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Abstract
In the domain of Model-driven Engineering (MDE), modeling of software and technical systems is often
a collaborative and interactive activity performed by several people. However, existing tools do not offer
sufficient collaboration features as reported by studies conducted with industrial practitioners. In this
paper, we introduce a new operation-based approach enabling both synchronous and asynchronous
collaboration in graphical modeling tools. The presented approach is capable of conflict detection,
resolving, branching, and merging. Furthermore, we demonstrate how a seamless transition between
both collaboration modes can be ensured. We define user performed edit operations, such as adding
a new block or changing a property’s value, as first-class citizens. Edit operations do not have to be
atomic and can result in multiple atomic operations which are finally applied to the local model. Both
kinds of operations are persisted in a sequential history and they are also distributed to other connected
clients through a central server, which ensures a global unified history across all clients. Due to the
sequential history consisting of operations and the change information they contain, we can apply a
conflict detection method that is able to narrow down conflicts to the minimal possible set of individual
conflicting operations for manual resolution while automatically merging the remaining changes.
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1. Introduction

Due to the ever increasing size of modern software and systems, the need for collaboration
features of software developing tools has grown continuously. Especially modeling is a creative
and interactive but mostly collaborative work. This raises the need for suitable collaboration
features in modeling tools, such as versioning and change propagation, but also conflict detection
and resolving should be handled appropriately. Studies conducted in industry targetingmodeling
tools report problems related to insufficient or even missing collaboration features [1, 2, 3].
In general, collaboration can be classified by means of the classification framework by

Franzago et al. [4] into synchronous or asynchronous collaboration. A further classification
addresses the way of how differences between versions are described or identified. Versioning
approaches can be either state-based or operation-based [5]. State-based comparison identifies
differences between two versions by matching similar elements and identifying contradictions.
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Operation-based comparison, instead, records operations which are applied to the model to be
versioned and performs a conflict detection based on the operations.

Besides technical challenges, collaboration in model-driven software development creates new
challenges in terms of user experience. Especially if modelers collaboratively create a model, it
becomes important for them to trace changes made by others and understand how a model has
evolved over time. We argue that in a graphical modeling tool recording every edit operation a
user performs is a suitable way to record a user’s modeling intention. Instead of calculating
state differences or a possible sequence of edit operations a posteriori, such as state-based
approaches do, we assume that having access to the list of performed edit operations improves
the comprehensibility of evolving models for users and, consequently, the user experience, too.
In this paper, we introduce an operation-based approach that supports synchronous and

asynchronous collaboration as well as a seamless transition between the two operation modes
based on user-made edit operations, e.g., creating a new block or adding a property. These edit
operations are utilized for versioning purposes by storing them in a model history (instead of
persisting the whole state of the model) and also for collaboration purposes by distributing
them through a central server to other connected clients. The central server detects conflicts
based on the received edit operations. We demonstrate the applicability of our approach by
extending an existing tool named Iris [6]. Iris is a graphical modeling tool which is developed
to create roadmaps for the automotive domain by modeling technical systems and identifying
their future needs.
The remainder of this paper is as follows: In the following Section 2 we discuss other

collaboration approaches. In Section 3, we explain the architecture of our approach and in
Section 4 we present the way we store operations for versioning purposes. How we address
both collaboration modes and a fluent transition between both is explained in Section 5. Finally,
in Section 6, we summarize our approach and outline future work.

2. Related Work

Graphical models are often stored in a serialized and textual file. For example, XMI [7] is a
popular format in the MDE domain. The most basic approach to version these serialized models
is using a version control system (VCS) such as Git [8]. However, understanding changes or
even handling conflicts at this textual level is not a way that can be understood by human users.
Conflicts must be lifted to a higher level a user can understand which is the graphical syntax of
the model. For this purpose, EMF Compare [9, 10] is a popular tool. It is a state-based approach
and instantiates each model version, calculates the differences at the abstract syntax level, and
visualizes them even on concrete syntax level when customized. The usual combination of a
classical VCS and EMF Compare only supports asynchronous collaboration. A drawback of EMF
Compare — as for any other state-based approach — is that it is only capable of calculating deltas
between different model states and not the actual performed changes which were applied to the
model. SiLift [11, 12] goes a step further by addressing this drawback. It does not only calculate
the differences between different versions of a model, but also tries to identify a sequence of
model transformations, which must be previously specified by a user, that could transform
one version to the other version. The a posteriori calculated result is a possible sequence of



