CEUR-WS.org/Vol-3002/paperl3.pdf

Ethical Monitoring and Evaluation
of Dialogues with a MAS*

Abeer Dyoub', Stefania Costantini', Francesca A. Lisi2, and Ivan Letteri'

! Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
Universita degli Studi dell’ Aquila, Italy

abeer.dyoubQunivaqg.it, stefania.costantini@univaqg.it,ivan.letteri@univaqg.it

2 Dipartimento di Informatica &
Centro Interdipartimentale di Logica e Applicazioni (CILA)
Universita degli Studi di Bari “Aldo Moro”, Italy
FrancescaAlessandra.Lisi@uniba.it

Abstract. Chatbots are tools aimed at simplifying the interaction between hu-
mans and computers, typically used in dialogue systems for various practical pur-
poses. These systems should be built on ethical foundations because their behav-
ior may heavily influence a user (think especially about children). The primary
objective of this paper is to present the architecture and prototype implementation
of a Multi Agent System (MAS) designed for ethical monitoring and evaluation
of a dialogue system. A prototype application, for monitoring and evaluation of
chatting agents’ (human/artificial) ethical behavior in an online customer service
chat point w.r.t their institution/company’s codes of ethics and conduct, is de-
veloped and presented. We focus on the implementation specifics of the proposed
system and the presented prototype application. Future work and open issues with
this research are discussed.

1 Introduction

Machine Ethics is an emerging field concerning itself with the ethical behavior of au-
tonomous intelligent agents. Concerns about the ethical behavior of such machines is
growing, especially with the increasing autonomy, and with agents ‘invading’ our ev-
eryday life and starting to perform many tasks on our behalf.

Engineering machine ethics, or building practical ethical machines is not just about
traditional engineering. With machine ethics, we need to find ways to practically build
machines that are ethically restricted, and can also reason about ethics. This involves
philosophical aspects, even though the problem has a non-trivial computational nature.

Chatbots are an example of ‘artificially intelligent’ systems that has been a result
of research and development in recent years. Chatbots are tools aimed at simplifying
the interaction between humans and computers, typically used in dialogue systems for
various practical purposes including customer service or information acquisition. From
a technological point of view, a chatbot represents the natural evolution of question-
answering system leveraging Natural Language Processing. Today, most chatbots are

* Copyright (© 2021 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0).

either accessed via virtual assistants such as Google Assistant and Amazon Alexa, or
via messaging apps such as Facebook Messenger or WeChat, or via individual organi-
zations’ apps and websites. Business activities are rapidly moving towards the adoption
of chatbots and other self-service technologies. This in order to automate basic commu-
nications and customer service, to reduce the call center costs and to provide advanced
services to users.

However, chatbots raise many ethical concerns. Unethical Artificial Intelligence and
bots are a big concern for many consumers. The chatbot should be built on ethical foun-
dations because its behavior influences the company’s image, and unethical behavior
will lead to mistrust from the client-side.

In previous works [3-5], a hybrid logic-based approach was proposed for ethical
evaluation of chatbots’ behavior, concerning online customer service chat points, w.r.t
institution/company’s codes of ethics and conduct. The approach is based on Answer
Set Programming (ASP) as a knowledge representation and reasoning language [1], and
Inductive Logic Programming (ILP) for learning rules needed for ethical evaluation and
reasoning [12].

In this paper, we focus on the challenge of monitoring and evaluating the ethical
behavior of dialogue systems by proposing and implementing an application for moni-
toring and evaluation of chatting agents’ (human/artificial) ethical behavior in an online
customer service chat point w.r.t their institution/company’s codes of ethics and con-
duct. The system is designed and implemented as a Multi-Agent System, and is based
on the above mentioned ethical evaluation approach. The MAS acts as a separate eth-
ical layer that can be integrated with existing dialogue systems. Our System is a pilot
system aiming at first place to test the previously proposed ethical evaluation approach,
and constitutes a step towards building practical ethical machines.

Today, MAS are considered as an interesting and suitable way of comprehension,
modeling, designing, and implementing different kinds of (distributed) systems. Multi-
agent technologies provide many advantages including: Autonomy for delegation, mon-
itoring our environments, allows more efficient interaction and resource management.
In addition to providing answers to many challenges of practical development of dis-
tributed and open software systems, such as decentralization, distribution of control,
capacity of integration, flexibility, adaptation, trust, security, and openness [8]. It is very
easy to incorporate modifications in the behavior of individuals, by adding behavioral
rules which act at the individual level. It is also possible to add new agents with their
own behavioral model, which interact with the already defined agents. Multi-Agent
Systems provide a good solution for distributed computing applications like Internet
applications.

