
A Validity Analysis to Reify 2-valued Boolean
Constraints - Extended Abstract
Edward D. Willink1

1Willink Transformations Ltd, Reading, England

Abstract
As an executable specification language, OCL enables metamodel constraints that cannot be sensibly
expressed graphically to be resolved textually. However many users have expressed disquiet that although
a constraint is obviously either satisfied or not, the OCL formulation is not 2-valued. We argue that this
disquiet is the consequence of a misunderstanding emanating from the failure of the OCL specification
to address crashing. We introduce an analysis that identifies potentially invalid computations and so
guarantees that Constraints are 2-valued and that OCL-based Model Transformations do not malfunction.
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1. Introduction

The full, too-long, version of this paper may be found at [1].
As a Model-Oriented Pseudo-Code, OCL has been successfully used by many researchers

to elaborate models within their Domain-Specific Utopia. However OCL is also an executable
specification language and in this role significant problems arise in respect of what happens
when evaluation goes wrong. We will use the unambiguous but emotive term ‘crash’.

Many languages have a mechanism whereby a crash results in a thrown exception that
bypasses all further execution until explicitly caught by a suitable handler. OCL has a po-
tentially equivalent mechanism whereby an invalid value is passed from the crash to an
oclIsInvalid handler. However, it is only equivalent when all the intervening execution that
processes the invalid value is strict. Any invalid input leads to an invalid output.

Programmers are familiar with the short-circuit idiom whereby evaluation of the first argu-
ment of an and / or operation can make evaluation of the second argument redundant and so
avoid a crash. The OCL specification defines and / or operations to be commutative and so
does not support short-circuit operations. In order to emulate short-circuit behaviour, strictness
is abandoned and the two-valued operators are elaborated to be four-valued.

OCL therefore has the strange execution behaviour that a crash can occur while evaluating
one term of a Boolean operator only for it to be ‘uncrashed’ by the other term. This is at best
surprising and inefficient. In practice it presents significant challenges for tooling that must
provide a capability to unwind a crash. These challenges grow for OCL-based applications such
as model transformations in which unwinding may require an ability to unmatch.
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An examination of the crashes that can occur in OCL identifies two varieties.
Catastrophic crashes such as PowerFail, MemoryFail, NetworkFailure, IOFail, StackOverflow

can occur at almost any time and there is very little that an ordinary OCL program can do
about them. It is therefore very desirable that all such crashes should always crash so that the
application that invokes the failed OCL can provide a helpful diagnosis.

Other crashes such as DivideByZero, NullObjectNavigation, ArrayIndexOutOfBounds occur
predictably and are the result of deficient programming. Bad programming is of course undesir-
able and so we should look to exploit the rigor of OCL to prevent such crashes ever occurring.
We introduce a Validity Analysis so that all undesirable crash hazards are flagged as errors.

Once undesirable crashes are eliminated, the need for desirable crashes to always crash
requires that all execution is strict. The Boolean operators must exhibit conventional short-
circuit behaviour at run-time. This introduces an incompatibility when the crashing argument
is evaluated before, or concurrently with, the guarding argument. Our Validity Analysis must
therefore identify one of the arguments as crash-proof and commute the arguments at compile
time so that the crash-proof argument is evaluated first avoiding the need to unwind a crash
from a guarded crashable term. In the event that both arguments are crashable, deterministic
execution can be ensured by computing the arguments to a pair of let-variables so that both
crash hazards are resolved sequentially before the Boolean evaluation.

2. Validity Analysis

The Validity Analysis identifies all terms in an OCL expression that may crash, i.e.MayBeInvalid.
Since this analysis is performed at edit- or compile-time, the actual values of many terms
are unknown and so a symbolic evaluation is necessary to propagate knowledge such as
{Is,MayBe,Not} {Empty,Invalid,Null,Zero} through the OCL expression AST.

Taking a simple example with two crash hazards.

self.count > 0

A catastrophic or desirable crash can occur if the target model is hosted by a database allowing
the navigation from self to count to experience a network failure. OCL can do nothing about
this so we want the crash to happen and do not need to do anything to prevent or diagnose it.

A programming error or undesirable crash can occur if the multiplicity of the count property
is [?] allowing a null value. This value will crash when self.count > 0 is evaluated. Our
Validity Analysis must diagnose this. We can guard the undesirable crash.

self.count <> null implies self.count > 0

Except that this assumes that OCL has conventional short-circuit semantics which it doesn’t.
For OCL 2, the crash should happen and then be unwound.

Once we revise the Boolean operators to be short-circuit, we need our Validity Analysis to
have sufficient understanding of the program flow to recognise that the self.count > 0 is
only executed when its expression ancestors permit it. In our example this occurs when the
first argument of the implies is true.



For this simple idiomatic example, the guard is obvious, but if we try to understand why
it is obvious we find that we are performing a reverse evaluation from the one required true
result of self.count <> null to establish the characteristics of the two inputs. This reverse
evaluation is not monotonic and so does not scale to non-trivial examples.

Our Validity Analysis pursues an alternative approach that needs only forward evaluation.
A naive analysis of the example identifies that self.count MayBeNull, and consequently

that self.count > 0 MayBeInvalid. We need to demonstrate that the MayBeInvalid is
NotInvalid to suppress the naive diagnosis,

The MayBeInvalid is the consequence of a precondition failure for the > operation and so we
can hypothesize that the strictness precondition requiring non-null arguments is violated. i.e.
we hypothesize that the > operation execution can occur with self.count is null. The ‘can
occur’ aspect of the hypothesis imposes restrictions on all ‘if’ and ‘short-circuit’ ancestors. In
our example, execution of the second term of impliesmandates that the first term is true giving
an additional constraint (self.count <> null) = true. Re-evaluation of all terms affected
by the hypothesized value encounters a contradiction between the false-valued evaluation of
self.count <> null for the hypothesized null value and the true-valued evaluation imposed
by the executable control path. The contradiction refines the symbolic value of self.count
when accessed within self.count > 0. MayBeNull changes to NotNull and so allows the
symbolic re-evaluation to refine self.count > 0 from MayBeInvalid to NotInvalid. The
spurious crash hazard diagnosis is eliminated.

The example demonstrates the usage of symbolic Null and Invalid knowledge. This together
with Zero and Empty is just about working in the Eclipse OCL prototype. Further work is
needed to expand the aggregate coverage to handle aggregate Size and Content knowledge so
that for instance seq->includes(x)->first() is hazard-free.

The Validity Analysis can never be powerful enough to understand arbitrarily complicated
control flow and so users may need to help by making guards more explicit or by adding
additional invariants. As a last resort, an additional src.oclAssert(body) may be required
to allow a contextual constraint body to apply in the context of the src.

3. Conclusion

OCL’s crash handling can be refined to ensure that desirable crashes always crash and that
undesirable crashes never happen.

The challenge is to ensure that the benefits outweigh the pains. Guaranteed freedom from
undesirable crashes is a very significant benefit. Adding clarifying invariants may be painful.

Once OCL programs are free of undesirable crashes, OCL Boolean evaluations will appear to
be 2-valued just as they appear to be in other languages.
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