transformations, but not necessarily the actual sequence.
Yohannis et al. [13] developed CBP that combines state-based with operation-based model

persistence. Changes to the model are recorded in a XML-like textual syntax and appended to a
model’s XMI file. The approach relies on a classical VCS, hence, it supports only asynchronous
collaboration. However, Yohannis et al. demonstrated that their operation-based approach is
faster in terms of version comparison than the state-based comparison of EMF Compare [14].
There also exist other approaches that can be classified as operation-based. CoOBra [15]

supports both synchronous and asynchronous collaboration but is not capable of branching as
known from other VCS. Furthermore, it ensures no globally consistent order of the performed
operations. Also in synchronous mode, conflicting changes are discarded.

Another operation-based approach, Kotelett [16, 17], defines a specialDifference Language (DL)
to represent deltas between two versions. Kotelett supports both synchronous and asynchronous
collaboration but no conflict detection in both modes. While so called micro changes are
exchanged during synchronous collaboration, after persisting a model, these micro changes are
dropped and the state-based delta between two model versions is calculated.

We conclude that various approaches enabling either asynchronous or synchronous collabo-
ration for graphical modeling environments exist. Some of them also support both modes but
suffer from missing conflict detection in synchronous mode. Further, some approaches do not
persist a model’s detailed and globally ordered editing history.

3. Architectural Blueprint

Our approach treats edit operations as first class citizens. This requires a technique to store
and process operations instead of storing a full state of a model. We also need an application
architecture that is event-driven, or in our terms driven by user initiated edit operations. Over
the course of this chapter, we explain the architecture of our approach as well as the versioning
concepts.
To enable synchronous collaboration our architecture is a client-server architecture and is

outlined in Figure 1. It follows the flux pattern as introduced by Facebook [18], which is a
state-of-the-art pattern for web applications that reflects our requirement of handling user
triggered edit operations as first-class citizen. Adopting flux leads to an unidirectional data flow
of edit operations through our application. Composite operations are triggered by a user within
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Figure 1: Overview of the client-server architecture of our collaboration approach. Edit operations are
used for both versioning and collaboration purposes.



the graphical view. A central dispatcher is responsible of delegating composite and derived
atomic operations to corresponding parts of the application. The model store holds the currently
displayed version of the model and can update the model by applying atomic operations to the
model received from the dispatcher. Finally, the store notifies the view that it can update itself
because the model has changed. To support versioning, we extended the dispatcher to not only
delegate the operations to the model store to update the current model, but also to the model
history which stores all operations applied to the model in the past for versioning purposes as
we describe in more detail in Section 4.

In contrast to the client application, the collaboration server only offers three features. First,
the server can handle several simultaneous modeling sessions. For every modeling session, the
server broadcasts received operations from one connected client to all other connected clients.
Second, the server stores for each modeling session all operations within its model history. The
server is neither capable of applying these operations nor does it hold the state corresponding
to a version of the model. Third, the server is responsible for detecting conflicts and ensuring
an eventual consistent and equal model history across all clients.
Our approach introduces several classes to represent model elements and operation types.

Figure 2 shows the generic metamodel of our approach and its application in Iris. Every
Element but also every EditOperation is identified by a globally unique ID [19]. A Model can
consist of several abstract Elements which can contain further Elements. All Elements can have
several attributes identified by a name. Concrete Elements needs to be defined by the adopting
application. An EditOperation has exactly one target element and depending on its type also a
parent element. For instance, if an EditOperation is of type Create, it has the new element as
target and the element in which the new element is to be created as parent.
In our approach, operations should represent the user’s intention in the form of those op-

erations the user can trigger within the graphical modeling tool. From this it follows that
they may not be always atomic and we need to distinguish between two kinds of operations.
CompositeOperations correspond to the actual user operation and do not have to be atomic.
They can be decomposed into one or many AtomicOperations. In Iris, this is achieved by
an OperationTransformer. For example, in Figure 3, a screenshot of Iris shows the two im-
plemented types of Elements: Block and Property. When a user wants to delete BlockA this
corresponds to the CompositeOperation 𝑑𝑒𝑙𝑒𝑡𝑒(𝐵𝑙𝑜𝑐𝑘𝐴). However, this operation is decomposed
to the AtomicOperations 𝑑𝑒𝑙𝑒𝑡𝑒(𝑃𝑟𝑜𝑝1), 𝑑𝑒𝑙𝑒𝑡𝑒(𝑃𝑟𝑜𝑝2), and 𝑑𝑒𝑙𝑒𝑡𝑒(𝐵𝑙𝑜𝑐𝑘𝐴).
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Figure 2: Generic metamodel of our approach. Contents of
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4. Versioning and Data Persistence