Agent-oriented abstractions and multi-agent systems are well known in literature
as a programming paradigm for the realization of complex and dynamic systems [§].
Accordingly, our implementation employs Logical Agents (agent-oriented approaches
based on Computational Logic), and exploits relevant AOSE (Agent-Oriented Software
Engineering) existing work. Namely, we adopt the JaCaMo * methodology to design
and implement a MAS simulation environment. Via the JaCaMo platform, our applica-
tion is realized by means of a set of Jason agents encapsulating the logic and the control

3http://jacamo.sourceforge.net

of the specific tasks involved in the application, and operating with respect to the orga-
nizational constraints. Such constraints are defined through appropriate organizational
artifacts which provide the functionalities, and the operations giving access to these
functionalities, that agents can employ to perform their tasks in the specific context of
the given application.

The paper is organized as follows. We start, in Section 2 with a short background
introducing JaCaMo framework, and shortly recalling the ethical decision making and
judgment approach adopted in this work. The MAS proposed architecture is given in
Section 3. Then the details of the MAS design and implementation are described in
Section 4. In the Section 5, an example showing the data flow through the system is
presented. Finally, we conclude with discussion and future directions in Section 6.

2 Background

2.1 Ethical Evaluation Approach

The ethical evaluation approach implemented in the proposed system is based on previ-
ous work discussed in [3-5]. This approach combines both top-down (rule-based) and
bottom-up (learning) approaches in one unified hybrid framework. The approach is a
purely declarative logic-based approach, that makes use of ASP as the main knowledge
representation and reasoning language, and of ILP for learning the missing ASP rules
needed for ethical reasoning.

The approach is based on the elaboration of facts extracted from documents con-
taining the code of ethics and conduct that is proper of the given domain or organi-
zation, and from real life situations concerning pertinent ethical decision-making and
judgment. These facts are used to elicit rules for ethical reasoning. Thus, the approach
is general enough to produce ethical reasoning rules for any domain. The motivation
of devising such general approach is that Codes of Ethics in customer service are in
general a set of abstract principles, aimed at objectively specifying the promises and
obligations, related to the company’s products or services modalities of delivery, and
to complaints management in the interaction with customers. For instance, such princi-
ples may include confidentiality, accountability, honesty, fidelity, etc. These ambiguous
principles may carry different meanings according to contexts, and furthermore they are
subject to interpretation. Therefore, it is quite difficult if not impossible to define such
codes in a manner that they may be applied deductively. And, is hardly possible for
experts to define intermediate rules to cover all possible situations to which a particular
code applies. In addition, there are many situations in which obligations might conflict.

In [3-5] we proposed an approach for generating the missing ethical detailed rules
needed for ethical decision making and judgment via learning from interactions with
customers over time. In our approach, the ethical evaluation agent will initially have in
its knowledge base the set of ethical codes that provide a clear decision procedure which
is encoded deductively using ASP. When the ethical evaluation agent does not have the
proper rule to be able to provide an ethical evaluation of a certain case scenario, the
needed rule will be learned by means of the learning module which uses ILP for this

purpose.

2.2 Multi-Agent Systems

Multi-Agent systems are a branch in Distributed Artificial Intelligence (DAI). The term
MAS is used to describe all types of systems composed of multiple autonomous com-
ponents showing the following characteristics: each agent has incomplete capabilities
to solve a problem, there is no global system control, data is decentralized, and compu-
tation is asynchronous [9].

MAS can be viewed as a society of agents that interact with each other to achieve
their own private goals or some global goal. Agents are embedded in a certain envi-
ronment. This environment is the world where agents perceive changes, do actions to
provoke changes, and adapt to the environment by learning. In MAS agents have their
own plans, intentions, beliefs, and local goals. For global goals, there is a need for a
coordination mechanisms through which agents engage to ensure that the MAS acts in
a consistent manner. Agent Oriented Software Engineering (AOSE) is an agent-specific
software engineering. AOSE defines abstractions (of agents, interactions, protocols,
context, and environment), specific methodologies, and tools for the development of
MAS applications. MAS platforms support effective design and construction of agents
and multi-agent systems. Several agent platforms are available, e.g. JADE*, JaCaMo
(the platform used in this paper, refer Section 2.2). In recent years MAS technology
has become a powerful platform for engineering real-world applications. MAS pro-
vides a good solution for distributed control. MAS have many applications in various
domains, including ambient intelligence, grid computing, electronic business, seman-
tic web, bioinformatics and computational biology, monitoring and control, resource
management, education, space, military and manufacturing, etc. For more information
about MAS applications, among many, see [11,2, 13, 17].

JaCaMo Framework . JaCaMo is a platform for the development and execution of
Multi-Agent Systems. JaCaMo combines three separate technologies, each of them be-
ing well-known and being able to function on its own:

— Jason : for programming autonomous agents in the AgentSpeak language.
— CArtAgO ©: for programming environment artifacts.
— Moise ’: for programming multi-agent organization.

