CEUR-WS.org/Vol-2999/fpvmdatadmdepaperl.pdf

Find-Replace as a Service of Graph-Based DSL Tool
Development Framework

Elina Kalnina’, Dmitrijs Kosarevskis’ and Agris Sostaks’

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

Abstract

The tool support of modelling languages including graphical domain-specific languages is not at the
level tool users have got used to in other areas. Various features typical in other tools are missing in
modelling tools, for example, find, find-replace and others. We discuss principles of concrete syntax-
based find-replace for graph-based languages. We show how to add find-replace as a service of graph-
based DSL tool development framework. The approach makes find-replace available to any language
built with the framework.

Keywords
Domain-Specific Languages, Find-Replace, Domain-Specific Modelling Languages, DSL Tool develop-
ment frameworks, Concrete Syntax-Based Model Transformation

1. Introduction

Probably one of the main reasons why MDE (Model Driven Engineering) has not reached the
expected acceptance in the industry is the poor quality of tool support [1]. The features of
limited support in MDE tools include find and find-replace typical in the modern user interface.
In this paper, we consider one specific type of MDE tools — tools for graphical Domain-specific
modelling. Domain-specific languages (DSL) is the area of MDE with the widest acceptance in
the industry. We consider only graph-based or graphical DSLs. Authors believe that there are
domains where graphical DSLs are more understandable and user-friendly than textual ones.
However, the state of the art tool support for graphical DSLs is worse than for the textual ones.
There are various DSL frameworks available facilitating the creation of a tool for a graphical
DSL, for example, MetaEdit+ [2], Microsoft DSL Tools [3], Sirius (Sirius Desktop and Sirius
Web) [4], ajoo [5], AToMPM [6] and many others. Typically, these frameworks contain means
to define a DSL. For a graphical DSL, it is required to define abstract (domain metamodel)
and concrete syntax (appearance of the language elements) and also the links between these
syntaxes. The definition of a DSL is used to generate an editor for the DSL (e.g., Microsoft DSL
Tools), or the definition is interpreted (e.g., Sirius, ajoo). A definition of a DSL is used also to
provide specific services for the DSL editor, e.g., copying, cutting diagram elements, dialogues
for the input of property values, tools to create diagram elements, etc. However, not all services
typical in other tools (text editors, programming tools, etc.) are supported. For example, there
is limited support for find and find-replace. Sirius Web [4] does not have the support of find
and find-replace, only browser provided textual find is available. Sirius Desktop [4] supports

FPVM’21: 1st International Workshop on Foundations and Practice of Visual Modeling, June 21-25, 2021
© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
=1 CEUR Workshop Proceedings (CEUR-WS.org)

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

textual find and find-replace working in the textual representation of a single file. Metadit+ [2]
does not have find service. It has the replace menu, but it has different semantics. Actually, it is
an instance copier to uncouple references. Microsoft DSL Tools [3] support textual find and
find-replace in the XML representation of models. ATOMPM [6] does not have the support of
find and find-replace, but it integrates concrete syntax-based model transformation language.
Find and find-replace working only in textual parts of a DSL is not enough for a language based
on typed attributed graphs. The context in terms of element types and their attributes is also
important.

The concrete syntax-based find as a service of DSL tool development framework has been
proposed [7, 8]. We demonstrate how to extend concrete syntax-based find to support con-
crete syntax-based find-replace as a service of graphical (graph-based) DSL tool development
framework. We add find-replace to the DSL tool development framework ajoo[5]. However, it
is possible to apply the approach to other DSL tool development frameworks as well.

The motivation and find-replace principles are given in Section 2. The simple find-replace
patterns and their semantics is discussed in Section 3. How the find-replace is added to the tool
is discussed in Section 4. The potential use cases are discussed in Section 5. The related work is
reviewed in Section 6.

2. Find-Replace Principles

A typical use case of the find-replace in office applications (text editors, spreadsheets) is to help
maintain the consistency of a document. For example, to automatically correct all misspellings
of a word or to replace a full name of an organization with an acronym. Replace the American
version of a word with the British version of a word, e.g., modeling with modelling. Depending
on the task, it is possible to replace all occurrences or only some occurrences. In fact, the find-
replace feature in office applications is more powerful than most users are aware of. Besides
simple textual find, tools support regular expressions, invisible symbols, formatting conditions,
etc. However, for most users, it is enough with simple textual find-replace.

