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Abstract. We define a modular multi-concept extension of the lexicographic clo-

sure semantics for defeasible description logics with typicality. The idea is that of

distributing the defeasible properties of concepts into different modules, accord-

ing to their subject, and of defining a notion of preference for each module based

on the lexicographic closure semantics. The preferential semantics of the knowl-

edge base can then be defined as a combination of the preferences of the single

modules. The range of possibilities, from fine grained to coarse grained modules,

provides a spectrum of alternative semantics.

1 Introduction

Kraus, Lehmann and Magidor’s preferential logics for non-monotonic reasoning [43,

44], have been extended to description logics, to deal with inheritance with exceptions

in ontologies, allowing for non-strict forms of inclusions, called typicality or defeasible

inclusions, with different preferential and ranked semantics [30, 15] as well as different

closure constructions such as the rational closure [19, 18, 33], the lexicographic closure

[20], the relevant closure [17], and MP-closure [29].

In this paper we define a modular multi-concept extension of the lexicographic clo-

sure for reasoning about exceptions in ontologies. The idea is very simple: different

modules can be defined starting from a defeasible knowledge base, containing a set

D of typicality inclusions (or defeasible inclusions) describing the prototypical prop-

erties of classes in the knowledge base. We will represent such defeasible inclusions

as T(C) ⊑ D [30], meaning that “typical C’s are D’s” or “normally C’s are D’s”,

corresponding to conditionals C |∼ D in KLM framework.

A set of modules m1, . . . ,mn is introduced, each one concerning a subject, and

defeasible inclusions belong to a module if they are related with its subject. By subject,

here, we mean any concept of the knowledge base. Module mi with subject Ci does

not need to contain just typicality inclusions of the form T(Ci) ⊑ D, but all defeasible

inclusions in D which are concerned with subject Ci are admitted in mi. We call a

collection of such modules a modular multi-concept knowledge base.

This modularization of the defeasible part of the knowledge base does not define

a partition of the set D of defeasible inclusions, as an inclusion may belong to more
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than one module. For instance, the typical properties of employed students are relevant

both for the module with subject Student and for the module with subject Employee .

The granularity of modularization has to be chosen by the knowledge engineer who can

fix how large or narrow is the scope of a module, and how many modules are to be

included in the knowledge base (for instance, whether the properties of employees and

students are to be defined in the same module with subject Person or in two different

modules). At one extreme, all the defeasible inclusions in D can be put together in a

module associated with subject ⊤ (Thing). At the other extreme, which has been studied

in [35], a module mi is a defeasible TBox containing only the defeasible inclusions of

the form T(Cj) ⊑ D for some concept Ci. In this paper we remove this restriction con-

sidering general modules, containing arbitrary sets of defeasible inclusions, intuitively

pertaining some subject.

In [35], following Gerard Brewka’s framework of Basic Preference Descriptions

for ranked knowledge bases [12], we have assumed that a specification of the relative

importance of typicality inclusions for a concept Ci is given by assigning ranks to typ-

icality inclusions. However, for a large module, a specification by hand of the ranking

of the defeasible inclusions in the module would be awkward. In particular, a module

may include all properties of a class as well as properties of its exceptional subclasses

(for instance, the typical properties of penguins, ostriches, etc. might all be included

in a module with subject Bird ). A natural choice is then to consider, for each mod-

ule, a lexicographic semantics which builds on the rational closure ranking to define a

preference ordering on domain elements. This preference relation corresponds, in the

propositional case, to the lexicographic order on worlds in Lehmann’s model theoretic

semantics of the lexicographic closure [45]. This semantics already accounts for the

specificity relations among concepts inside the module, as the lexicographic closure

deals with specificity, based on ranking of concepts computed by the rational closure.

Based on the ranked semantics of the single modules, a compositional (preferen-

tial) semantics of the knowledge base is defined by combining the multiple preference

relations into a single global preference relation <. This gives rise to a modular multi-

concept extension of Lehmann’s preference semantics for the lexicographic closure.

When there is a single module, containing all the typicality inclusions in the knowledge

base, the semantics collapses to a natural extension to DLs of Lehmann’s semantics,

which corresponds to Lehmann’s semantics for the fragment of ALC without universal

and existential restrictions.

We introduce a notion of entailment for modular multi-concept knowledge bases,

based on the proposed semantics, which satisfies the KLM properties of a preferential

consequence relation. This notion of entailment has good properties inherited from lexi-

cographic closure: it deals properly with irrelevance and specificity, and it is not subject

to the “blockage of property inheritance” problem, i.e., the problem that property inher-

itance from classes to subclasses is not guaranteed, which affects the rational closure

[47]. In addition, separating defeasible inclusions in different modules provides a sim-

ple solution to another problem of the rational closure and its refinements (including

the lexicographic closure), that was recognized by Geffner and Pearl [27], namely, that

“conflicts among defaults that should remain unresolved, are resolved anomalously”,

giving rise to too strong conclusions. The preferential (not necessarily ranked) nature



of the global preference relation < provides a simple way out to this problem, when

defeasible inclusions are suitably separated in different modules.