These three platforms together cover all levels of abstractions needed for the develop-
ment of sophisticated MAS systems.

Jason is an interpreter for an extended version of AgentSpeak [15]. It implements the
operational semantics of this language and provides an agent-oriented programming
platform with many user-customizable features. AgentSpeak is an agent-oriented pro-
gramming language for BDI agents, based on logic programming and inspired by BDI
logics [6].

‘https://jade.tilab.com/
>http://jason.sourceforge.net/wp/
6 http://cartago.sourceforge.net/
"http://moise.sourceforge.net/

CArtAgO (Common ARTifact infrastructure for AGents Open environments) is a general-
purpose framework, that makes it possible to program and execute virtual environments.
It is, in particular, a java-based programming model for defining so-called ’artifacts’.
Artifacts are aimed to model components of the systems (resources of various kinds)
that are manipulated by agents to perform their activities. Workspaces are virtual ’con-
tainers’ including a number of agents and artifacts.

Moise is an organizational-oriented programming framework for Multi-Agent Systems
based on notions like roles, groups, and missions. It allows a designer to define an ex-
plicit organizational specification of a multi agent system. This specification can be used
by the agents to reason about their organization, and also by an organization platform
to enforce that the agents follow the specification.

JaCaMo is a comprehensive approach which provides the benefits of integrating dif-
ferent dimensions of MAS development. This, in fact, has the advantage of simplifying
the programming model adopted in the development of complex MAS. Furthemore,
from an implementation point of view, JaCaMo approach is able to maintain separa-
tion of concerns, aspects related to agents, organisations, environments are specified
and programmed using specific separate abstractions and corresponding language con-
structs. This contributes to multi-agent systems development in terms of modularity,
reusability, readability, extensibility, and software maintenance. JaCaMo approach sim-
plifies MAS programming, and makes it possible to have cleaner and typically shorter
programs. This is possible because of the reasoning, interpreting, monitoring engines,
and infrastructures that are available in the three platforms incorporated into JaCaMo
and the interfacing among them which also make automatic many things that program-
mers would normally have to worry about themselves (such as the perception of prop-
erties as regards the environment, and the mapping of agent actions to environment
operations, etc.).

3 EthicalEvalMAS: Architecture

In this section we present the proposed MAS architecture. In the context of an on-
line customer service dialogue system, we want to ensure an ethical behavior from the
chatting agent (human/artificial). Online customer service agents are monitored for eth-
ical violations by the proposed architecture. In order to achieve this overall goal, the
MAS is composed of a group of agents, each one is responsible for a specific sub-
task in the overall ethical monitoring task. The architecture is shown in Figure 1. The
online customer service environment in this work consists of clients, online customer
service agents (human/artificial), and software agents. A client interacts with the sys-
tem via chatting point interface, where she/he can write their requests (questions), and
receive answers. Answers to the client’s requests are given by the online customer ser-
vice agent. Software agents in the environment are: client agent (CA), chatting agent
(ChA), text extractor agent (TEA), text-ASP translation agent (TATA), ethical evalua-
tion agent (EEA), and monitoring agent (MA). Text extractor agent is responsible for
extracting chat text from the chatting point interface and sending it to the TATA agent

Chat
Agent

Client
Agent

N———

Ethical
Monitoring
Agent

N

Ethical
Evaluation

Agent

Module

t?
' ‘

System Container

Text
Extractor
Agent

U

Text-ASP
Translator

j Agent

ASP Ethical
Reasoning Py

Module

9

Prolog

Translation
Module

|

|

Human/artificial
Customer
Service
Agent

~

Fig. 1. EthicalEvalMAS Architecture

which is responsible for translating the chat text into ASP syntax. This agent uses Pro-
log® module for this purpose (a simple translator was written in Prolog, this translator
is able to translate simple natural language sentences into Prolog-like predicates). The
ethical evaluation agent has two primary goals: (1) to generate ethical evaluation of the
online customer service agent’s answers using ASP reasoning module, which utilizes
the current case facts, and the background knowledge (BK) from the knowledge base
(KB) to give the evaluation. This module is based on Clingo solver®. (2) Learning the
ethical rules needed for ethical evaluation, saving it to its KB, in case the ASP reasoning
module is not able to give an evaluation (i.e. no answer set). EEA uses the ILP learning
module to achieve this purpose. Finally, the MA agent currently responsible only for
alerting the CA agent for ethical violations (the role of this agent can be extended to
practice more control over the CA agent).

4 EthicalEvalMAS Design and Implementation

For building our MAS model, we have used the JaCaMo framework (cf. Section 2.2).
This framework allows us to program our MAS in terms of an organization of cognitive
agents, sharing a common artifact-based environment. The developed application is
available on github'.