A main idea of our concept is to persist user-triggered operations instead of the whole model
state which classifies our approach regarding Brosch et al. [5] as an operation-based versioning
approach. While state-based approaches mostly utilize external VCS to version a serialized state
of the model, our approach, instead, uses edit operations for data persistence and versioning. In
the following, we introduce the versioning and persistence technique of our approach in detail.
A common way to modify an application’s state is to manipulate its state directly, e.g., by

overwriting an old value with a new one. The drawback of this approach is that old model
states or versions are no longer available and no information about the operation that changed
that value is available. Instead, our versioning approach is based on operations. A composite
operation 𝑜𝑘 deterministically triggers an model’s valid state 𝑣𝑗 to be transformed to an also

valid successor state 𝑣𝑘 what can be expressed by 𝑣𝑗
𝑜𝑘−−→ 𝑣𝑘 where 𝑣𝑗 is predecessor of 𝑣𝑘 (𝑣𝑗 ≺ 𝑣𝑘).

To rebuild an arbitrary past version of the model 𝑣𝑥, all operations ⪯ 𝑜𝑥 have to be sequentially
reapplied to an initial (empty) state. That implies that operations are persisted in a causally
correct order. In the literature this pattern is also referred to as Event Sourcing (ES) [20].

However, a sequential list does not offer the possibility to store arbitrary competing versions
or branches which are predecessors of a common ancestor or model version. Therefore, we
implemented a data structure based on a directed acyclic graph (DAG). This enables us to store
multiple competing versions and consequently support branching and merging, as illustrated
in Figure 4. This comes into particular account when users collaborate asynchronously and
switching to synchronous collaboration mode. Furthermore, since the graph is implemented as
an acyclic one, we can ensure that no older version can be based on a newer one.

The implemented DAG consists of multiple Nodes, in general, and EditNodes and MergeNodes,
in particular, as illustrated by the metamodel in Figure 5. Each node of the graph has a globally
unique ID that also serves as identifier of the corresponding model version. Furthermore, a node
has a reference prev to its predecessor node. In addition, an EditNode, highlighted in orange
color, holds a CompositeOperation and the derived AtomicOperation(s). A node needs to persist
both types of operations: in terms of conflict detection, as described later, AtomicOperations
would be sufficient, but, to reach our goal of representing the history of a model through edit
intention of users, we also include the CompositeOperation.

A branch can be created by two nodes referring to the same predecessor node, e.g., in Figure 4
both nodes 𝐵 and 𝐷 point to node 𝐴 as common ancestor. This can happen explicitly by a
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Figure 4: DAG-based data structure consisting
of EditNodes (orange) and MergeNodes (blue)
to enable versioning.
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user who creates a new branch or implicitly by working in asynchronous mode while other
users also working in synchronous mode. To merge two branches or competing model versions,
MergeNodes, highlighted in blue color, are needed. They also enable conflict resolution as we
describe in the next section. To handle multiple branches, the DAG can hold multiple References
each pointing to a Branch.
MergeNodes have two more pointers besides the reference to their predecessor. First, a

reference to the incoming branch by pointing to its latest node and, second, a reference to the
last common ancestor of both branches prev and incoming. For instance, in Figure 4, node 𝐴 is
the last common ancestor of the branches merged by node 𝐹.

As introduced previously, to restore a specific versionwe reapply a sequential list of operations
to the model. Therefore, we require a topological order to derive a linear list of nodes from the
graph. Since an EditNode only refers to its predecessor, the ordering for this kind of nodes is
obvious. For instance, in Figure 4, node 𝐶 is the successor of 𝐵, which in turn is the successor
of 𝐴. To recreate 𝑣𝑐, we sequentially reapply the operations of nodes 𝐴, 𝐵, 𝐶. Accordingly for
𝑣𝑒 we need to reapply nodes 𝐴,𝐷, 𝐸. In case of a MergeNode, we define the topological order
as follows: first, we apply all nodes ⪯ than base, second, the sequence from base to prev, and,
third, the sequence from base to incoming. Consequently, to recreate the latest model version
𝑣𝑓, shown in Figure 4, and assuming that there is no conflict between both branches, this would
result in the sequential list of 𝐴, 𝐵, 𝐶, 𝐷, 𝐸. Since 𝐹 is a MergeNode and holds no operations
itself, it is not part of that list. Regarding the defined topological order, our approach utilizes a
depth-first search (DFS) to derive an ordered sequence from the graph.