In the paper, we consider graphical or graph-based diagrams. The question is, what is find-
replace for a graph-based diagram? Of course, we could use traditional textual find-replace, but
this way it is not possible to restrict find query to look for a match only in certain property of a
specific element type. Besides, the user may want to modify not only textual properties but
also the structure of a diagram. In the general case, find-replace for graph-based languages is a
special type of graph/model transformation - unidirectional in-place transformation. It should
be possible to execute transformation for all or some manually selected matches only and to
distinguish the find part from the replace part of the transformation.

The purpose of introducing find-replace is to improve the usability of tools, built using a
DSL tool definition framework. We propose to provide find-replace as a universal service of
a DSL tool development framework to enable find-replace in any graph-based DSL tool built
using the framework. The potential users of find-replace are modellers working with a DSL.
Users who can create models in a DSL should be able to use find-replace to modify models in a
DSL, as well. The potential users are familiar with the concrete syntax of a DSL. Most probably
they are not familiar with the abstract syntax of a DSL. Therefore, we propose to use concrete

syntax-based find-replace instead of traditional model transformation languages.
Of course, for complicated find-replace tasks, traditional model transformations can be used.
However, there are a few things to consider:

« Typically, model transformation languages use the abstract syntax of the model. Therefore,
to write a model transformation the user should be familiar with the encoding of models
used by the DSL tool definition framework.

« The user should be familiar with the model transformation language.

» The transformation language should work in the technical space of the DSL tool devel-
opment framework. Various technical spaces or repositories are used by DSL tools, e.g.,
Sirius [4] use EMF/Ecore [9], ajoo [5] use MongoDB [10], MS DSLs [3] use XML as data
store and XSD as schema. The only technical space from these with appropriate model
transformation support is EMF/Ecore [9].

There are a few concrete syntax-based model transformation approaches available. We discuss
them in detail in Section 6. However, none of the approaches has been integrated with a DSL
tool definition framework to support find-replace. We in contrast use the definition of a DSL in
a DSL tool definition framework to provide a DSL specific find - replace transformation service.
The concrete syntax of a DSL is used to define find-replace transformation.

The concrete syntax-based find-replace is based on the concrete syntax-based find [7, 8].
Any DSL diagram or a fragment of a DSL diagram can serve as a find query in the concrete
syntax-based find. In the find-replace, however, there are two fragments of a DSL diagram:
fragment used as find query and fragment describing a result of a replace operation, similarly
to find-replace in office applications. However, to support more complicated transformations,
the relation between find and replace patterns is required. We call it the find-replace edge. The
semantics of the find-replace edge and patterns is described in Section 3.

Similarly to the concrete syntax-based find, any DSL diagram can be used as the find-replace
diagram. However, to draw a find-replace pattern, find-replace elements (find-replace edge)
should be enabled in a palette of a DSL diagram. After a find-replace pattern has been created it
is possible to execute it. The find-replace is executed in two steps. The first step is to execute
the find query. The result of the find query is a list of matches grouped by diagrams. The
execution of the replace step is supervised. The user may select to perform replace operation
for a specific match, all matches in a diagram or for all matches in all diagrams. Anyway, the
replace operation for each match is executed separately. The activity diagram describing the
usage of the find-replace is given in Fig. 1.

3. Find-Replace Semantics

When defining find-replace transformation, it is required to distinguish the fragment to be
found and the replace fragment describing how the result is obtained. We call these fragments of
a diagram - patterns - a find pattern (or left-hand side) and a replace pattern (or the right-hand
side), both together find-replace pattern. Both sides of the find-replace pattern use the same
language. The find-replace edge is used to define the correspondence between the left-hand

[user] [user] [system]
Draw find-replace pattern Press find button [Validate find querﬂ
|

[system]
Perform find

finvalid] X [valid]

[all selected matches processed [user]

Select action

[matdh to process]

[system]

Pightignt 2=l _ | Highlight match

[Systm] [replace single match]

Replace match

finish replace]
[replace all matches]

[system
Produce list of matches J

[system]
[Mark conflicting matches]

Figure 1: Find-replace usage scenario.

side and the right-hand side. To distinguish between multiple find-replace edges, it is possible
to give a name to a find-replace edge. (The examples are given in Section 5.)