Below we describe in some details the architecture of our MAS. The MAS concep-
tual Framework has in particular four dimensions:

$https://sicstus.sics.se/
®https://potassco.org/clingo/
Yhttps://github.com/abeer—-dyoub/EthicalEvalMAS

Agents: abstractions for the definition of the decision/reasoning entities architec-
tures.

Environment: abstractions for structuring resources, i.e., processing entities shared
among the agents.

Interaction: abstractions for structuring interactions among entities.

Organization: abstractions for structuring and ruling the sets of entities within the
MAS.

Each dimension has its own dynamics. Coordination of these dynamics may be pro-
grammed into one or several dimensions. For programming the MAS system accord-
ing to this conceptualization we need specific programming approaches/languages for
each dimension: I) Agent Oriented Programming [18]; IT) Environment Oriented Pro-
gramming [16]; III) Interaction Oriented Programming [7]; IV) Organization Oriented
Programming [14].

4.1 Organization Dimension

In our application, the ethical evaluation task is a coordinated task for the six agents
in the MAS, where each agent will perform a small task. Agents must however per-
form their assigned tasks in a correct sequential order. Coordination of the execution
of joint tasks is achieved by means of an organization. Moise (cf. Section 2.2) is used
for programming the organization of our MAS. In the Moise model we define groups,
roles, missions, goals, global plans, and schemes. Moise OML (Organization Modeling
Language) is used for defining organization specification, and organization entities. The
MAS organization under OML has three independent dimensions well adapted for the
organization concern:

Structural Specifications: The organization specification is saved in an XML file. The
structural specifications of our MAS is described along two levels:

— Individual Level (Role Definition). We have six different roles in our MAS:
1. clt: the agent playing this role is obliged to commit to the mission "request’.
2. emp: the agent playing this role is obliged to commit to the mission 'response’.
3. txtExtract: the agent playing this role is obliged to commit to the mission ’ex-

tract’.

4. transs: the agent playing this role is obliged to commit to the mission ’trans-
late’.

5. etheval: the agent playing this role is obliged to commit to the mission ’evalu-
ate’.

6. mon: the agent playing this role is obliged to commit to the mission *monitor’.
— Collective Level (Groups Definition). We have one group in our MAS. Inside the
group, there are:
e allowed roles in the group and their cardinality.
e links between the group’s roles. For example, the role mon (monitoring role)
has an authority link to the emp role (chatting agent role).

Functional Specifications: Specifies the expected behavior of our MAS in terms of
goals along two levels:

— Collective Level (Scheme Definition). The scheme is the global goal decomposition
tree. Our MAS organization has the global goal ethical_eval, which is achieving an
ethical evaluation of the customer service agent’s answer to customer’s request.
This global goal is decomposed into several subgoals, one for each task in the
ethical evaluation process. The subgoals have to be achieved in sequential order.
So, the final ethical evaluation is achieved correctly. These goals are distributed to
the agents by means of missions (a set of goals an agent can commit to).

— Individual Level (Mission Definition). A mission is a set of goals. A mission is to
be committed later by an agent. In our MAS, the following missions are proposed:

e missionl: consists of the subgoal request. The agent responsible for this mis-
sion (the client agent) will take the question text entered by the client user in
his chat GUI and send it to the chatting agent.

e mission2: consists of the subgoal response. The agent responsible for this mis-
sion (the chatting agent), receiving the client request, will respond to the re-
ceived request.

e mission3: consists of the subgoal extract. The agent responsible for this mission
will extract the response text from the online customer service agent’s GUI, and
sends it to the text-ASP translation agent.

e mission4: consists of the subgoal translate. The agent responsible for this mis-
sion will translate the text received from the textExtractor agent into ASP syn-
tax. This agent achieves this goal using the Prolog translation module. This
module consists of a simple parser written in Prolog (Sicstus Prolog). This
parser translates the natural language phrases into ASP syntax, it is currently
able to translate a small array of English sentences using simple grammar and
small vocabulary set (The vocabulary set currently considered is a small sub-
set of an online customer service domain vocabulary). This module will do the
translation and communicate it to this agent through shared resources (environ-
mental artifacts).

e mission5: consists of the subgoal evaluate. The agent responsible for this mis-
sion will take the ASP translation of the text, and provide the ethical evaluation
(ethical/unethical) together with a comprehensible justification for the given
evaluation. Both the ethical evaluation result and the justification are extracted
from the answer sets given by the ASP reasoning module.

e mission6: consists of the subgoal monitor. The agent responsible for this mis-
sion, upon receiving the evaluation result, will send a notification to the em-
ployee agent as a message.

Normative Specifications: The explicit relation between functional and structural
specifications, describing required roles for missions, and missions obligations for roles.
Some of the norms we have in our MAS organization are: norm1: this norm says that
the agent playing the clf role is obliged to commit to missionl; norm2: this norm says
that the agent playing the emp role is obliged to commit to mission2; norm3: this norm
says that the agent playing the txtExtract role is obliged to commit to mission3.

