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Abstract

Mutation testing is a fault-based software testing technique for checking the effectiveness of a test
suite through artificial defects. The mutation testing produces a satisfaction score, which is typically
called the mutation score, to represent the quality of the input test suite. In mutation testing, from a
programme p, a set of faulty programmes p’ called mutants, is generated by making, for each p’, a single
simple change to the original programme p. To the best of our knowledge, no well-defined mutation
operators for Object Constraint Language (OCL) specification has been proposed so far. The choice of
mutation operators is an essential activity to ensure the accurate results of mutation testing. In this
paper, we present a set of mutation operators to OCL specification. Since OCL is more and more popular
in the scope of Model-Based Testing (MBT), the proposed mutation operators will help the mutation
testing process, which involves the OCL specification. The paper presents the experimental results of an
Android-platform financial application that is modelled by OCL specification. The results demonstrate
the effectiveness of the proposed mutation operators for OCL specification.
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1. Introduction

Software testing only can prove that the existence of system faults and software failure, but
testing can never confirm the absence of defects because it is nearly impossible to perform
exhaustive testing under the time and resource constraints [1]. Also, the system faults are the
aggregation of simple defects. We can validate the System Under Testing (SUT) correctness by
mutation testing based on the assumption that we can change the specification to simulate the
real system defects.

Mutation testing is a fault-based software testing technique. The technique has been widely
studied and used for nearly 50 years since a student paper can backtrack to 1971 [2]. Mutation
testing provides a range of methods, tools, and reliable results for the software testing process.
In mutation testing, from a programme p, a set of faulty programmes p’ called mutants, is
generated by making, for each p’, a single simple change to the original programme p.
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MBT is a testing method in software testing to validate whether the SUT satisfies the specifi-
cation by using design models. One key observation is that even well-constructed manual test
cases can only exercise the programme feature by the limited amount of test data [3]. Many
types of models can be used in MBT, such as Unified Modelling Language (UML), Labelled
Transition System (LTS), Petri-Net and Markov Chains. In the MBT community, UML is a
popular approach to perform the testing process. Object Constraint Language (OCL) is a type of
declarative language that adds more details to UML models and now is a part of UML standard
[4]. OCL has many benefits, and the most critical point is that OCL can add pre- and post-
condition [5] to methods, operations and models.

Mutation testing is a testing method initially designed for evaluating the quality of the test
suite by modifying the programme, and the majority of existing studies deal with kinds of
programming languages [6]. However, these approaches are language-dependent, which means
the mutation operators are specific to one particular programming language. Suppose we can
perform the mutation testing on a higher abstract level than a specific implementation language,
like OCL specification. In that case, the mutation operators can be platform-independent, and
the mutants can be used for multiple implementation platforms.

Especially in MBT and regression testing, we prefer to evaluate the test suite before the actual
implementation. When the design specification (OCL) is improved, then the mutation operators
will be applied. The system implementation should always conform to the design specification.
In this premise, the mutated OCL specification corresponds to the faulty programme. Therefore,
the result against mutated OCL specification can reflect the quality of the test suite.

Although there are some studies worked on mutation operators, like [7] [8] etc., they are
limited to a small subset of OCL specification. To the best of our knowledge, there is still no
well-defined set of mutation operators for OCL specification so far, especially for complex
operations, like operations to Collection. In this paper, we propose a set of mutation operators
to OCL specification and all these mutation operators are based on first-order mutation testing,
which means the mutants are created by only applying one mutation operator per mutant [9].

The remaining parts of this paper are structured as follows. Section 2 discusses the background
of mutation testing and OCL specification, also some related works. In section 3, we present
a set of mutation operators to OCL specification. Section 4 demonstrates a case study of the
proposed mutation operators based on an Android-platform financial application modelled by
OCL specification. Finally, section 5 concludes this paper and proposes future works.

2. Background & Related Works

There are two primary hypotheses within mutation testing designed to find valid test cases
and real errors in the programme. The two hypotheses are: Competent Programmer Hypothe-
sis(CPH) and Coupling Effect(CE). CPH means: assuming that programmers are capable, they
try to develop programs better and achieve the right results, not the faulty ones. It focuses on
the programmer’s behaviour and intentions. CE(coupling effect) is more concerned with the
category of errors in the variation test. A simple error is often caused by a single variation
(such as a syntactic error), while a large and complex error is often caused by more variation.
Complex variants are usually composed of many simple variants.