The find-replace is executed in two steps - find and replace. Before the execution of the find
step, the find-replace diagram is validated. The diagram is considered invalid, if it is not possible
to distinguish the left-hand side (the find pattern) and the right-hand side (the replace pattern)
of the diagram (e.g., circular usage of the find-replace edge is detected), if the expressions are
incorrect, etc.

A DSL element (node) at the source of a find-replace edge is used as a starting point for a
find query. The whole pattern related to the node is matched. A set of elements to be matched
may be restricted using constraints on attribute values. A constraint on string type attribute
is matched using substring semantics. For other attribute types, equivalence is used. A match
should satisfy all constraints defined by left-hand side patterns and attribute values. If there
are multiple unrelated sub-graphs at the source of the find-replace diagram, each subgraph is
matched separately. If there are multiple matches of the subgraphs in the diagram, the Cartesian
product is used to produce a set of find results.

The result of the find step is a list of diagrams and a list of matches in a diagram (see Fig. 4).
Afterwards, a match or multiple matches may be selected for execution of the replace operation.
It should be noted that there may be overlapping matches. When the replace operation for
a match is executed, all overlapping matches are marked as conflicting. It is not possible to
execute a match marked as conflicting. If the user selects to replace all matches in a diagram,
then replace operation is executed for each match. Matches marked as conflicting are skipped.
It is also possible to replace all matches in all diagrams. In this case, the process of replacing all
matches in a diagram is repeated for each diagram.

The replace operation for each selected match is executed separately. The correspondence
between the match and the find pattern is used for executing the replace operation. The
execution of the replace operation relay on element types in a DSL. In general, the execution of

the replace step consists of the following substeps (some substeps may be skipped if they are
not necessary):

« Create a target structure: The semantics of the replace pattern is to create all elements on
the right-hand side of a find-replace edge.

« Copy attribute values: A value of an attribute in the source element is copied to an attribute
in the target element if they have the same name and type. If there is no appropriate
attribute in the target model then it is ignored. If elements at the source and target of the
find-replace edge have the same type it is possible to copy all attribute values. If multiple
find-replace edges enter a node attributes from all source elements of find-replace edges
are copied. If multiple source elements have attributes with the same name and type the
expressions should be used.

« Move edges to target: For each edge type, there is a collection of the node types usable
as a source of the edge and node types usable as a target of an edge. Therefore, only
edges usable with the target node type are moved to the new element. Other edges
are ignored in the step. (They are removed afterwards.) If elements at the source and
target of the find-replace edge have the same type it is possible to move all edges. If
multiple find-replace edges enter a node the edge ends are moved from all source nodes
of find-replace edges.

« Set attribute values using expressions defined in the target elements: The simple expres-
sion language is used to set attribute values. It is necessary to use expressions if names of
attributes differ or if there are attributes with the same name in multiple elements. See
expression example in Fig. 6. The following elements are supported in the expression
language: Attribute name (supported if only one find replace-edge enters the target
element), Name of the find-replace edge followed by the attribute name (the name of the
find-replace edge is prefixed with the “@” symbol and followed with “” and the attribute
name), Constants, String operations of previously mentioned elements (concatenation,
substring, split etc.).

+ Remove instances of source elements (related to the find-replace edge): All related ele-
ments e.g., edges not moved in the previous step are removed. All nodes at the source
of the find-replace edge are removed. The edge is removed if it satisfies the following
conditions: the edge is included in a match processed; both its ends have outgoing find-
replace edges. A specific find-replace element type - delete node is used if it is required
to remove a node.

4. Find-Replace in a Tool

It is possible to implement find-replace principles in any graphical DSL tool development
framework. However, the encoding used by tools differ. An important part of find-replace
transformation implementation is the translation of the concrete syntax into the abstract syntax.
This part is tool-specific. Another important issue is the technical space supported by the tool.

We implement find-replace in the web-based DSL tool development framework - ajoo [5]. A
DSL editor in the ajoo framework is created by defining diagram types and their node types and

edge types. For each edge type supported source and target node types are defined. For the node
and edge types supported attribute types (named compartments types in the ajoo framework)
are defined. There is a specialization relationship between node types. The semantics is that
children inherit edge types supported by the parent. Diagrams in the ajoo framework are
encoded similarly. Diagrams consist of nodes and edges. Nodes and edges contain attributes
(compartments). Each instance is related to its type.