4.2 Agent Dimension

We have six agents in our MAS. Each agent will play one of the six roles mentioned in
Section 4.1, and each one will have its own source code file including its plans (Jason
plans) that makes it capable to achieve its organizational goals and fulfill its duties.
The agents will interact with each other through message exchange or through shared
artifacts:

1. Client Agent (client.asl): this agent perceives events related to the client user, by
focusing on client workspace. The client user, through his chatting interface enters
a question (request), and clicks the ’send’ button. This event is perceived by the
client agent, which reacts by sending a request message to the chatting agent.

2. Chatting Agent (employee.asl): this agent receives a request message from the
client, shows the request text to the employee’s user through the EmpGUI artifact,
where the employee user types his answer and sends it to the client.

3. Text Extractor Agent (fextExtractor.asl): this agent perceives the text entered by the
online customer service agent through the EmpGUI artifact. It extracts the answer
text, and send it to the Text-ASP Translator agent.

4. Text-ASP Translator Agent (taspTranslator.asl): this agent will interact with a sim-
ple Prolog-based parser agent through the ASPtransGUI artifact; the parser agent
translates the answer text into Prolog-like atoms and shows the result through the
ASPtransGUI.

5. Ethical Evaluator Agent (ethicalEvaluator.asl): this agent, upon receiving the trans-
lation from Text-ASP Translator agent, will invoke the ASP reasoning module. The
ASP reasoning module is based on an ASP-solver called *Clingo’. The ASP-solver
takes the ASP program (composed of a set of ASP rules and facts describing the
ontology of the domain (facts and initial general ethical rules of the domain en-
coded deductively using ASP), in addition to the newly learned rules, and current
case facts (extracted from the dialogue text)), and output a model (answer set). This
model includes both the ethical evaluation result as well as the cause for this result.
The ASP reasoning module communicates the evaluation result along with the ex-
planation through the EvalGUI environmental artifact. If the ASP-solver gives no
model, i.e. ASP reasoning module is not able to give an ethical evaluation of the
current case at hand, it communicates this through the EvalGUI artifact. Once the
ethical evaluation agent perceives this observing the environment, it invokes the
ILP learning module. This module is based on the incremental learning ILED al-
gorithm [10]. It will learn the needed ethical evaluation rules and add them to the
ethicalEvaluator agent KB, then communicate this generating a signal in the en-
vironment through LearnerGUI artifact. The ethical evaluation agent, perceiving
this signal, will re-invoke the ASP reasoning module, which will give the ethical
evaluation of the current case using the newly learned rules.

6. Monitoring Agent (monitoring.asl): this agent will receive the evaluation result

from the ethical evaluation agent and reacts by sending a notification message to
the Chat agent.

4.3 Environment Dimension

We use CArtAgO (refer Section 2.2) for programming the environment. The environ-
ment of our application has five graphical display artifacts of the type GUIArtifact,
where agents can perceive and update the values of different observable properties, and
also can do actions by invoking different operations. In addition, we have one shared
console artifact which is the default console where agents can print messages. These
artifacts can be placed in one workspace, or in different workspaces (which is the case
especially when the agents and the artifacts are distributed over different nodes in a
network):

— ClientGUI artifact is a type of GUIArtifact to allow interaction between the client
user and our client agent.

— EmpGUI artifact is a type GUIArtifact to allow interaction between the employee
user (or online customer service agent) and our chatting agent.

— ASPtransGUI artifact is a type GUIArtifact for communicating the natural text
translation results.

— EvalGUI artifact is a type GUIArtifact for communicating the ethical evaluation
results as well as the justification for the given ethical evaluation.

— LearnerGUI artifact is a type GUIArtifact for the communications between the ILP
learning module and the ethical evaluation agent.

5 Evaluation

The following briefly describes a simple scenario to demonstrate the usability of the
system.

Example scenario: A client contacts an online customer service chat point asking about
the characteristics of a certain product, and the dialogue system answers trying to con-
vince the customer to buy the product. It starts saying that the product is environmen-
tally friendly (which is irrelevant in this case), and that this is an advantage of their
product over the same products of other companies. Such an answer, containing the use
of irrelevant sensitive slogans to manipulate customers, is considered unethical.

The process begins with the user entering the question: *what are the features of Pro-
ductX?’, through her/his chatting interface. The Client agent, observing the clientGUI
artifact, gets the question text entered by the user through the chat point interface, and
sends it in a message to the Chatting agent. The chatting agent provides the answer:’
ProductX is environmentally friendly’, using its chatting interface, and this answer is
sent to the user. The Text Extractor agent focusing on the workspace of the chatting
agent, will extract the answer text from the chat point and will send it to the Text-ASP
Translator agent, which will show it in the ASPtransGUI artifact, and will translate the
composing sentences into ASP syntax (literal: environmentally_friendly(productX)).
This is done by the following plan:

+textVall(V) : not .empty(V) < — translatex(V).