In addition to assessing the adequacy of the test suite, mutation testing can also simulate the
real defects of the SUT by using variation defects, thus assisting in evaluating the effectiveness
of the testing method proposed by researchers. The effect of variation defects generated by the
mutation operator is similar to real defects in effectiveness evaluation [10].

OCL takes a compromise between natural language and mathematical notation to balance
intelligibility and formality. OCL specification does not give a complete formal semantics,
although some approaches attempt to formalise OCL, like [11]. Due to OCL being on the same
abstract level as the system model, it is not dependent on any implementation language. Based
on this platform-independent character, there is a need to perform mutation testing and propose
mutation operators based on OCL specification.

In [12], the authors presented a detailed survey of mutation testing, which includes a concise
description of the problems, methods, tools and common practices within the field of mutation
testing. This work indicates that compared to code-based mutation testing, model-based
mutation testing has not been researched much over the last years, but there is a growing
interest in this direction.

In [13], the authors demonstrated a model-based mutation testing approach. They present
two elementary mutation operators, insertion and omission, and the combinations of these
two first-order operators to perform mutation testing. Three case studies from industry and
real-life system are used to validate the effectiveness of their proposed approach. However, the
proposed approach is hard to apply to the OCL specification.

As aforementioned, in [7] [8], the authors proposed some sets of mutation operators to OCL
specification. Furthermore, they validated the effectiveness of the proposed mutation operators
through case studies. However, these operators are only related to the primary and a small
subset of the OCL specification. There is still a need to propose mutation operators related to
complex data types, like Collection, and operations to these types.

In [14], the authors presented an approach using OCL mutation and aspect-oriented program-
ming to validate the correctness of implementation and specification faults. But the mutant
operators for this study are only limited to predefined primitive types, which are Integer, Real,
Boolean and String. The proposed approach still not support collection types and operations to
collections types, although these concepts are essential to OCL specification.

3. Mutation Operators

One major problem in software testing is the inability to know the number of system defects
practically or theoretically, and mutation testing tries to solve this challenge by introducing
mutants. Mutants are introduced by simple syntax change to the original specification. The
mutant operators are the transition rules that define how to perform the syntactic changes.
Based on the set of mutant operators, we can generate a set of mutated specification that allows
us to perform mutation testing analysis.

Since all possible mutant operators to a particular specification are enormous, defining a basic
set of mutant operators, which is typically considered the minimum set of mutant operators for
mutation testing, is necessary. The proposed mutation operators are presented in Table 1.

All mutant operators are used in this work are first-order operators, which means the mutated



Table 1
Mutant Operators

NO. Original Specification Mutated Specification
1 =, <> <>, =
2 =, > <, <
3 <, < > >
4 true, false false, true
5 p@pre p
6 forAll(p) exists(not p)
7 exists(p) forAll(not p)
8 include(p), exclude(p) exclude(p), include(p)
9 select(p) reject(p)
10 min(), max() max(), min()
11 first(), last() last(), first()
12 select(p) — isEmpty() select(p) — notEmpty()
13 Aand B not A or not B
14 AorB not A and not B
15 if(expression), if(notexpression) i f(not ex pression), if(expression)
16 if con then block1 else block2 endif if con then block2 else block1 endif

specification is created by only applying exactly one mutant operator. The reason why we
only apply first-order mutation testing is that high-order mutation testing is more like to
produce equivalent mutants. High-order mutation testing applies multiple mutant operators to
specification at the same time. While equivalent mutant is a mutant that has the same behaviour
as the original specification [15]. For example, the original OCL specification is i f (ex pression), if
we random apply the mutant operator twice, the specification may change to i f(not ex pression)
then change back to the original one.

Table 2
Frequency of Expression
Expression = and | exists | or | implies | > | < | <= | sum | forAll
UML-C 1152 | 815 98 89 229 34|29 | 17 10 4
UML-Python | 800 | 367 16 91 329 31 9 | 10 10 3

The proposed set of mutant operators is only the basic set that defined the necessary operators,
and we consider these operators are the minimum set of mutant operators for mutation testing
based on OCL specification. In deciding the mutation operators, we also estimate the frequency
of different OCL expressions from two significant specification examples: UML to C and UML
to Python generator. Table 2 shows the frequency of the major used operators.