To enable find-replace in a DSL, we provide service to extend the definition of a DSL with
find-replace specific elements. We extend DSL definition with the find-replace edge type, delete
node type and also an abstract node type. The abstract node type is serving as the source and
the target of the find-replace edge. All node types in the DSL diagram and the delete node type
inherit from this abstract node type. This way the find-replace edge is usable between any two
node types in a DSL diagram.

The ajoo framework is based on Meteor [11] and uses MongoDB [10] as a data store. We
implemented find-replace from scratch as to our knowledge there is no model transformation
approaches working in the Meteor - MongoDB technical space. However, if the technical space
already has support for model transformations (for example, EMF-based framework Sirius), find
and find-replace patterns may be translated to model transformation rules.

5. Find-Replace Usage Scenarios
We discuss a few scenarios where find-replace may be useful for a DSL user.

« Language evolution: As a graphical DSL evolves (the language changes) it is required to
update DSL models accordingly. Find-replace may be used to update models. At first,
the DSL is extended with new elements. Afterwards, find-replace is used to transform
models to the new constructs. In the end, unnecessary DSL elements are removed.

« Model evolution: Find-replace may be useful to adapt a model according to changes
required. In this case, the language is the same, but usage principles and conventions
changes. For example, it may be necessary to rename model elements according to new
naming conventions or to restructure diagrams.

« Model clean-up: Detect and remove harmful elements from the model. This may be
necessary if some constructs cause problems in DSL execution. The find-replace may be
used to modify problematic elements or to remove unnecessary elements. This approach
may also be used to improve the readability of the models or to check whether models
conform to naming and/or formatting conventions, etc.

We demonstrate the model evolution using simple activity diagram example. Activity diagram
describing ticket vending process is given in Fig. 2. There are four node kinds in the diagram:
start symbol (black circle), end symbol (black circle with white halo), action (rounded rectangle),
condition (diamond). The action has two properties performer (black text) and name (blue text).
Beside nodes, there are edges with optional conditions.

As with text documents, it is important to maintain the consistency of models, as well. We
have identified three required improvements in the diagram. The first improvement required
in the diagram is to modify the performer name of actions performed by the ticket vending

[Passenger]
Select language

[Passenger]

Provide trip info

[vending machine]
Request trip info

[vending machine]
Process trip info

[Passenger]
Provide
payment info

[vending machine]
Request payment

[vending machine]
Process payment

[pay with card]

[paid with cash]

 Paceennard

|Passenger] [vending machine]
Get change ﬂe change |
from vending
machine
e

[Bank]
Authorize
card payment

[vending machine]
Dispense ticket
[Passenger]

Get ticket from |
vending

+ [vending machine]
machine Show "Thank You!!" ®
| —

Figure 2: Example of activity diagram describing "Ticket vending process".

machine. It is required to replace the performer "vending machine" with the performer "Ticket
vending machine". The find-replace transformation is given in Fig. 3. The result of the find
query of this transformation (in the ajoo framework) is given in Fig. 4. It is possible to highlight
find results in a diagram (Fig. 5.). Afterwards, it is possible to replace one match or all matches
in a diagram. The result after replacing all matches in a diagram is given in Fig. 5.

[vending maching] l | [Ticket vending machine”]

Figure 3: Find-replace diagram replacing performer "vending machine" with performer "Ticket vending
machine". Implementation in the ajoo framework is shown.

The second improvement required is to introduce merge symbol. There are various styles of
how transitions are used in activity diagrams. In the example (Fig. 2) multiple edges enter action
node. There is another style, where only one transition can enter an action. To merge multiple
flows merge symbol (diamond similar to condition) is used. Find-replace pattern introducing
merge symbol and the result of the transformation is given in Fig. 6.

The third improvement of the example is to extract Object from actions. In the UML activity
diagrams, there is Object symbol used to describe real-life objects sent from one action to
another action. If the ticket vending machine "Dispense” something to a passenger, it should be
extracted as an object in the activity diagram. The transformation and result is given in Fig. 6.

The find-replace patterns were demonstrated using one DSL diagram. However, the find step
of a transformation finds matches in all diagrams accessible to a user.

Match NO 1
Match NO 2|
Match NO 3
Ticket vending machine Match NO 4
Match NO 5

Match NO 6|

Match NO 7|

Figure 4: The result of the find-replace query given in Fig. 3, shown as implemented in the ajoo.