Where textVall(V) is the environmental observed property that corresponds to

answer text field in the ASPtransGUI environmental artifact, and translateX (V) is

an environmental operation. This plan means: once the Text-ASP Translator agent per-
ceives an update to the observable property textV all(V') with a condition that it is not
empty, it will invoke the operation translateX (V'). Through this operation, the pro-
log translation module is invoked. This module will do the translation and return the
result, then another observable property that corresponds to the translation field will be
updated, and the update will be perceived by the Text-ASP Translator agent. The result
of the translation in our case will be ASP predicates (facts). These facts are sent by
the Text-ASP Translator agent to the ethicalEvaluator agent, and will be added to its
knowledge base (KB). This agent has in her knowledge base the ontology of the domain
including the following fact:

sensitiveSlogan(environmentally_friendly(productX)).
and the following ASP ethical evaluation rule (learned):
unethical (V1) : —sensitiveSlogan(V'1), not relevant(V'1), answer(V1).

The agent has no information about the relevance of the adoption of this sensitive
slogan for the requested product, so it will safely assume by default the irrelevance.
Then, the reasoner will infer the following evaluation as a result:

unethical (environmentally_friendly(productX)).
If subsequently we add to the KB of the Ethical Evaluator agent the fact:
relevant(environmentally_friendly(productX)).

Then the ASP reasoner will no longer infer that the answer is unethical. The Ethical
Evaluator agent will do the evaluation using the following plan:

+say(V)[source(trans)] : not .empty(V) < — reasoner(V); .print(” from trans :
7 V).

Once the Ethical Evaluator agent receives the translation value from the Text ASP
Translator agent, it will invoke the environmental operation reasoner(V') for invok-
ing the ASP reasoning module. This module will calculate a model for the above ASP
program. If the model contains one of the literals ethical(A)/unethical(A), then the
corresponding observable property will be updated, and perceived by the Ethical Eval-
uator agent. The evaluation result along with the justification are shown through the
EvalGUI artifact, and sent to the monitoring agent, which will send a notification mes-
sage to the employee agent (Chatting agent).

Now let us consider the situation before having the above mentioned rule for ethical
evaluation in the Ethical Evaluator agent knowledge base. The Ethical Evaluator agent
will not be able to give an ethical evaluation for the current case scenario, i.e. in the ASP
reasoning module output model there is non of the literals ethical(A)/unethical(A),
so the evaluation result is empty. At this point the Ethical Evaluator agent will invoke
the ILP learning module through the LearnerGUI by running the following plan:

+learn(X) : .empty(X) < — startLearning(X); .print(” X is empty”, X).

Once the reasoning process is finished, a signal is generated in the environment
with the value of the observable property corresponding to the ethical evaluation result
learn(X). If X is empty then the Ethical Evaluator agent will invoke the environmen-
tal operation startLearning(X) which will show the interface to communicate with
the ILP learning module. Through this GUlartifact, a human expert should give the

needed information to be passed to the ILED algorithm '' (inputs to be passed to the
ILED algorithm are: background knowledge, mode declarations, and the example/s in
‘json format’.) for learning the needed ASP ethical evaluation rule/s, then add them to
the KB of the Ethical Evaluator agent, after that signals the Ethical Evaluator agent
which will invoke again the ASP reasoning module to re-evaluate the current case sce-
nario and produce the needed evaluation.

So far, we have tested our prototype with a small set of similar examples. How-
ever, our experiments are still limited due to the absence of a big enough dataset, which
is one of the main challenges in the ethical domains in general (the lack of datasets
and benchmarks was discussed lately at the AAAI 2021 Spring Symposium on Imple-
menting Al Ethics). For this purpose, to collect data for creating a big dataset in the
domain of online customer service, we have developed a web application where partic-
ipants can create scenarios describing some real or invented experience with an online
customer service of some institution. The application is currently available online for

participation'?.

6 Discussion, Conclusion, and Future Works

This paper presented an implementation of a proposed multi-agent system architecture
capable of ethical monitoring and evaluation of a dialogue system. A brief scenario
was used to demonstrate the feasibility of the system. The developed MAS acts as a
separate ethical component (ethical layer) for ethical evaluation, which provides many
advantages from an engineering point of view:

— The ethical component has access to all data used for ethical evaluation, and use
this data to provide justifications for a given ethical evaluation to humans, which
leads to accountability.

— The possibility to adapt the ethical component to changes in circumstances and
needs. In addition to, the possibility of implementing more than one version of the
ethical component on the same agent.