2 The description logics ALC and its extension with typicality

In this section we recall the syntax and semantics of the description logic ALC [2] and

an extension of ALC with typicality [33].

Let NC be a set of concept names, NR a set of role names and NI a set of individual

names. The set of ALC concepts (or, simply, concepts) can be defined inductively:

- A ∈ NC , ⊤ and ⊥ are concepts;

- if C and D are concepts, and r ∈ NR, then C ⊓ D, C ⊔ D, ¬C, ∀r.C, ∃r.C are

concepts.

A knowledge base (KB) K is a pair (T ,A), where T is a TBox and A is an ABox.

The TBox T is a set of concept inclusions (or subsumptions) C ⊑ D, where C,D are

concepts. The ABox A is a set of assertions of the form C(a) and r(a, b) where C is a

concept, a and b are individual names in NI and r a role name in NR.

An ALC interpretation is defined as a pair I = 〈∆, ·I〉 where: ∆ is a domain—a set

whose elements are denoted by x, y, z, . . .—and ·I is an extension function that maps

each concept name C ∈ NC to a set CI ⊆ ∆, each role name r ∈ NR to a binary

relation rI ⊆ ∆ × ∆, and each individual name a ∈ NI to an element aI ∈ ∆. It is

extended to complex concepts as follows:

⊤I = ∆, ⊥I = ∅, (¬C)I = ∆\CI ,

(∃r.C)I = {x ∈ ∆ | ∃y.(x, y) ∈ rI and y ∈ CI}, (C ⊓D)I = CI ∩DI ,

(∀r.C)I = {x ∈ ∆ | ∀y.(x, y) ∈ rI ⇒ y ∈ CI}, (C ⊔D)I = CI ∪DI .

The notion of satisfiability of a KB in an interpretation and the notion of entailment are

defined as follows:

Definition 1 (Satisfiability and entailment). Given anALC interpretation I = 〈∆, ·I〉:
- I satisfies an inclusion C ⊑ D if CI ⊆ DI ;

- I satisfies an assertion C(a) (resp., r(a, b)) if aI ∈ CI (resp., (aI , bI) ∈ rI ).

Given a KB K = (T ,A), an interpretation I satisfies T (resp. A) if I satisfies all

inclusions in T (resp. all assertions in A); I is a model of K if I satisfies T and A.

A subsumption F = C ⊑ D (resp., an assertion C(a), r(a, b)), is entailed by K ,

written K |= F , if for all models I =〈∆, ·I〉 of K , I satisfies F .

Given a knowledge baseK , the subsumption problem is the problem of deciding whether

an inclusion C ⊑ D is entailed by K .

In the following we will refer to an extension of ALC with typicality inclusions,

that we will call ALC + T as in [30], and to the rational closure of ALC + T knowl-

edge bases (T ,A) [33]. In addition to standard ALC inclusions C ⊑ D (called strict

inclusions in the following), in ALC+T the TBox T also contains typicality inclusions

of the form T(C) ⊑ D, where C and D are ALC concepts. Let us recall the notions of

preferential, ranked and canonical model of a defeasible knowledge base (T ,A).

Definition 2 (Interpretations for ALC + T). A preferential interpretation N is any

structure 〈∆,<, ·I〉 where: ∆ is a domain; < is an irreflexive, transitive and well-

founded relation over ∆; ·I is a function that maps all concept names, role names and



individual names as defined above for ALC interpretations, and provides an interpre-

tation to all ALC concepts as above, and to typicality concepts as follows: (T(C))I =
min<(C

I), where min<(S) = {u : u ∈ S and ∄z ∈ S s.t. z < u}.

When relation < is required to be also modular (i.e., for all x, y, z ∈ ∆, if x < y then

x < z or z < y), N is called a ranked interpretation.

Preferential interpretations for description logics were first studied in [30], while ranked

interpretations (i.e., modular preferential interpretations) were first introduced for ALC
in [15]. A preferential (ranked) model of an ALC + T knowledge base K is a prefer-

ential (ranked) ALC + T interpretation N = 〈∆,<, ·I〉 that satisfies all inclusions in

K , where: a strict inclusion or an assertion is satisfied in N if it is satisfied in the ALC
model 〈∆, ·I〉, and a typicality inclusion T(C) ⊑ D is satisfied in N if (T(C))I ⊆ DI .

Preferential entailment in ALC +T is defined in the usual way: for a knowledge base

K and a query F (a strict or defeasible inclusion or an assertion), F is preferentially

entailed by K (K |=ALC+T F ) if F is satisfied in all preferential models of K .

A canonical model for K is a preferential (ranked) model containing, roughly speak-

ing, as many domain elements as consistent with the knowledge base specification K .