4.1. Conflict Detection

Since we implemented an operation-based versioning approach, also the conflict detection
must be able to perform a conflict detection between two competing versions based on the
recorded edit operations. We use the approach by Yohannis [13] to efficiently compare two
models based on operations. The approach iterates the two competing sequences of nodes
following a common predecessor node. For every Element the presented algorithm logs the
nodes which have an effect to that element. If both competing sequences change and require
the same element, this would result in a conflict.
In our implementation, the conflict detection is performed at the level of AtomicOperations

but conflicts are generated at the level of CompositeOperations, because they represent the edit
operation performed by a user and, thus, cannot be only partially part of a conflict. Furthermore,
if a CompositeOperation is part of more than one conflict, those conflicts are combined into a
single conflict.

4.2. Conflict Resolution

For the occurring conflicts, a user has the ability to choose for every conflict one or the other
side. Assuming, in Figure 4, there are two conflicts: 𝐵 and 𝐸 as well as 𝐶 and 𝐷. Now, the user
could choose 𝐵 instead of 𝐸 but 𝐷 instead of 𝐶. The user’s choice is encoded within aMergeNode
in a set named ignores. While iterating the graph to derive a sequence of nodes to recreate a
specific version, nodes ignored from a MergeNode are removed from the list. According to the



previous example, node 𝐹 .𝑖𝑔𝑛𝑜𝑟𝑒𝑠 = {𝐸, 𝐶} and, from this, the sequence to build 𝐹 is 𝐴, 𝐵, 𝐷.
This is, so far, a very basic conflict resolution. However, we assume that it is quite handy,

because only a minimal subset of composite operations of two competing versions is included
in a conflict and not the whole version itself. Therefore, due to the fine-grained resolution of
conflict detection, most competing operations are not in conflict and can be merged or rebased
automatically. Additionally, even if a user decided to exclude a node from the merged version,
that node or its corresponding model version is not deleted. It can easily be restored by reloading
that specific version. In the future, we plan to help a user to apply ignored operations again to
a merged version with a technique called micro-cherry picking as we describe in [21].

5. Collaboration

An advantage of the introduced approach is the ability to support both asynchronous and syn-
chronous collaboration with a seamless transition from one to the other mode. In the following,
we describe how the different modes operate and especially how conflicts are handled. Due to
the introduced DAG-based data structure, the presented approach is capable of determining
which version is based upon which previous version also in case of multiple competing versions.
A basic decision of our approach is that the central server is the single source of truth. Clients
can propose nodes to the server. The server can accept or reject nodes. Nodes accepted by the
server can not be modified or reordered anymore, whereas updates sent from the server can
reorder or withdraw unaccepted nodes at the client in case of conflicting changes. In Figure 5,
the Reference a client uses for each branch to manage its current synchronization status is shown.
On the one hand, a Reference points to the latest local node and, on the other hand, optionally, to
the latest node the server has accepted. Consequently, it is possible that there are one or many
nodes, which are still unaccepted. It holds that 𝑛𝑜𝑑𝑒𝑟𝑒𝑚𝑜𝑡𝑒 ⪯ 𝑛𝑜𝑑𝑒𝑙𝑜𝑐𝑎𝑙. In general, the approach
requires a reliable FIFO connection between a client and the server to ensure the right order
of nodes, detect packet loss, and connection loss. For instance, we implemented this features
using websockets which, in addition to be based on TCP, offer bidirectional communication by
default and produce less overhead compared to plain HTTP-based communication.

In the following, we, first, explain asynchronous collaboration, second, synchronous collabo-
ration, and, third, describe how the transition from one to the other mode is working.

5.1. Synchronous

In a synchronous collaboration setting it is important to avoid any visual input delays between
a user triggered an operation and the consequences of the edit operation become visible to
the user. Hence, delaying the results of an edit operation until the resulting node is proposed
to and accepted by the server may increases this time span to a level that is no longer user-
friendly. Nielsen [22, p. 135] summarizes that “0.1 second is about the limit for having the
user feel that the system is reacting instantaneously […]”. Therefore, we decided to apply an
edit operation immediately at the client, perform the conflict detection a posteriori at the
server, and implemented a propose / accept protocol. Initially performed benchmarks show
that the generated overhead by our approach during synchronous collaboration is around
5ms. Assuming a typical round-trip-time to be between 10ms and 500ms [23], the developed



approach seems promising. Because of the a posteriori conflict detection during synchronous
collaboration, there are three different cases to consider:
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Figure 6: Propagation of nodes in synchronous collaboration mode without any conflicts.

