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Abstract
This paper proposes a model-based and formal approach to the development of medical systems: formal
modeling is used for system speci�cation, design, and analysis; and interactive simulation, involving
end users, is used for system validation. In this approach, the behavior of a medical device is modeled
as a hybrid automaton, and concurrently, a realistic interactive graphic interface is developed. The
behavioral model is translated into a logic theory, used to formally verify its correctness. The theory is
also an executable model that can be integrated with the graphic interface. The resulting virtual device
prototype is then simulated within a model of a clinical environment including the model of the patient
and other devices. This approach results in higher dependability in patient care: formal methods lead to
veri�ability of the development process, and simulation allows validation of speci�cations and designs.
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1. Introduction

Medical systems, ranging in complexity from simple sensors to integrated clinical environments,
are safety-critical cyber-physical systems that clearly must satisfy the most stringent safety
and dependability requirements. In spite of that, rigorous development methods and formal
veri�cation are not commonly applied in the speci�cation and design of medical systems. The
standard approach to ensure safety relies on testing and simulation, which are not su�cient,
especially when human interaction is involved. In particular, overlooking subtle issues in
designing user interfaces may lead to fatal accidents [1].

This paper proposes an approach to developing medical systems, based on the following
concepts: (i) use of formal modeling for system speci�cation, design, and analysis, and (ii) use
of interactive simulation involving end users for system validation.

Formal modeling means using a formal language, such as state machines or logic, to create
system models at all levels of abstraction, from speci�cation to implementation. Interactive
simulation means allowing developers, maintainers, and operators to interact with a simulated
system o�ering a realistic interface. Developers take advantage of formal modeling as it
lends precision and veri�ability to the development process, and use simulation to validate
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speci�cation and design. Maintainers and operators can rely on clear documentation derived
from formal models, and use simulation for training and exploration both of system features
and system �aws. All this leads to higher levels of dependability for patient care, and its
applicability ranges from single devices to complex care environments such as Integrated
Clinical Environments (ICE) [2].

In particular, this paper shows the application of the proposed process to modeling and
simulation of the SC7000 patient monitor, focusing on the user interface and to the alarm
system, and the integration of the developed prototype in the simulation of a simple ICE.

This paper is organized as follows: Sec. 2 provides background information on the tools used
in this work; Sec. 3 introduces the proposed process from the point of view of formal modeling,
and discusses the role of user interface modeling and prototype simulation; Sec. 4 describes the
development of the graphical and behavioral model of a real patient monitor; Sec. 5 describes
the co-simulation of an ICE including the monitor; conclusions are drawn in Sec. 6.

2. Background and Related Work

This section introduces background information on the modeling and simulation tools and
techniques underlying the proposed development process: The Prototype Veri�cation System
(PVS) [3] and the INTO-CPS co-simulation framework [4].

From the literature on the application of formal methods to the development and veri�cation
of medical devices, we may cite Masci et al. [5], who advocate the formalization of design
guidelines. Safety assurance for medical systems is discussed by Leite et al. [6]. A conceptual
model and safety requirements for integrated clinical environments is found in [2], which lays
out a conceptual model and safety requirements. High-order logic has been used also as a
speci�cation language for ICEs [7] and in the development of an interactive prototype of an
infusion pump [8]. The work on simulation of infusion pumps is in part motivated by the danger
of adverse events caused by poorly designed user interfaces. Vicente et al. [1] discuss evidence
for such danger, and the use of interactive simulation as a training tool is reported in [9].

2.1. PVS and PVSio-web

The Prototype Veri�cation System (PVS) [3] is an interactive theorem proving environment
based on a higher-order logic speci�cation language and on a sequent calculus deduction system.
With PVS, a system can be modeled as one or more theories, and system properties can be
proved by issuing commands that apply inference rules. A built-in type-checking algorithm
veri�es the consistence of formulas and declaration and, when necessary, it generates type
correctness conditions (TCC), i.e., auxiliary theorems that the developer must discharge. The
PVS environment includes an interpreter, or ground evaluator, called PVSio [10], that evaluates
fully instantiated function applications. The PVSio package includes functions that produce side
e�ects (e.g., input and output) without a�ecting the purely declarative nature of a speci�cation.