Given an ALC+T knowledge base K = (T ,A) and a query F , let us define SK as the

set of all ALC concepts (and subconcepts) occurring in K or in F , together with their

complements. We consider all the sets of concepts {C1, C2, . . . , Cn} ⊆ SK consistent

with K , i.e., s.t. K 6|=ALC+T C1 ⊓ C2 ⊓ · · · ⊓ Cn ⊑ ⊥.

Definition 3 (Canonical model). . A preferential model M =〈∆,<, I〉 of K is canon-

ical with respect to SK if it contains at least a domain element x ∈ ∆ s.t. x ∈
(C1 ⊓C2 ⊓ · · · ⊓Cn)

I , for each set {C1, C2, . . . , Cn} ⊆ SK consistent with K .

For finite, consistent ALC +T knowledge bases, existence of finite (ranked) canonical

models has been proved in [33] (Theorem 1). In the following, we consider finite ALC+
T knowledge bases, and we can restrict our consideration to finite preferential models.

3 Modular multi-concept knowledge bases

In this section we introduce a notion of a multi-concept knowledge base, starting from

a set of strict inclusions T , a set of assertions A, and a set of typicality inclusions D,

each one of the form T(C) ⊑ D, where C and D are ALC concepts.

Definition 4. A modular multi-concept knowledge base K is a tuple 〈T ,D,m1 , . . . ,

mk ,A, s〉, where T is an ALC TBox, D is a set of typicality inclusions, such that m1 ∪
. . . ∪mk = D, A is an ABox, and s is a function associating each module mi with a

concept, s(mi) = Ci, the subject of mi.

The idea is that each mi is a module defining the typical properties of the instances

of some concept Ci. The defeasible inclusions belonging to a module mi with sub-

ject Ci are the inclusions that intuitively pertain to Ci. We expect that all the typi-

cality inclusions T(C) ⊑ D, such that C is a subclass of Ci, belong to mi, but not

only. For instance, for a module mi with subject Ci = Bird , the typicality inclusion

T(Bird ⊓ Live at SouthPole) ⊑ Penguin , meaning that the birds living at the south



pole are normally penguins, is clearly to be included in mi. As penguins are birds, also

inclusion T(Penguin) ⊑ Black is to be included in mi, and, if T(Bird) ⊑ Flying-

Animal and T(FlyingAnimal) ⊑ BigWings are defeasible inclusions in the knowl-

edge base, they both may be relevant properties of birds to be included in mi. For this

reason we will not put restrictions on the typicality inclusions that can belong to a mod-

ule. We will see that the semantic construction for a module mi will be able to ignore

the typicality inclusions which are not relevant for subject Ci.

The modularization m1, . . . ,mk of the defeasible part D of the knowledge base

does not define a partition of D, as the same inclusion may belong to more than one

module mi. For instance, the typical properties of employed students are relevant for

both concept Student and concept Employee and should belong to their related mod-

ules (if any). Also, a granularity of modularization has to be chosen and, as we will see,

this choice may have an impact on the global semantics of the knowledge base. At one

extreme, all the defeasible inclusions in D are put together in the same module, e.g., the

module associated with concept⊤. At the other extreme, which has been studied in [35],

a module mi contains only the defeasible inclusions of the form T(Ci) ⊑ D, where Ci

is the subject of mi (and in this case, the inclusions T(C) ⊑ D with C subsumed by

Ci are not admitted in mi). In this regard, the framework proposed in this paper could

be seen as an extension of the proposal in [35] to allow coarser grained modules, while

here we do not allow for user-defined preferences among defaults.

Let us consider an example of multi-concept knowledge base.

Example 1. Let K be the knowledge base 〈T ,D,m1 ,m2 ,m3 ,A, s〉, where A = ∅, T
contains the strict inclusions:

Adult ⊑ ∃has SSN .⊤ Employee ⊑ Adult PhdStudent ⊑ Student

PhDStudent ⊑ Adult Has no Scolarship ≡ ¬∃hasScolarship.⊤
PrimarySchoolStudent ⊑ Children Driver ⊑ ∃has DrivingLicence.⊤
PrimarySchoolStudent ⊑ HasNoClasses Driver ⊑ Adult

and the defeasible inclusions in D are distributed in the modules m1,m2,m3 as follows.

Module m1 has subject Employee, and contains the defeasible inclusions:

(d1) T(Employee) ⊑ ¬Young (d2) T(Employee) ⊑ ∃has boss .Employee

(d3) T(ForeignerEmployee) ⊑ ∃has Visa.⊤
(d4) T(Employee ⊓ Student) ⊑ Busy (d5) T(Employee ⊓ Student) ⊑ ¬Young

Module m2 has subject Student, and contains the defeasible inclusions:

(d6) T(Student) ⊑ ∃has classes .⊤ (d7) T(Student) ⊑ Young

(d8) T(Student) ⊑ Has no Scolarship (d9) T(HighSchoolStudent) ⊑ Teenager

(d10) T(PhDStudent) ⊑ ∃hasScolarship.Amount

(d11) T(PhDStudent) ⊑ Bright

together with (d4) and (d5). Module m3 has subject V ehicle, and we omit its content.