[Passenger]
Select language Toenang macne]

Request trip info

[Passenger]
Select language

TTicket vending machine]
Request trip info

[Passenger] Tiending maching] [Passenger] —
Provide trip info Process trip info Provide trgip info g;geéées";‘ ’g.l”,;“ﬂl mf,]

[Passengar] Tlending machine]

[Passenger] [Ticket vending machine]

Provide Request payment Provide Request payment
payment info payment info
Tending machine] [Ticket vending machine]
Process payment Process payment
[pay with card] [pay with card]
[paid with cash] [paid with cash]
[Passenger] _ [vending machine] [Bank] [Passenger] [Ticket vending machine] [Bank]
Getchange <—— Dispense change Authorize Get change 4@ change Authorize
from vending card payment from vending card payment
machine machine
— 1 5 Tvending macnine] TTickel vending machine]
Dispense ticket Dispense ticket
— [Passenge] " [Passenger]
Get ticket from Get ticket from
vending -1 - vending v
machine [~ lshow "Thank You!!" —® machine Show “Thank Youl:” ®

Figure 5: Results of the find-replace query (given in Fig. 3) highlighted in the "Ticket vending" example
given in Fig. 2 are shown on the left. The highlighting is shown as implemented in the ajoo framework.
The result of the replace all operation of the find-replace query is given on the right.

6. Related Work

The find-replace is a model transformation of a special kind. It is in-place transformation:
endogenous, unidirectional, the same model is used as a source and as a target of a model
transformation. There are additional requirements set for the find-replace task:

« It should be possible to execute transformation for all or some manually selected matches
only. Therefore, it should be possible, to distinguish find step and replace step.

+ The modeller working with a DSL should be able to define find - replace transformation,
therefore the concrete syntax of the DSL should be used.

+ The transformation should work in the technical space of a DSL tool development frame-
work.

Traditionally, model transformation is defined using the abstract syntax of the language.

[Ticket vending machine]
Dispense

@a.Name Spiit(" ")[1]

A

[Passenger]
Select language
[Passenger]
Provide trip info

Passe_nger]
rovide
payment info

TTicket vending machine]
Request trip info

[Passenger]
Select language

TTieket vending machine]
Request trip info

TTicket vending machine]
Process trip info

[Passenger]
Provide trip info

ckel vending machine]
rocess trip info

P

TTickel vending machine]
Regquest payment

TTickel vending machine]
Request payment

Brovide

payment info

&mka vending machine]
rocess payment

gcke\ “ending machine]
rocess payment

[Bank]
Authorize
card payment

[pay with card]

[pay with card]

[paid with cash] G gfzﬁ;ﬁge Bﬁi:sket ending nﬁamms]
from vending pense change
[Passenger] Elckel vending machine] {Bank} 1
Get change ispense change Authorize machine
from vending card payment P —
machine

[Passenger]
Get ticket from

vending
machine

ket vending machine)
Dispense ticket

TTicket vending machine]

Dispense ticket

TTickel vending machine]
Show "Thank You!!"

Figure 6: Find-replace transformation introducing merge symbol is shown on the left. Find-replace
transformation extracting object is shown on the right. Result of transformation on example given in
Fig. 5 are shown under the transformation.

TPassenger]
Get ticket from
vending — -

i icket vending machine
machine Show “Thank You!" ®

However, there are concrete syntax-based approaches, as well. The concrete syntax-based
approaches are: concrete syntax-based model transformations [12, 13, 14, 15, 6, 16], model
transformations by example [17, 18, 19] and model transformations by demonstration [20, 21, 22].

In general, the concrete syntax-based find-replace is a subset of concrete syntax-based model
transformations. Still, the find-replace use case sets certain constraints on concrete syntax
transformation definition’s means and style. There is no need for control structures because
only a single find or find-replace pattern will be executed at a time. To ensure a similar style
of find and find-replace features, the pattern used in the find query should be the same as the
one used in the find-replace operations. It should be noted, that the find-replace is intended for
small incremental updates of a model. It is not a full transformation language.