Another extension to PVS is the PVSio-web [11] toolkit, an environment for modeling,
analyzing, and prototyping of human-machine interactive systems. With this toolkit, developers
can create a realistic interactive image of the physical interface of a device, and associate areas
of the image representing interface components (i.e., displays, buttons, etc.) with operations



modeling device behaviors, e.g., the device response to pushing a button. Behaviors can also be
speci�ed with an automata-based graphic language, the Emucharts diagram [12]. The toolkit
includes code generators for the automatic implementation of Emucharts automata into various
languages, including C [13] and the language of the PVS prover. The latter is produced with
the translation patterns introduced in [14]. The toolkit has a web interface to build the device
prototype and run interactive simulations where a user operates the simulated device through
its image.

2.2. INTO-CPS

The Integrated Tool Chain for Model-based Design of Cyber Physical Systems (INTO-CPS) [4]
is a co-simulation environment complying with the Functional Mock-up Interface standard
(FMI) [15]. The FMI standard has been developed to enable (sub)system models created by
di�erent tools to be integrated and simulated together, under the orchestration of a master co-
simulation algorithm. The INTO-CPS tool-chain provides a co-simulation orchestration engine
(COE) implementing a master algorithm, and a user interface to set up a co-simulation by
choosing and connecting the subsystem models. The COE runs the co-simulation by activating
speci�c simulators for the di�erent submodels and dispatching data among them. In the FMI
standard, each submodel is contained in a functional mock-up unit (FMU). Besides the model,
the FMU may contain a simulation environment and any other resource needed for simulation.
The FMI does not mandate any type of implementation for FMUs, as it only de�nes a set of C
APIs that they must support.

3. Formal Modeling

The main contribution of the process proposed in this paper is probably the adoption of for-
malisms and tools that together provide expressiveness in modeling, rigor and �exibility in
veri�cation, and interactivity in simulation.

3.1. System Behavior Model

Among the numerous formalisms available, our approach relies on hybrid automata [16, 17]
and higher-order logic [18]. Automata are a familiar notion to system developers, and hybrid
automata, in particular, can describe precisely such systems as medical devices, which often
exhibit di�erent time-continuous behaviors in di�erent modes of operation. Further, automata
have graphic notations that add to their expressiveness. A higher-order logic can be used
to specify both a system’s structure and its requirements, and computer-assisted theorem-
proving is then used to check if the system’s structure satis�es the requirements. However,
higher-order logic is probably less familiar than automata to most developers. For this reason,
we use a graphical language to build automaton-based models and a tool to generate higher-
order logic theories from those models. The role and usage of these languages and tools can
be explained without delving into details that will be exposed in later sections. Brie�y, an
Emucharts model describes a system whose instantaneous state is de�ned by the values of a
�nite set of state variables and by one mode of operation (the current mode) out of a �nite set of



Table 1
Emucharts model elements.

Element Corresponding to

state variables patient or device parameters, time
trigger events user actions, alarm limit crossings, timeouts
modes of operation states where the device is performing given tasks or waits for user actions
transitions switching between modes in response to triggers
actions updating state variables when transitions occur
guards enabling conditions for transitions, on state variables or time intervals.

modes. Transitions between modes are triggered by events but can be disabled if certain guard
conditions do not hold. Transitions may also execute actions that change the values of state
variables. Table 1 shows how the Emucharts model relates to a device.

A logic theory can be mechanically generated from an Emucharts model according to a
procedure �rst presented in [14] and implemented in the PVSio-web PVS code generator. The
core of the theory is a deterministic function ranging over the set of pairs (state, event) and
returning a new state. System properties can then be expressed as theorems to be proved within
the theory: For example, one may formally prove that a vital parameter will never exceed certain
limits, or that the system will always react correctly to changes of parameters.

3.2. User Interface Model

The user interfaces of medical devices are typically made of electromechanical components (such
as toggle switches, push buttons, selectors, lamps. . . ) and electronic ones (such as alphanumeric
displays, LED or cathode-ray screens, touch screens. . . ). Devices may also be remote-controlled
from a computer console. Designing a human-machine interface (HMI) is di�cult, as it must
be accessible and readable, and it should invite operators to perform the correct actions but
without forcing them to change their working habits, all within hard physical constraints. A
poorly designed HMI can at best hinder everyday operations, and at worst cause errors with
adverse, even fatal consequences.