— The possibility to check and verify the functionality of the ethical component inde-
pendently from the operations of the autonomous agent.

— The re-usability and standardization. Having a separate component for ethical eval-
uation gives us the possibility to standardize this ethical component, which will
have the advantage of avoiding the need to re-invent ethical components that fit for
a large number of agent’ architectures.

The ethical evaluation of the proposed MAS system is based on the facts extracted
from the case scenario, and their relation to the codes of ethics and conduct, which re-
sults in a set of ethical evaluation rules, against which to evaluate the behavior of the
chatting agent. These rules are used to decide whether the chatting agent’s answers to
clients requests are ethical/unethical. Evaluating the decidability and completeness of

"' The TLED algorithm implementation which we have used can be found here: https://
github.com/nkatzz/ILED
2 http://ethicalchatbot.sytes.net/en/

the generated rules is an open issue, and is a matter of further experiments and evalua-
tion.

Evaluating the performance of moral machines is a hard task. So far, there is no
objective and measurable criteria for the evaluation of moral machines. The complexity
of this task comes from two questions: what exactly constitutes a moral execution of a
task?; how to evaluate the moral behavior of a machine, i.e. against what?. The com-
plexity of the ethical domain, from the ontological and epistemic point of view, renders
the task of setting up an assessment criteria for ethical machine performance evaluation
very hard. Considering our system and our application domain, there are objective facts
as to whether a certain answer is considered ethical or not. These facts constrain whether
a certain answer is correctly classified as ethical/unethical. We have supported our claim
of the potential of our approach for creating ethical machines informally, by showing
few example scenarios. However, the behavior of our ethical agent will be guided by the
ethical theory generated by the system. To which level the generated theory can result in
an acceptable ethical behavior, is related to the building process itself. In other words,
it is extremely related to the correct specifications of what constitutes a moral behavior
in a specific domain. A possible strategy that can help understand and define correct
ethical specifications could be building an ontology for the domain’s ethics. From the
technical and formal point of view, we can easily provide a logical proof that our sys-
tem behaves correctly according to the specifications of moral customer service (once
these specifications are defined). Given certain premises, the system can be proven to
do what it should do. This proof can be done manually, or via theorem prover which
uses automated logical and mathematical reasoning.

Our System incorporates ASP as a non-monotonic knowledge representation and
reasoning formalism, used for ethical reasoning via the ASP reasoning module. And
ILP as a logic-based machine learning for learning logical rules for ethical reasoning
via ILP learning module. This, in fact, increases the reasoning capability of our Ethical
Evaluator agent; promotes the adoption of hybrid strategies that allow both top-down
design and bottom-up learning via context sensitive adaptation of models of ethical be-
havior; allows the generation of rules with valuable expressive and explanatory power,
which equips our agents with the capacity to give an ethical evaluation, and explain the
reasons behind this evaluation. In other words, this contributes to the transparency and
accountability, which facilitates instilling confidence and trust in our agents.

Providing explanations to system’s decisions is fundamentally linked to its relia-
bility and trustworthiness. The ASP-program models contain both the output and the
justification for the given output, which can be easily shown to the user. No need for
further processing to generate the explanations for the users, the explanations are al-
ready part of the output model.

The ASP ethical evaluation rules learned by the ILP learning module provide prac-
tical guidance for ethical decision making and judgment. ILP can learn effectively from
small datasets, which is one of the main advantages of ILP, in addition to the com-
prehensibility of the generated rules by humans and machines. The learned rules are
empirically valid, because the building process is tied to evidence and empirical obser-
vations.

The ethical component can act as a governor evaluating the prospective behavior
before it is executed by the agent. The outcome of the evaluation process can be used to
interrupt the ongoing behavior of the agent by either prohibiting or enforcing a behav-
ioral alternative.

The system needs substantial improvements and comprehensive testing before it is
ready for market. It currently presents the following challenges and limitations. Training
Datasets: one of the main challenges that we have faced during this work, was the
scarcity of examples. In fact, this is one of the main challenges in the ethical domain in
general. This is due to two reasons. First, the field of machine ethics is a new field with
very little pre-existing research work. Second, the sensitivity of the ethics domain makes
it very difficult to acquire data due to privacy reasons. However, we have deployed a web
application for the purpose of collecting data for building a dataset (refer Section 5).
Another solution could be to adapt the MAS system, that we created for testing, for
the creation of datasets for training. Limitations of the ASP translation module: the
development of a more effective text-ASP translator is in our future plans. Another
challenge is to fully automate the whole process: to this aim, we need to automate the
generation of mode declarations for the ILP learning module. All the above mentioned
limitations are subjects to our future plans. Furthermore, issues such as scalability and
fault-tolerance are paramount to the successful operation of any application, and even
more so when the application deals with something sensitive like ethics.