Observe that, in previous example, (d4) and (d5) belong to both modules m1 and m2.

4 A lexicographic semantics of modular multi-concept KBs

In this section, we define a semantics of modular multi-concept knowledge bases, based

on Lehmann’s lexicographic closure semantics [45]. The idea is that, for each module



mi, a semantics can be defined using lexicographic closure semantics, with some minor

modification.

Given a modular multi-concept knowledge base K = 〈T ,D,m1 , . . . ,mk ,A, s〉,
we let rank(C ) be the rank of concept C in the rational closure ranking of the knowl-

edge base (T ∪ D,A), according to the rational closure construction in [33]. In the ra-

tional closure ranking, concepts with higher ranks are more specific than concepts with

lower ranks. While we will not recall the rational closure construction, let us consider

again Example 1. In Example 1, the rational closure ranking assigns to concepts Adult ,

Employee , ForeignEmployee , Driver , Student , HighSchoolStudent , Primary -

SchoolStudent the rank 0, while to concepts PhDStudent and Employee ⊓ Student

the rank 1. In fact, PhDStudent are exceptional students, as they have a scholarship,

while employed students are exceptional students, as they are not young: they are ex-

ceptional subclasses of class Student .

Based on the concept ranking, the rational closure assigns a rank to typicality in-

clusions: the rank of T(C) ⊑ D is equal to the rank of concept C. For each module

mi of a knowledge base K = 〈T ,D,m1 , . . . ,mk ,A, s〉, we aim to define a canonical

model, using the lexicographic order based on the rank of typicality inclusions in mi.

In the following we will assume that the knowledge base 〈T ∪D,A〉 is consistent in the

logic ALC +T, that is, it has a preferential model. This also guarantees the existence

of (finite) canonical models [33].

Let us define the projection of the knowledge base K on module mi as the knowl-

edge base Ki = 〈T ∪mi,A〉. Ki is an ALC+T knowledge base. Hence a preferential

model Ni = 〈∆,<i, ·I〉 of Ki is defined as in Section 2 (but now we use <i, instead of

<, for the preference relation in Ni, for i = 1, . . . , k).

In his seminal work on the lexicographic closure, Lehmann [45] defines a model

theoretic semantics of the lexicographic closure construction by introducing an order

relation among propositional models, considering which defaults are violated in each

model, and introducing a seriousness ordering ≺ among sets of violated defaults. For

two propositional models w and w′, w ≺ w′ (w is preferred to w′) is defined in [45] as:

w ≺ w′ iff V (w) ≺ V (w′) (1)

w is preferred to w′ when the defaults V (w) violated by w are less serious than the

defaults V (w′) violated by w′. As we will recall below, the seriousness ordering also

depends on the number of defaults violated by w and by w′ for each rank.

In a similar way, in the following, we introduce a ranked relation <i on the domain

∆ of a model of Ki. Let us first define, for a preferential model Ni = 〈∆,<i, ·I〉 of Ki,

what it means that an element x ∈ ∆ violates a typicality inclusion T(C) ⊑ D in mi.

Definition 5. Given a module mi of K , with s(mi) = Ci, and a preferential model

Ni = 〈∆,<i, ·I〉 of Ki, an element x ∈ ∆ violates a typicality inclusion T(C) ⊑ D in

mi if x ∈ CI
i , x ∈ CI and x 6∈ DI .

Notice that, the set of typicality inclusions violated by a domain element x in a model

only depends on the interpretation ·I of ALC concepts, and on the defeasible inclusions

in mi. Furthermore, differently from the usual notion of violation in Lehmann’s seman-

tics, for a module mi with subject Ci, we do not consider the violations of domain



elements x 6∈ CI
i (i.e., the domain elements x which are not Ci-instances are assumed

not to violate any default in mi). Let Vi(x) be the set of the defeasible inclusions of mi

violated by domain element x, and let V h
i (x) be the set of all defeasible inclusions in

mi with rank h which are violated by domain element x.

In order to compare alternative sets of defaults, in [45] the seriousness ordering ≺
among sets of defaults is defined by associating with each set of defaults D ⊆ K a tuple

of numbers 〈n0, n1, . . . , nr〉, where r is the order of K , i.e. the least finite i such that

there is no default with the finite rank r or rank higher than r (but there is at least one

default with rank r−1). The tuple is constructed considering the ranks of defaults in the

rational closure. n0 is the number of defaults in D with rank ∞ and, for 1 ≤ i ≤ k, ni

is the number of defaults in D with rank r−i (in particular, nr is the number of defaults

in D with rank 0). Lehmann defines the strict modular order ≺ among sets of defaults

from the natural lexicographic order over the tuples 〈n0, n1, . . . , nr〉. This order gives

preference to those sets of defaults containing a larger number of more specific defaults.

As we have seen from equation (1), ≺ is used by Lehmann to compare sets of violated

defaults and to prefer the propositional models whose violations are less serious.