The overall idea of the mutant operators is the negation of the original specification. The
first to third mutant operators are related to the arithmetic operator, and we only use the
negation version instead of the random replacement by another arithmetic operator based on
the CPH hypothesis. The programmer seldom uses an arbitrary operator instead of expecting
one. The fourth mutation operator is the Boolean operand. The @ pre is only allowed within
the post-condition, which is the operator accesses the value before executing the operation.



The sixth to twelfth mutation operators change the specification to the operations for the
complex collection data type. At the same time, the following two mutation operators are
related to the logical relationship. The fifteenth mutation operator negates the expression to a
conditional statement, and the final one is the mutant operator to the control flow statement.

4. Case Study

In this section, we present a case study to evaluate the proposed mutant operators. The case
study is an Android-platform financial application, which is modelled by OCL specification.
Due to the space limitation, the full details about the case study is available at [16], Figure 1
demonstrates the fragment of case study specification. Because the case study lacks some OCL
expressions, we also designed some specific specifications to perform the experiment.

operation discount(amount : double , r : double , time : double ) : double
pre: r > -1 & time >= 0
post: result = amount / ( ( 1 + r )->pow(time) );

operation value(r : double ) : double

pre: r > -1

post: upper = ( term * frequency )->floor() & c¢ = coupon / frequency &
period = 1.0 / frequency & result = Integer.subrange(l,upper)->collect( i |
self.discount(c,r,i * period) )->sum() + self.discount(100,r,term);

Figure 1: Fragment of Case Study Specification

Table 3
Experiment Result
NO. CF MS 1

1 0.292 0.583 -0.061
2 0.246 1.00 0.087
3 0.024 1.00 0.0067
4 0.049 0.00 -0.037
5 0.073 0.00 -0.058
6 0.049 1.00 0.014
7 0.024 1.00 0.0067
8 0.000 - -
9 0.024 0.00 -0.018
10 0.000 - -
11 0.000 - -
12 0.024 1.00 0.0067
13 0.073 1.00 0.021
14 0.024 1.00 0.0067
15 0.049 1.00 0.014
16 0.049 1.00 0.014

We first generate the test suite from the original OCL specification by using AgileUML, then



we inject mutants to the original specification [17]. For each mutated version OCL specification,
we execute the test suite against the mutant to record the corresponding results. Finally, the
results are collected into Table 3. We use three assessment metrics, which are contribution
factor (CF), mutation scores (MS) and impact indicators (II), for each mutant operator [7]. These
measures are defined to validate the effectiveness of the mutation operators, and reflecting the
basic characteristics of these operators.

CF shows the percentage of generated mutants contributed by a specific mutation operator to
the total created mutants. MS gives the proportion of mutants of each kind detected by the test
suite generated from the original OCL specification. II shows how the mutation score obtained
from the original test suite changes when a specific mutation operator is not applied.

The majority of the mutated version of OCL specifications are “killed” by the test suite
generated by AgileUML. Some mutation operators fail to be detected because they do not
change the behaviour of the original specification, like operator no.4, if the post-condition only
uses the variables and not change their assignments, then with or without @ pre modifier will
not change the output of the operation. One interesting discovery is operator no.9. When
we want to count the number of elements that satisfy specific criteria within the set, select()
operator will be used, the mutated version is reject(). However, if the satisfying element is the
exact half of the set, the count of the mutated version will exact the same as the original one,
although the chosen elements are complementary.

Moreover, the impact indicators show how the mutation operators impact the assessment of
the test suite. When we assess the quality of the test suite for the mutation operators that have
the "negative” II, if we not apply any of them, the quality of the test suite will be overestimated.
The overestimate of the test suite may lead the developers to be too confident to decrease the
opportunity to find the potential system defects during the development process.

5. Conclusion & Future Works

Mutation testing is a testing method that validates the quality of the test suite by introducing
artificial defects. Since OCL is more and more popular in the scope of MBT, the mutant operators
to OCL specification will help the mutation testing process. In this paper, we present a set
of mutant operators to OCL specification. The operators are suitable for primitive types and
can also be applied to collection types and corresponding operations. We also performed a
real-world case study to validate the proposed mutant operators.

In the future, we are planning to use AgileUML to generate mutated OCL specification
automatically. Moreover, the performed experiment is only based on a small case study from the
real world and lacks many OCL specifications, so we should validate our mutant operators on
further case studies. Finally, we should supplement and complete our set of mutant operators
according to further experimental results.
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