Building a MAS model simulating an ethical dialogue system in the domain of on-
line customer service, helped us to get better insights into the dynamics of a correspond-
ing real-world system, and to assess the practical challenges and limitations of building
such a system. We believe that the proposed MAS prototype has a great potential for
future implementations of ethical chatbots in different domains.

References

1. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming: An introduction to the
special issue. Al Mag. 37(3), 5-6 (2016). https://doi.org/10.1609/aimag.v37i3.2669

2. Catterson, V.M., Davidson, E.M., McArthur, S.D.: Practical applications of multi-agent sys-
tems in electric power systems. European Transactions on Electrical Power 22(2), 235-252
(2012)

3. Dyoub, A., Costantini, S., Lisi, F.A.: Learning Answer Set Programming Rules for Ethical
Machines. In: Proceedings of the Thirty Fourth Italian Conference on Computational Logic-
CILC, June 19-21, 2019, Trieste, Italy. CEUR-WS.org (2019), http://ceur-ws.org/
Vol-2396/

4. Dyoub, A., Costantini, S., Lisi, F.A.: Towards an ILP application in machine ethics. In: In-
ductive Logic Programming - 29th International Conference, ILP 2019, Plovdiv, Bulgaria,
September 3-5, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11770, pp. 26—
35. Springer (2019). https://doi.org/10.1007/978-3-030-49210-6

5. Dyoub, A., Costantini, S., Lisi, F.A.: Towards ethical machines via logic programming. In:
Proceedings 35th International Conference on Logic Programming (Technical Communica-
tions), ICLP 2019 Technical Communications, Las Cruces, NM, USA, September 20-25,
2019. EPTCS, vol. 306, pp. 333-339 (2019). https://doi.org/10.4204/EPTCS.306.39

6. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-intention
model of agency. In: Intelligent Agents V: Agents Theories, Architectures, and Languages,

10.

11.

12.

13.

15.

18.

5th International Workshop, ATAL °98, Paris, France, July 4-7, 1998, Proceedings, pp. 1-10.
Springer (1998)

. Huhns, M.N.: Interaction-oriented programming. In: Agent-Oriented Software Engineer-

ing, First International Workshop, AOSE 2000, Limerick, Ireland, June 10, 2000, Re-
vised Papers. Lecture Notes in Computer Science, vol. 1957, pp. 29—-44. Springer (2000).
https://doi.org/10.1007/3-540-44564-1_2

. Jennings, N.R.: An agent-based approach for building complex software systems. Commun.

ACM 44(4), 35-41 (2001). https://doi.org/10.1145/367211.367250

. Jennings, N.R., Sycara, K.P, Wooldridge, M.J.: A roadmap of agent re-

search and development. Auton. Agents Multi Agent Syst. 1(1), 7-38 (1998).
https://doi.org/10.1023/A:1010090405266

Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions
with inductive logic programming. Machine Learning 100(2-3), 555-585 (2015).
https://doi.org/10.1007/s10994-015-5512-1

Luck, M., McBurney, P., Preist, C.: Agent technology: enabling next generation computing
(a roadmap for agent based computing). AgentLink (2003)

Muggleton, S.: Inductive logic programming. New generation computing 8(4), 295-318
(1991). https://doi.org/10.1007/BF03037089

Oprea, M.: Applications of multi-agent systems. In: Information technology, pp. 239-270.
Springer (2004)

. Pynadath, D.V., Tambe, M., Chauvat, N., Cavedon, L.: Toward team-oriented program-

ming. In: Intelligent Agents VI, Agent Theories, Architectures, and Languages (ATAL),
6th International Workshop, ATAL 99, Orlando, Florida, USA, July 15-17, 1999, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1757, pp. 233-247. Springer (1999).
https://doi.org/10.1007/10719619_17

Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language. In:
Agents Breaking Away, 7th European Workshop on Modelling Autonomous Agents in a
Multi-Agent World, Eindhoven, The Netherlands, January 22-25, 1996, Proceedings, pp.
42-55. Springer (1996)

. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an

artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2), 158-192
(2011). https://doi.org/10.1007/s10458-010-9140-7

. Shakshuki, E.M., Reid, M.: Multi-agent system applications in healthcare: Current tech-

nology and future roadmap. In: Shakshuki, E.M. (ed.) Proceedings of the 6th International
Conference on Ambient Systems, Networks and Technologies (ANT 2015), the Sth Inter-
national Conference on Sustainable Energy Information Technology (SEIT-2015), London,
UK, June 2-5, 2015. Procedia Computer Science, vol. 52, pp. 252-261. Elsevier (2015).
https://doi.org/10.1016/j.procs.2015.05.071

Shoham, Y.: Agent-oriented programming. Artificial intelligence, Elsevier 60(1), 51-92
(1993)