We use the same criterion for comparing domain elements, introducing a serious-

ness ordering ≺i for each module mi. Considering that the defaults with infinite rank

must be satisfied by all domain elements, we will not need to consider their violation in

our definition (that is, we will not consider n0 in the following).

The set Vi(x) of defaults from modulemi which are violated by x, can be associated

with a tuple of numbers ti,x = 〈|V r−1

i (x)|, . . . , |V 0
i (x)|〉, where V l

i (x) is the number of

defaults in D with rank l which are violated by x. Following Lehmann, we let Vi(x) ≺i

Vi(y) iff ti,x comes before ti,y in the natural lexicographic order on tuples (restricted to

the violations of defaults in mi), that is:

Vi(x) ≺i Vi(y) iff ∃l such that |V l
i (x)| < |V l

i (y)|

and, ∀h > l, |V h
i (x)| = |V h

i (y)|

Definition 6. A preferential model Ni = 〈∆,<i, ·
I〉 of Ki = 〈T ∪mi,A〉, is a lexico-

graphic model of Ki if 〈∆, ·I〉 is an ALC model of 〈T ,A〉 and<i satisfies the following

condition: x <i y iff Vi(x) ≺i Vi(y).

Informally, <Cj
gives higher preference to domain elements violating less typicality

inclusions of mi with higher rank. In particular, all x, y 6∈ CI
i , x ∼Ci

y, i.e., all ¬Ci-

elements are assigned the same preference wrt <i, the least one, as they trivially satisfy

all the typicality properties in mi. As in Lehmann’s semantics, in a lexicographic model

Ni = 〈∆,<i, ·I〉 of Ki, the preference relation <i is a strict modular partial order, i.e.

an irreflexive, transitive and modular relation. As well-foundedness trivially holds for

finite interpretations, a lexicographic model Ni of Ki is a ranked model of Ki.

A multi-concept model for K can be defined as a multi-preference interpretation

with a preference relation <i for each module mi.

Definition 7 (Multi-concept interpretation). Let K = 〈T ,D,m1 , . . . ,mk ,A, s〉 be

a multi-concept knowledge base. A multi-concept interpretation M for K is a tuple

〈∆,<1, . . . , <k, ·I〉 such that, for all i = 1, . . . , k, 〈∆,<i, ·I〉 is a ranked ALC + T

interpretation, as defined in Section 2.



Definition 8 (Multi-concept lexicographic model). Let K = 〈T ,D,m1 , . . . ,mk ,A, s〉
be a multi-concept knowledge base. A multi-concept lexicographic model M = 〈∆,<1

, . . . , <k, ·
I〉 of K is a multi-concept interpretation for K , such that, for all i = 1, . . . , k,

Ni = 〈∆,<i, ·I〉 is a lexicographic model of Ki = 〈T ∪mi,A〉.

A canonical multi-concept lexicographic model of K is multi-concept lexicographic

model of K such that ∆ and ·I are the domain and interpretation function of some

canonical preferential model of 〈T ∪ D,A〉, according to Definition 3 (see [36]).

Observe that, restricting to the propositional fragment of the language (which does

not allow universal and existential restrictions nor assertions), for a knowledge base K

without strict inclusions and with a single module m1, with subject ⊤, containing all

the typicality inclusions in K , the preference relation <1 corresponds to Lehmann’s

lexicographic closure semantics, as its definition is based on the set of all defeasible

inclusions in the knowledge base.

5 The combined lexicographic model of a KB

For multiple modules, each <i determines a ranked preference relation which can be

used to answer queries over module mi (i.e. queries whose subject is Ci). If we want

to evaluate the query T(C) ⊑ D (are all typical C elements also D elements?) in

module mi (assuming that C concerns subject Ci), we can answer the query using the

<i relation, by checking whether min<i
(CI) ⊆ DI . For instance, in Example 1, the

query “are all typical Phd students young?” can be evaluated in module m2. The answer

would be positive, as the property of students of being normally young is inherited by

PhD Student. The evaluation of a query in a specific module is something considered

in context-based formalisms, such as in the CKR framework [8], where a language

construct eval(X , c) allows for evaluating a concept (or role) X in context c.

The lexicographic orders <i and <j (for i 6= j) do not need to agree. For instance,

in Example 1, for two domain elements x and y, we might have that x <1 y and

y <2 x, as x is more typical than y as an employee, but less typical than x as a student.

To answer a query T(C) ⊑ D, where C is a concept which is concerned with more

than one subject in the knowledge base (e.g., are typical employed students young?),

we need to combine the relations <i.

A simple way of combining the modular partial order relations <i is to use Pareto

combination. Let ≤i be defined as follows: x ≤i y iff y 6<i x. As <i is a modular partial

order,≤i is a total preorder. Given a canonical multi-concept lexicographic model M =
〈∆,<1, . . . , <k, ·I〉 of K , we define a global preference relation < on ∆ as follows:

x < y iff (i) for some i = 1, . . . , k, x <i y and (∗)

(ii) for all j = 1, . . . , k, x ≤j y,

The resulting relation < is a partial order, while modularity may not hold for <.