With the process proposed in this paper, a developer, or preferably a potential device operator,
interacts with an accurate interactive image of the device, which may be a photograph of a
physical prototype, if available, or a realistic rendering, showing all the displays and controls,
where the areas corresponding to controls are sensitive to operator’s actions with a mouse or a
touch screen, and the displays show the device outputs.

Graphical displays as described above are made with the PVSio-web toolkit, which provides
an editor coded in JavaScript, called the prototype builder, to select areas of an image (see Fig. 1)
and link them to the input arguments (if the selected area is a control) or the results (if the
selected area is a display) of speci�c PVS functions. These functions are de�ned in the logic
model of the device and model the transitions of the automaton model.



3.3. Simulation

A single device can be simulated as a standalone system. For example, an operator can set the
parameters of a simulated infusion pump and observe the progress of the infusion by reading
the infused volume on the display, then he or she may perform actions such as suspending the
infusion or delivering a bolus. A patient monitor can be simulated by reading recorded values
of a patient’s parameters from a �le, and the display may be switched between blood pressure
and heart rate, and so on.

More interesting scenarios can be explored by co-simulating more devices, together with a
model of a patient’s response to drugs or stimuli, such as ventilation. Co-simulation is based on
packing di�erent simulation programs into software containers called functional mock-up units
(FMU) that o�er a standard interface to a program that co-ordinates their concurrent execution.
In this way, it is possible to simulate, e.g., the interaction of an infusion pump with a patient
controlled by a monitor, where the monitor model is written in PVS as described above, the
patient’s pharmacokinetic model has been developed in Modelica by another clinic, and the
Simulink model of the pump has been acquired from the manufacturer.

4. Prototyping a Patient Monitor

As an example application of the proposed process, this section presents the development of
the graphical user interface and the behavioral model of the SC 7000 patient monitor [19]. In
this particular case, the purpose is making a virtual prototype that can be used both to validate
an existing product and to train operators [20]. As usual in real practice, detailed product
speci�cations are not available, so the model has been built on information garnered from the
operating manual and experimentation on the real device. In the development of a new device,
the model would be based on written speci�cations and interaction with prospective users.

4.1. The Siemens SC 7000 Patient Monitor

The Siemens SC 7000 Patient monitor displays and stores patient parameters and enables
operators to set alarms triggered by the crossing of threshold values. The monitored parameters
include ECG, respiratory rate, pulse oxymetry, and more. In this work, only the functions
related to heart rate and oxygen saturation (SpO2) have been simulated.

4.2. Graphical user interface

The device front panel has a power switch, two LEDs for the power supply, the screen, twelve
�xed keys, and a rotary knob incorporating a push button. Some keys open a menu that is
browsed by turning the rotary knob and clicking it to select an option. In Fig. 1 (left), the red
outlines mark the active areas for the interface widgets of the prototype. Area (1) displays a
real-time simulated ECG waveform, whose instantaneous value is displayed in area (2) along
with other parameters. Areas (3) and (4) are the �xed keys alarm limits and all alarms o�, and
area (5) is the rotary knob. Areas (6), (7), and (8) are the power button and LEDs. Area (9)
displays the SpO2 waveform.



Figure 1: Prototype graphical interface widgets (le�), Alarm management widgets (right).

Figure 1 (right) shows the widgets involved in alarm management. The alarm limits key,
simulated by area (2), opens the menu shown in area (1). Rotation of the knob in area (4) is done
with mouse scrolling, and pushing is done by clicking.

4.3. Modeling device behavior

Using the operating manual and experiment on the real device, the elements of the automaton
have been identi�ed as explained in Sec. 3. Figure 2 shows a fragment of the Emucharts
model concerning heart monitoring and oxygen saturation. From the initial menu (INIT),
pressing the alarm limits key (event alarm_lim_key) triggers a transition to mode alarm limits
(ALM_LIMITS). The transition resets variable et, modeling elapsed time since the activation of
a mode. From the alarm limits mode, the user turns the knob right (event knob_right) to step
through menu options, each corresponding to a mode (AUTO_SET, HBR_ALM, PVC/min_ALM,
SpO2_ALM). Turning the knob left (event knob_left) steps the cursor back. The tick event
models the passing of time in discrete steps (simulating 1 s intervals). Transitions triggered by
tick leave the state unchanged up to sixty time units, and switch to the initial mode above that
limit. This models the timeout mechanism that returns control to the initial menu if no user
actions occur within one minute.