Source and target model pairs are used to generate model transformation in model transfor-
mations by example. It may be necessary to provide multiple model pairs, to provide correspon-
dences or to edit generated transformation, depending on the approach. Model transformations
by demonstration is a special type of model transformations by example. Here the target model
is obtained using demonstrations. The demonstration-based approaches are endogenous, but
they don’t use correspondences. Model transformation by example and model transformation
by demonstration approaches rely on constraint guessing for transformation. In our approach,
the constraints are stated explicitly by setting attribute values. The [23] analyses the first wave

of concrete syntax-based approaches. It states that "no correspondence-based approach has
been proposed for endogenous transformations, so far"" To our knowledge, there is still no other
endogenous correspondence and concrete syntax-based approach.

Model transformations are defined as annotated concrete syntax diagrams of a tool in VMTL
[16]. Although these ideas may be generalized to DSL tool building frameworks, the current
implementation requires defining a transformation from each language/tool used to the format
supported by the transformation execution engine. However, in our approach, find-replace
features should be available to any language defined in the DSL tool definition framework. It
should also be noted that in VMTL a special language of annotations is used in the patterns.

Concrete syntax-based model transformations are integrated with the DSL tool development
framework in the AToMPM [6]. The transformation rule in the AToMPM consists of Left - Hand
Side, Right - Hand Side and Negative Application conditions. To relate Left - Hand Side and Right
- Hand Side elements "__pLabel" property is used. We in contrast use a visual representation of
relations - the find-replace edge. Constraint and action code in AToOMPM patterns is written in
Python. Our approach targets modellers, often without a programming background. We think
that for users without programming background it is easier to gasp relations than variables.
The AToMPM supports full-fledged transformation language while our approach is tailored for
small incremental model updates. Besides, currently, it is not possible to execute AToMPM rules
only for some manually selected matches as it is required in the find-replace use case.

7. Conclusions

In the paper, a universal find-replace approach as a service of DSL tool development framework
is proposed. The find-replace operation is performed in two steps. At first, the find operation is
performed. The replace operation is performed for each match of the find operation separately.
The user may select to perform the replace operation for one or multiple matches at once. If there
are conflicting matches, the user must select one to be replaced. The find-replace is implemented
in the web-based DSL tool development framework ajoo [5]. However, the approach could
be implemented in other DSL tool development frameworks, as well. The approach relies on
element types. The encoding used by tools differ, but element types are present in one way or
another in almost all DSL tool development frameworks. It should be noted, that other graphical
element types are supported in other tools, like box in a box or pins. The approach proposed in
the paper could be extended to support other element types, as well.

The find-replace approach proposed in the paper is not a complete concrete syntax-based
transformation language. Thus, it is not possible to write any transformation as a find-replace
pattern. It is not the purpose of the approach. The find-replace is intended for small incremental
updates of a model. This is how find-replace is typically used in other tools (text editors, etc.).

Acknowledgments

The work has been supported by the European Regional Development Fund within the project #
1.1.1.2/16/1/001, application # 1.1.1.2/VIAA/1/16/180 “Concrete Syntax Based Find for Graphical
Domain Specific Languages”.

References

[1] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, R. Heldal, Industrial adoption of
model-driven engineering: Are the tools really the problem?, in: A. Moreira, B. Schétz,
J. Gray, A. Vallecillo, P. Clarke (Eds.), Model-Driven Engineering Languages and Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 1-17.

[2] MetaCase, Metaedit+ 5.1., 2020. URL: http://www.metacase.com/.

[3] Microsoft, Modeling sdk for visual studio - domain-specific languages., 2020. URL: https:
//msdn.microsoft.com/en-us/library/bb126259.aspx.

[4] Eclipse, Sirius, 2020. URL: https://www.eclipse.org/sirius/.

[5] A. Sprogis, Dsml tool building platform in web, in: G. Arnicans, V. Arnicane, J. Borzovs,
L. Niedrite (Eds.), Databases and Information Systems, Springer International Publishing,
Cham, 2016, pp. 99-109.

[6] E.Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, H. Ergin, Atompm:
A web-based modeling environment., Demos/Posters/StudentResearch@ MoDELS 2013
(2013) 21-25.

[7] E. Kalnina, A. Sostaks, Towards concrete syntax based find for graphical domain spe-
cific languages, in: 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), IEEE, 2019, pp. 236-242.
doi:10.1109/MODELS-C.2019.00038.

[8] E. Kalnina, Concrete syntax-based find for graphical dsls, in: Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, MODELS °20, Association for Computing Machinery, New York,
NY, USA, 2020. URL: https://doi.org/10.1145/3417990.3422008. doi:10.1145/3417990.
3422008.

