertia laws of EC, the fluent start to hold at
the time point t+1, and therefore the assignment to the next
time point from the used pattern event in the narrative (3). In
Figure ,3 the F1 score is higher for the marginal inference in
S#2 due to the additional strong sensor. The S#1, similar to
S#2, contains a shapeoid in the microphone data (increasing
horn), which matches both the fluent’s initiation and termina-
tion rules. Hence, during the inference process, the probabil-
ity always strives towards 0.5, which is regulated by another
sensor in the rules (air quality sensor) with a higher weight
value.

We note here that in a real setting, the verification of situa-
tion (i. e., the fluent) depends on whether the required obser-
vation is made (e. g., the shapeoid event from the temperature
sensor), which may be a delayed effect of the activity itself
- in other words: it takes some time until the open window
affects the temperature sufficiently. In the experimental anal-
ysis, we calculate the performance measures strictly based on
the time range of an opened window. Therefore the ground
truth is the single point of reference for calculating the perfor-
mance. The delay between the activity and its observable DF
should be accounted for a more accurate timing prediction.
We observe a considerable amount of FP, which indicates a
plausible calculation of an opened window but with a certain
recognition delay. Thus, we consider the F1 scores in the
scenarios to be slightly higher.
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6 Related Work
Research in context modelling, context reasoning, and their
unified view via various middleware systems is tremendous;
for a recent survey, we point the reader to [Perera et al., 2013].
In the paper, we focus more on a bottom-up approach to the
recognition of occurred situations. We employ a probabilis-
tic rule-based approach, using occurred sensor events as evi-
dence for the reasoning task.

In [Liu et al., 2017], the authors create a bottom-up hierar-
chical model using the raw sensor data as evidence while cre-
ating inference rules encoded in an MLN to recognise com-
plex events. In order to create abstractions from the raw data,
they use various thresholds per sensor type. In our approach,
we use generic template abstractions which base on the data
shapes and trends. The core contribution of their paper is
the dynamic assignment of weights learned from a training
dataset; we do not assume that the user has a training dataset
to learn the weights from because we use them as confidence
values for the inference rules. Finally, in our paper, we fore-
see scalability issues that may arise from the free variables
in the MLN rules, which may drive the computation times to
higher levels.

Considering our choice for a rule-based reasoning tech-
nique has a broad spectrum of applications to many domains,
making it a commonly used technique [Perera et al., 2013].
Another interesting technique, which bases on previously ac-
quired knowledge, is case-based reasoning (CBR) [Aamodt
and Plaza, 1994; Biswas et al., 2014]. It offers solving mech-
anisms by adopting solutions that have been suggested to sim-
ilar issues in the past. The authors in [Kofod-Petersen and
Aamodt, 2003] use CBR to understand an occurred situation
based on available contextual information. A case-based so-
lution is not favourable in our case because collecting and
maintaining previous cases is a cumbersome task. Our work
does not require any previous known input from sensor ob-
servations and domain-dependent knowledge during the rule
specification.

In the paper, we focus on finding alternatives for recognis-
ing a situation. Similarly, Loke [Loke, 2006] advocates that
the situation in_meeting_now has different recognition ways
based on contextual cues. The author follows an abductive
treatment of the subject as we also do. In the forthcoming
years, the author developed a formalism to represent compo-
sitions of sensors that can act on an understanding of their
situations [Loke, 2016].

Finally, although sensing data contain implicit information,
explicit domain knowledge is required for situation recogni-
tion. Many research works employ logic-based models for
situation recognition in smart homes, such as the Event Cal-
culus (EC) [Chen et al., 2008]. Other works have also em-
ployed EC in activity recognition from video streams [Artikis
et al., 2014] and health monitoring [Falcionelli et al., 2019].
However, it is unclear how they move from the raw data to
the tagged symbolic representations in these systems.

7 Conclusion & Discussion
In the paper, we employed Markov Logic Networks for the
modelling and reasoning over uncertain alternatives for the

method of indirect sensing. We use the temporal formalism of
EC as a “linchpin” for driving the reasoning about the sensing
objects and creating observations for the occurrence of certain
situations (e. g., “is the window open”). The concept of the
DF allows using different sensor setups to monitor the same
situation(s). In other words, it is parallel to interpreting the
given evidence (e. g., sensor data) for finding the most likely
explanation, which created the DF. As such, we declare these
logical “inference” sentences in a human-readable form of
reasoning that incorporates commonsense logic.

Due to the nature of environmental situations, the interpre-
tation (i. e., evaluation) of such sentences depends on the full
context. For example, the same sentence in Table 2 might
not apply if the weather outside is warmer than the sensor’s
environment. In this case, the temperature may not decrease
but stay the same or even increase. Therefore, one will never
evaluate the according to sentence to true. Instead, a fall-
back to another sensor is needed. Nevertheless, the approach
defends the redundancy, or alternatives, in detecting the de-
sired situation, considering that we usually use direct means
for sensing (e. g., use a contact sensor to detect if the door is
open).

The lack of sensors to capture the whole DF of activity
leads to an incomplete “view of the world”. The question
thereby is, which physical effects are of specific relevance for
interpreting an event and omitted. These conditions may vary
enormously between different events, e. g., a person speaking
or the sun rising both have other effects on the environment
and thus (to a degree) require various sensors for interpreta-
tion, but also both could be observed using additional infor-
mation: sound, visual, temperature, time etc.

Concerning the employed method of MLNs, there is an is-
sue using predicates with free variables in the body of a rule;
during the grounding phase, it creates a disjunction of the
cartesian grounded conjunction of the formulas, translating
these variables to existentially quantified leading to a possi-
ble combinatorial explosion. We consider any additional con-
straint in a domain-dependent rule should contain as variables
only the time t and the location r. Any knowledge engineer
should follow this and remove any existentially quantified
variables, using the technique of skolemisation [Broeck et al.,
2013], overcoming this limitation for the solution’s scalabil-
ity.

Finally, the observed data patterns may also result from
multiple overlapping activities challenging to separate, such
as speaking in traffic, leading to uncertainty about the inter-
pretation. As future work, we want to overcome the limita-
tions of MLN concerning the free variables in the rules and
concentrate on a dynamic ecosystem that realises the pro-
posed work.
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