No interleaved updates. This can be described as the most basic case and is shown in
Figure 6. A client proposes a new node 𝐵 as direct successor of 𝐴 to the server (𝐵.𝑝𝑟𝑒𝑣 = 𝐴).
The client updates its local reference to 𝐵 while the client’s remote reference remains at 𝐴. 𝐵 is
now in an unaccepted state but will be shown to the user without any delay. When the server
receives 𝐵, it checks whether 𝐵.𝑝𝑟𝑒𝑣 points to the server’s last known and accepted node of this
branch. Since there are no concurrent changes made to the model in this example, the server
evaluates 𝐵.𝑝𝑟𝑒𝑣 = 𝐴 to 𝑡𝑟𝑢𝑒 and can, therefore, send an 𝑎𝑐𝑐𝑒𝑝𝑡(𝐵) to the proposing client and a
𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝐵) to all other clients within the same modeling session, if any. Finally, after receiving
that message, the client updates its remote reference to 𝐵.
Interleaved updates without conflict. Due to network latency it can occur that the server
has a new node 𝐶 accepted while a client that still did not received the corresponding 𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝐶)
added another node 𝐵. Both nodes 𝐶 and 𝐵 now point to the same predecessor node 𝐴. This
example is illustrated in Figure 7 at the left.

A client always places a newly received node behind the last node that was accepted by the
server, rebases all unaccepted nodes, and updates the remote reference accordingly. In the given
example, 𝐶 will placed between 𝐴 and 𝐵. This can temporarily lead to an invalid model state
because until now 𝐶 and 𝐵 might have a conflict.

The server is able to detect the concurrent changes because of 𝐵.𝑝𝑟𝑒𝑣 points to 𝐴 which is not
its latest known node 𝐶. Now, the conflict detection compares 𝐵 and 𝐶. In the case illustrated in
the middle of Figure 7, there is no conflict between 𝐵 and 𝐶. Hence, the server rebases 𝐵 and
sends an 𝑎𝑐𝑐𝑒𝑝𝑡(𝐵) to the client which updates its remote reference correspondingly.

Interleaved updates with conflict. In case of a conflict between 𝐵 and 𝐶, there are different
ways to handle that conflict. We decided to reject the unaccepted conflicting node. This can be
seen in Figure 7 at the right. The server withdraws node 𝐵 and notifies the client about it with
a 𝑟𝑒𝑗𝑒𝑐𝑡(𝐵) message. Following this, the client also withdraws the rejected node 𝐵 and updates
its local reference if it pointed to the rejected node before.

Instead of rejecting a conflicting node during synchronous collaboration, it would be possible
to automatically branch conflicts or open a merge view every time. However, we decided against
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for the following reasons: we assume that this would interrupt the workflow more than simply
rejecting a node. Moreover, due to the fine grained level of conflict detection, most interleaved
updates do not conflict and can simply be rebased. Additionally, we implemented several user
awareness features in the synchronous mode to prevent concurrent and conflicting updates.
E.g., in Figure 3, a modeling session of Alice and Bob can be seen. Their current cursor in
the form of a ghost cursor and their currently selected element are visualized to the other in
real-time.

5.2. Asynchronous.

If the client is offline, it operates in the asynchronous collaboration mode. Equivalently to the
synchronous mode, the client can append new nodes to its local model store and updates its
local reference accordingly. Because the connection to the server is missing, new edit operations
or nodes, respectively, are not sent to the server.

5.3. Transition.

The transition from online to offline is straight forward: due to the required TCP connection,
the client is able to detect a connection loss and switch to the asynchronous mode. If the client
is able to reestablish a connection, several synchronizations steps corresponding to the client’s
internal state are followed, see Figure 8. To address a new connection failure, all exchanged
information during the synchronization are only stored temporarily and discarded, if necessary.
In that case the synchronization must be started again. We describe each step in the following
and explain how edit operations made by others during the synchronization are handled.