Definition 9. Given a canonical multi-concept lexicographic modelM = 〈∆,<1, . . . , <k

, ·I〉 of K , the combined lexicographic interpretation ofM, is a triple MP = 〈∆,<, ·I〉,
where < is the global preference relation defined by (*).



We call MP a combined lexicographic model of K (shortly, an mc
l -model of K).

Proposition 1. A combined lexicographic model MP of K is a preferential interpreta-

tion satisfying all the strict inclusions and assertions in K .

A combined lexicographic model MP of K is a preferential interpretation as those

defined for ALC +T in Definition 2 (and, in general, it is not a ranked interpretation).

However, preference relation < in MP is not an arbitrary irreflexive, transitive and

well-founded relation. It is obtained by first computing the lexicographic preference

relations <i for modules, and then by combining them into <. As MP satisfies all

strict inclusions and assertions in K but is not required to satisfy all typicality inclusions

T(C) ⊑ D in K , MP is not a preferential ALC +T model of K defined in Section 2.

Consider a situation in which there are two concepts, Student and YoungPerson ,

that are very related in that students are normally young persons and young persons are

normally students (i.e., T(Student) ⊑ YoungPerson and T(YoungPerson) ⊑ Stu-

dent) and suppose there are two modules m1 and m2 such that s(m1) = Student and

s(m2) = YoungPerson . The two concepts may have different (and even contradictory)

prototypical properties, for instance, normally students are quiet (T(Student) ⊑ Quiet),

but normally young persons are not quiet (T(YoungPerson) ⊑ ¬Quiet). Considering

the preference relations <1 and <2, associated with m1 and m2 in a canonical multi-

concept lexicographic model, there may be two young persons and student Bob and

John, such that bob <1 john and john <2 bob, as Bob is quiet and John is not. Then,

John and Bob are incomparable in the global relation <. Both of them, depending on the

other prototypical properties of students and young persons, might be minimal, among

students, wrt the global preference relation <.

In general, for a knowledge base K and a module mi, with s(mi) = Ci, the inclu-

sion min<(C
I

i
) ⊆ min<i

(C I

i
) may not hold and, for this reason, a combined lexico-

graphic interpretation may fail to satisfy all typicality inclusions. In this respect, canon-

ical multi-concept lexicographic models are more liberal than KLM-style preferential

models for typicality logics [31], where min<(Student
I ) ⊑ Quiet I must hold for the

typicality inclusion to be satisfied. As a consequence, the knowledge base above has no

preferential model according to the semantics in Section 2.

In [36] the notion of mc
l -model of K has also been strengthened, by considering

T-compliant mc
l -models (or mc

lT-models) of K , which further satisfy the condition

that, for all the typicality inclusions T(C) ⊑ D in K , (T(C ))I = min<(C
I ) ⊆ D I .

A notion of multi-concept lexicographic entailment (mc
l -entailment) can be defined

as usual: a query F is mc
l -entailed by K (K |=mc

l
F ) if, for all mc

l -models MP =

〈∆,<, ·I〉 of K , F is satisfied in MP. Notice that a query T(C) ⊑ D is satisfied in

MP when min<(C
I) ⊆ DI . Similarly, a notion of mc

lT-entailment can be defined:

K |=mc
l
T F if, for all mc

lT-models MP = 〈∆,<, ·I〉 of K , F is satisfied in MP.

As, for any multi-concept knowledge base K , the set of mc
lT-models of K is a

subset of the set of mc
l -models of K , and there is some K for which the inclusion

is proper, mc
lT-entailment is stronger than mc

l -entailment. It can be proven that both

notions of entailment satisfy the KLM postulates of preferential consequence relations,

which can be reformulated for a typicality logic, considering that typicality inclusions

T(C) ⊑ D [30] stand for conditionals C|∼D in KLM preferential logics [43, 44]. See

also [7] for the formulation of KLM postulates in the Propositional Typicality Logic.



The notions ofmc
l -entailment and mc

lT-entailment are not stronger than Lehmann’s

lexicographic closure in the propositional case. Let us consider again Example 1.

Example 2. Let us add another module m4 with subject Citizen to the knowledge base

K , plus the following additional axioms in T :

Italian ⊑ Citizen French ⊑ Citizen Canadian ⊑ Citizen

Module m4 has subject Citizen , and contains the defeasible inclusions:

(d17) T(Italian) ⊑ DriveFast (d18) T(Italian) ⊑ HomeOwner

Suppose the following typicality inclusion is also added to module m2:

(d19) T(PhDStudent) ⊑ ¬HomeOwner

What can we conclude about typical Italian PhD students? We can see that neither the in-

clusion T(PhDStudent ⊓ Italian) ⊑ HomeOwner nor the inclusion T(PhDStudent

⊓Italian) ⊑ ¬HomeOwner is mc
l -entailed byK . In fact, as<2-minimal and<4-minimal

PhDStudent ⊓Italian-elements are incomparable with respect to <, the <-minimal

Italian PhD students will include them all. Thus,min<((PhDStudent⊓ Italian)I ) 6⊆ HomeOwner I

and min<((PhDStudent ⊓ Italian)I ) 6⊆ (¬HomeOwner)I .