[9] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse Modeling Framework,
Eclipse Series, 2 ed., Addison-Wesley, Upper Saddle River, NJ, 2009. URL: https://www.
safaribooksonline.com/library/view/emf-eclipse-modeling/9780321331885/.

[10] 1. MongoDB, Mongodb, 2020. URL: https://www.mongodb.org/.

[11] M. Software, Meteor, 2020. URL: https://www.meteor.com/.

[12] T. Baar, J. Whittle, On the usage of concrete syntax in model transformation rules, in:
L. Virbitskaite, A. Voronkov (Eds.), Perspectives of Systems Informatics, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007, pp. 84-97.

[13] M. Schmidt, Transformations of uml 2 models using concrete syntax patterns, in: N. Guelfi,
D. Buchs (Eds.), Rapid Integration of Software Engineering Techniques, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007, pp. 130-143.

[14] R. Grenmo, B. Mgller-Pedersen, G. K. Olsen, Comparison of three model transformation
languages, in: European Conference on Model Driven Architecture-Foundations and
Applications, Springer, 2009, pp. 2-17.

[15] R. Grgnmo, Using Concrete Syntax in Graph-based Model Transformations, Ph.D. thesis,
University of Oslo, 2010. Doctoral thesis.

[16] V. Acretoaie, H. Storrle, D. Stritber, Vmtl: a language for end-user model transformation,
Software & Systems Modeling 17 (2016) 1139-1167.

[17] M.Kessentini, H. Sahraoui, M. Boukadoum, O. B. Omar, Search-based model transformation

http://www.metacase.com/
https://msdn.microsoft.com/en-us/library/bb126259.aspx
https://msdn.microsoft.com/en-us/library/bb126259.aspx
https://www.eclipse.org/sirius/
http://dx.doi.org/10.1109/MODELS-C.2019.00038
https://doi.org/10.1145/3417990.3422008
http://dx.doi.org/10.1145/3417990.3422008
http://dx.doi.org/10.1145/3417990.3422008
https://www.safaribooksonline.com/library/view/emf-eclipse-modeling/9780321331885/
https://www.safaribooksonline.com/library/view/emf-eclipse-modeling/9780321331885/
https://www.mongodb.org/
https://www.meteor.com/

by example, Software & Systems Modeling 11 (2012) 209-226.

D. Varrd, Model transformation by example, in: International Conference on Model Driven
Engineering Languages and Systems, Springer, 2006, pp. 410-424.

M. Wimmer, M. Strommer, H. Kargl, G. Kramler, Towards model transformation generation
by-example, in: 2007 40th Annual Hawaii International Conference on System Sciences
(HICSS’07), IEEE, 2007, pp. 285b—285b.

P. Langer, M. Wimmer, G. Kappel, Model-to-model transformations by demonstration, in:
L. Tratt, M. Gogolla (Eds.), Theory and Practice of Model Transformations, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 153-167.

V. Acretoaie, H. Storrle, D. Striiber, Transparent model transformation: Turning your
favourite model editor into a transformation tool, in: D. Kolovos, M. Wimmer (Eds.),
Theory and Practice of Model Transformations, Springer International Publishing, Cham,
2015, pp. 121-130.

Y. Sun, J. White, J. Gray, Model transformation by demonstration, in: A. Schiirr, B. Selic
(Eds.), Model Driven Engineering Languages and Systems, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009, pp. 712-726.

G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, M. Wimmer, Model transfor-
mation by-example: A survey of the first wave, in: A. Dusterhoft, M. Klettke, K.-D.
Schewe (Eds.), Conceptual Modelling and Its Theoretical Foundations: Essays Dedicated
to Bernhard Thalheim on the Occasion of His 60th Birthday, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012, pp. 197-215. URL: https://doi.org/10.1007/978-3-642-28279-9_15.
d0i:10.1007/978-3-642-28279-9_15.

https://doi.org/10.1007/978-3-642-28279-9_15
http://dx.doi.org/10.1007/978-3-642-28279-9_15

	1 Introduction
	2 Find-Replace Principles
	3 Find-Replace Semantics
	4 Find-Replace in a Tool
	5 Find-Replace Usage Scenarios
	6 Related Work
	7 Conclusions