Among the various interfaces, special focus has been given to alarms, particularly to keys
alarm limits for alarm management and all alarms o� for deactivating all active alarms.

Animating a prototype makes it possible to perform what-if analyses under di�erent scenarios,
possibly following use cases and system-test plans from requirements speci�cation documents.
In the speci�c case, where the prototype is actually a virtual replica of a marketed product,
interactive animation was used to reveal behaviors that would be hard to infer from the user
manual or the speci�cations.

For example, it was found that in the alarm setting modes it is not possible to move backward
directly from a submenu to the mode’s initial menu (INIT in the Emucharts diagram), which is
somewhat counter-intuitive and inconvenient. Finally, animation turns a device prototype into
a training tool for medical personnel, providing immediate feedback and increasing con�dence
in the device.

A PVS theory was generated from the Emucharts model, and the PVS type checker found



Figure 2: Partial Emucharts diagram for alarm setting.

a �aw in the �rst version of the model, which omitted the transition whose label has been
underlined in Fig. 2. Such a transition, from alarm limits mode (ALM_LIMITS) to init mode
(INIT), implements a timeout. The PVS theory translates each event into a multi-way conditional
formula, a declarative counterpart of the switch statement in the C language. A missing transition
causes the PVS conditional to violate the coverage TCC of a conditional, which means that some
possible outcomes of the conditional are not taken into account. In this example, the user
interface would remain in the ALM_LIMITS mode even after 60 s of inactivity. Such alterations
in the normal behavior of a HMI have proved to be a common source of accidents. An attempt
to prove the generated TCC guided the developers in �nding and �xing the error.

5. Co-simulation in an Integrated Clinical Environment

After preliminary standalone simulations, the SC 7000 prototype has been added to a pre-existing
co-simulation scenario, enclosed in a dashed line in Fig. 3. The scenario models a minimal ICE
for intravenous infusion, consisting of an infusion pump and a remote-control device. The
scenario was extended by plugging-in the FMUs for the monitor prototype and a patient model.
The co-simulation begins with the patient presenting a heartbeat rate of 80 bpm. The infusion
pump was programmed to infuse an analgesic at a rate of 8.0 ml/hr, causing the heartbeat rate
to decrease until it fell below the alarm limit of 70 bpm, previously set on the monitor, and the
alarm was activated.

In the co-simulation, an amount of analgesic was infused to the patient with the infusion
pump available in the ICE. The values of the patient’s parameters from the pharmacokinetic
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model were displayed by the prototype of the medical monitor. The co-simulation showed how
the patient’s heartbeat parameter changes during the infusion.

Figure 3 shows the prototype of the medical device when the alarm for the heart rate is on.
The image shows the heart rate displayed in the noti�cation bar at the top of the screen of the
monitor (HR < 70), while the heart rate value of the patient is shown with a yellow background.

While the user interacts with the realistic interfaces of the devices, the system variables are
recorded by the INTO-CPS application and plotted against time. Figure 4 shows the decreasing
heartbeat rate during infusion, and the time when it crosses the 70 bpm limit (dashed line),
triggering the pre-set alarm.



6. Conclusions

This work presented an approach to the development of medical systems, based on formal
modeling and interactive simulation, together with the supporting tools. The development
of a virtual prototype for a typical patient monitor has shown that: a formal model can be
automatically checked for completeness and consistency; interactive theorem proving guide
developers in �nding and correcting causes of incompleteness and inconsistency; the veri�ed
formal model can be executed to simulate the device; and the prototype can be integrated in
the co-simulation of a complex care environment where other subsystems are simulated with
other tools. The limiting factor for the use of interactive theorem proving is the availability of
developers familiar with that technique, but the device interfaces are modeled by theories with
a uniform structure and the safety properties to be checked match a small number of patterns,
so that the needed proof strategies could be learned quickly, and possibly automatized.

Further, the availability of a graphical prototyping environment makes it possible to build a
prototype with a life-like interface that can be used to investigate dangerous design issues and
to train device operators. In prospect, the availability of detailed models of device structure
and behavior (not just of their interface) and of extended virtual reality support will make it
possible to integrate the prototype into full digital twins of care environments.
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