The home owner example is a reformulation of the example used by Geffner and Pearl

to show that the rational closure of conditional knowledge bases sometimes gives too

strong conclusions, as “conflicts among defaults that should remain unresolved, are re-

solved anomalously” [27]. Informally, if defaults (d18) and (d19) are conflicting for

Italian Phd students before adding any default which makes PhD students exceptional

wrt Students (in our formalization, default (d10)), they should remain conflicting af-

ter this addition. On the contrary, in the propositional case, both the rational closure

[44] and Lehmann’s lexicographic closure [45] would entail that normally Italian Phd

students are not home owners. This conclusion is unwanted, and is based on the fact

that (d18) has rank 0, while (d19) has rank 1 in the rational closure ranking. On the

other hand, T(PhDStudent ⊓ Italian) ⊑ ¬ HomeOwner is neither mc
l -entailed from

K , nor mc
lT-entailed from K . Both notions of entailment, when restricted to the propo-

sitional case, cannot be stronger than Lehmann’s lexicographic closure.

Geffner and Pearl’s Conditional Entailment [27] does not suffer from the above men-

tioned problem as it is based on (non-ranked) preferential models. The same problem,

which is related to the representation of preferences as levels of reliability, has also been

recognized by Brewka [11] in his logical framework for default reasoning, leading to a

generalization of the approach to allow a partial ordering between premises. The exam-

ple above shows that our approach using ranked preferences for the single modules, but

a non-ranked global preference relation < for their combination, does not suffer from

this problem, provided a suitable modularization is chosen.

6 Further issues: Reasoning with a hierarchy of modules and

user-defined preferences

The approach considered in Section 4 does not allow to reason with a hierarchy of mod-

ules, but it considers a flat collection of modules m1, . . . ,mk, each module concerning

some subject Ci. As we have seen, a module mi may contain defeasible inclusions re-

ferring to subclasses of Ci, such as PhDStudent in the case of module m2 with subject



Student . When defining the preference relation <i the lexicographic closure semantics

already takes into account the specificity relation among concepts within the module

(e.g., the fact that PhDStudent is more specific than Student).

However, nothing prevents us from defining two modules mi (with subject Ci) and

mj (with subject Cj ), such that concept Cj is more specific than concept Ci. For in-

stance, as a variant of Example 1, we might have introduced two different modules m2

with subject Student and m5 with subject PhDStudent . As concept PhDStudent is

more specific than concept Student (in particular, PhDStudent ⊑ Student is entailed

from the strict part of knowledge base T in ALC), the specificity information should be

taken into account when combining the preference relations. More precisely, preference

<5 should override preference <2 when comparing PhDStudent-instances.

This is the principle followed by Giordano and Theseider Dupré [35] to define a

global preference relation, in the case when each module with subject Ci only contains

typicality inclusions of the form T(Ci) ⊑ D. A more sophisticated way to combine the

preference relations<i into a global relation< is used to deal with this case with respect

to Pareto combination, by exploiting the specificity relation among concepts. While we

refer therein for a detailed description of this more sophisticated notion of preference

combination, let us observe that this solution could be as well applied to the modular

multi-concept knowledge bases considered in this paper, provided an irreflexive and

transitive notion of specificity among modules is defined.

Another aspect that has been considered in the previously mentioned paper is the

possibility of assigning ranks to the defeasible inclusions associated with a given con-

cept. While assigning a rank to all typicality inclusions in the knowledge base may be

awkward, often people have a clear idea about the relative importance of the properties

for some specific concept. For instance, we may know that the defeasible property that

students are normally young is more important than the property that student normally

do not have a scholarship. For small modules, which only contain typicality inclusions

T(Ci) ⊑ D for a concept Ci, the specification of user-defined ranks of the Ci’s typical

properties is a feasible option and a ranked modular preference relation can be defined

from it, by using Brewka’s # strategy from his framework of Basic Preference De-

scriptions for ranked knowledge bases [12]. This alternative may coexist with the use

of the lexicographic closure semantics built from the rational closure ranking for large

modules.

According to the choice of fine grained or coarse grained modules, to the choice of

the preferential semantics for each module (e.g., based on user-specified ranking or on

Lehmann’s lexicographic closure, or on the rational closure, etc.), and to the presence of

a specificity relation among modules, alternative preferential semantics for modularized

multi-concept knowledge bases can emerge.