Wait for History. After the client has (re)established the connection, client and server must
communicate the branches and their latest versions currently known to each other. Therefore,
the server initiates the synchronization process with a 𝑠𝑦𝑛𝑐𝑆𝑡𝑎𝑟 𝑡message. This message contains
all known references to branches including their latest known node each. The client answers also
with a 𝑠𝑦𝑛𝑐𝑆𝑡𝑎𝑟 𝑡 message containing its information. Both client and server store temporarily
the received known references and latest nodes by their opposite. It should be noted that during
the synchronization of a single client, other clients may perform concurrent edit operations.
Those are received by the syncing client but withheld until further notice.

Sync. Now, the client and the server need to exchange nodes, the other party does not have
in its local model history. Therefore, in the state Sync, the client and server send 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑁 𝑜𝑑𝑒𝑠
messages answer with 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑁 𝑜𝑑𝑒 messages containing the corresponding nodes. Received
nodes are stored within a temporary store.

Wait for SyncFin. After the server has received all requested nodes it sends sends a syncFin
message to the client. The client responds with a syncFin, too, and switches to stateWait for

Offline OnlineWait for History Sync Wait Sync Fin Sync Merge

Asynchronous SynchronousTransition

Figure 8: Client’s steps of synchronization to switch form asynchronous to synchronous collaboration.



SyncFin. All nodes previously unknown to the other side have now been exchanged.
While the client remains in Wait for SyncFin, the server adds all received nodes from the

temporary store to its model store. It iterates all branches and performs the conflict detection to
decide how competing versions of a branch have to be handled. Since other connected clients
may have proposed their edit operations to the server while exchanging nodes with the syncing
client, the conflict detection includes those concurrent changes. There are four different cases:

1. Fast Forward. This case is given, if only the client has made changes to a specific branch.
In case of the branch is already known to server, the server updates its reference to the
latest node received by the client related to that branch. If the branch is not known to the
server, it is a new branch and the server creates a reference accordingly.

2. Update client. This case if given, if only the server holds changes made to a specific branch.
The server does not need to update its reference to that branch.

3. Rebaseable. This case is given, if both the client and the server made changes to a branch,
but these changes are not in conflict. Consequently, the server rebases the sequence of
nodes proposed by the client to the latest node of the server and updates its reference to
the latest node of the client.

4. Manual Merge Required. In this case, in contrast to Rebaseable, the changes are in conflict.

The server sends the decisions made regarding each branch along with all its updated
references to the client through a 𝑠𝑦𝑛𝑐𝑆𝑢𝑚𝑚𝑎𝑟𝑦 message. All other connected clients within the
same modeling session, if any, receive a 𝑠𝑦𝑛𝑐𝐼 𝑛𝑓 𝑜 message containing all new nodes and the
updated references.

Sync Merge. When the client receives the 𝑠𝑦𝑛𝑐𝑆𝑢𝑚𝑚𝑎𝑟𝑦 message, all withheld messages and
nodes temporary stored so far, are appended to the local model history, because, as described
before, the server conflict detection includes all these nodes. According to the decisions the
server made, the client updates its references, rebases its changes, or requests the user to resolve
the detected conflicts. If the user has to resolve a conflict, the decision is packed into a merge
node as described in Section 4 and sent to the server. The client, finally, is in state online or
synchronous collaboration mode, respectively.

6. Conclusion

We presented our operation-based collaboration and versioning approach supporting both
synchronous and asynchronous collaboration as well as enabling a seamless transition between
both modes. Therefore, we introduced a DAG-based data structure and explained how a specific
version of the model can be recreated and competing branches or versions can be reconciled,
again. Furthermore, we outlined how fine-grained conflicts are detected and handled.

In the future, on the one hand, we plan to investigate the formal correctness of our proposed
transition process between the operation modes, and, on the other hand, we aim to develop
visualizing mechanism based on our versioning approach to present the past operations and
their impact to the model. Moreover, we will address ways for users to efficiently navigate
through a growing history of an evolving model. We assume, that especially visual modeling
languages and tools will benefit from this.
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In the course of this article, Figure 3 shows a screenshot of Iris. The screenshot includes icons
of the following authors: some icons by Yusuke Kamiyamane, https://p.yusukekamiyamane.
com/, licensed under a Creative Commons Attribution 3.0 License, (https://creativecommons.
org/licenses/by/3.0/). Further, some icons are taken from FatCow, https://www.fatcow.com/
free-icons, licensed under a Creative Commons Attribution 3.0 United States License, https:
//creativecommons.org/licenses/by/3.0/us/.
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