7 Conclusions and related work

In this paper, we have proposed a modular multi-concept extension of the lexicographic

closure semantics, based on the idea that defeasible properties in the knowledge base

can be distributed in different modules, for which alternative preference relations can

be computed. Combining multiple preferences into a single global preference allows



a new preferential semantics and a notion of multi-concept lexicographic entailment

(mc
l -entailment) which, in the propositional case, is not stronger than the lexicographic

closure. This work has been first presented in [36].

mc
l -entailment satisfies the KLM postulates of a preferential consequence relation.

It retains some good properties of the lexicographic closure, being able to deal with

irrelevance, with specificity within the single modules, and not being subject to the

“blockage of property inheritance” problem. The combination of different preference

relations provides a simple solution to a problem, recognized by Geffner and Pearl, that

the rational closure of conditional knowledge bases sometimes gives too strong conclu-

sions, as “conflicts among defaults that should remain unresolved, are resolved anoma-

lously” [27]. This problem also affects the lexicographic closure, which is stronger than

the rational closure. Our approach using ranked preferences for the single modules, but

a non-ranked preference < for their combination, does not suffer from this problem,

provided a suitable modularization is chosen. As Geffner and Pearl’s Conditional En-

tailment [27], also some non-monotonic DLs, such as ALC + Tmin, a typicality DL

with a minimal model preferential semantics [32], and the non-monotonic description

logic DLN [5], which supports normality concepts based on a notion of overriding, do

not not suffer from the problem above.

Reasoning about exceptions in ontologies has led to the development of many non-

monotonic extensions of Description Logics (DLs), incorporating non-monotonic fea-

tures from most of NMR formalisms in the literature. In addition to those already men-

tioned in the introduction, let us recall the work by Straccia on inheritance reasoning in

hybrid KL-One style logics [48] the work on defaults in DLs [3], on description logics

of minimal knowledge and negation as failure [24], on circumscriptive DLs [6], the gen-

eralization of rational closure to all description logics [4], as well as the combination of

description logics and rule-based languages [26, 25, 46, 42, 40, 9].

The lexicographic closure for DLs has been first investigated by Casini and Straccia

[19, 21]. Our multipreference semantics is related with the multipreference semantics

for ALC developed by Gliozzi [39], which is based on the idea of refining the rational

closure construction considering the preference relations <Ai
associated with different

aspects. We follow a different route concerning the definition of the preference relations

associated with modules, and the way of combining them in a single preference relation.

Starting from Brewka’s framework of basic preference descriptions [12], multiple

preferences have also been used under different approaches: in system ARS, a refine-

ment of System Z developed by Kern-Isberner and Ritterskamp [41], through prefer-

ence fusion; by Gil [28] to define a multipreference formulation of the typicality DL

ALC +Tmin, mentioned above; by Britz and Varzinczak [16, 14], by associating mul-

tiple preferences to roles; in the first-order logic setting, by Delgrande and Rantsaudis

[23]; in ranked EL⊥ knowledge bases, by Giordano and Theseider Dupré [35].

Bozzato et al. present extensions of the CKR (Contextualized Knowledge Reposito-

ries) framework by Bozzato et al. [8, 9] in which defeasible axioms are allowed in the

global context and exceptions can be handled by overriding and have to be justified in

terms of semantic consequence, considering sets of clashing assumptions for each defea-

sible axiom. An extension of this approach to deal with general contextual hierarchies

has been studied by the same authors [10], by introducing a coverage relation among



contexts, and defining a notion of preference among clashing assumptions, which is

used to define a preference relation among justified CAS models, based on which CKR

models are selected. An ASP based reasoning procedure, that is complete for instance

checking, is developed for SROIQ-RL.

For the lightweight description logic EL+

⊥, an Answer Set Programming (ASP) ap-

proach has been proposed [35] for defeasible inference in a miltipreference extension

of EL+

⊥, in the specific case in which each module only contains the defeasible inclu-

sions T(Ci) ⊑ D for a single concept Ci, where the ranking of defeasible inclusions

is specified in the knowledge base, following the approach by Gerhard Brewka in his

framework of Basic Preference Descriptions for ranked knowledge bases [12]. A speci-

ficity relation among concepts is also considered. The ASP encoding exploits asprin

[13], by formulating multipreference entailment as a problem of computing preferred

answer sets, which is proved to be Π
p
2 -complete. A similar encoding has been devel-

oped for defeasible reasoning with weighted conditional EL⊥
⊥ knowledge bases (in the

two-valued case) [37], a formalism that has been introduced for capturing the logical

semantics of Multilayer Perceptrons [38].

For EL+

⊥ knowledge bases, we aim at extending this ASP encoding to deal with

the modular multi-concept lexicographic closure semantics proposed in this paper, as

well as with a more general framework, allowing for different choices of preferential

semantics for the single modules and for different specificity relations for combining

them. For lightweight description logics of the EL family [1], the ranking of concepts

determined by the rational closure construction can be computed in polynomial time

in the size of the knowledge base [34, 22]. This suggests that we may expect a Π
p
2

upper-bound on the complexity of multi-concept lexicographic entailment.
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