
Incrementally Predictive Runtime Verification?

Angelo Ferrando1[0000−0002−8711−4670] and Giorgio
Delzanno1[0000−0001−7030−1050]

University of Genova, Italy
forename.surname@unige.it

Abstract. Runtime Verification is a lightweight formal verification tech-
nique used to verify the runtime behaviour of software (resp. hardware)
systems. Given a formal property, one or more monitors are synthe-
sised to verify the latter against a system execution. A monitor can only
conclude the violation of a property when it observes such a violation.
Unfortunately, in safety-critical scenarios, this might happen too late for
the system to react properly. In such scenarios, it is advised to use Pre-
dictive Runtime Verification, where monitors are capable of anticipating
(by using a model of the system) future events before actually observ-
ing them. In this work, instead of assuming such a model is given, we
describe a runtime verification workflow where the model is learnt and
incrementally refined by using process mining techniques. We present the
approach and the resulting prototype tool.

1 Introduction

Runtime Verification (RV) [7] is a kind of formal verification technique that
focuses on checking the behaviour of software/hardware systems. With respect
to other formal verification techniques, such as Model Checking [11] and Theorem
Provers [18], RV is considered more dynamic and lightweight. This is mainly due
to its being completely focused on checking how the system behaves, while the
latter is currently running. This is important from a complexity perspective. RV
does not need to simulate the system in order to check all possible execution
scenarios; but, it only analyses what the system produces (i.e., everything that
can be observed of the system). This is usually obtained through monitors, that
are nothing more than validation engines which, given a trace of events generated
by the system execution, conclude the satisfaction (resp. violation) of a formal
property of interest. In turn, a formal property is the formal representation
of how we expect the system should behave. The monitor’s job is to verify at
runtime whether such a property holds.

Since monitors are usually deployed together with the system under analy-
sis, they are well suited for checking properties that require to be continuously
monitored. This is especially true in safety-critical scenarios, where a system’s

? Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

fault can cause injuries, loss of money and even deaths. A key example is au-
tonomous and robotic systems, where reliability is vital [12], and the addition of
monitors ensuring a correct behaviour is a valuable feature. Nonetheless, even
though monitors are lightweight components, they are still an additional work-
load for the system. This is not a problem for large systems, but it might be for
smaller ones, such embedded systems; where the amount of available resources
can be limited. For both increasing reliability and reducing the impact of the
monitors on the system, an extension of standard RV named Predictive Runtime
Verification (PRV) has been proposed e.g. in [31]. As the name suggests, PRV
differs from RV because it does not only consider the events observed by the
system execution, but it also tries to predict future events. By predicting future
events, the resulting monitors are capable of concluding the verification sooner.
Indeed, since these monitors can predict how the system is going to behave in the
future, they can reduce the search space of possible future continuations and,
hypothetically, conclude the satisfaction (resp. violation) by analysing shorter
traces of events (w.r.t. the standard counterpart). By concluding earlier, pre-
dictive monitors are a good choice: (i) for improving reliability in safety-critical
scenarios, since the monitors can conclude a violation of a property before such
a violation has even been observed; (ii) for reducing the workload introduced by
the monitor, since the monitor can conclude the satisfaction (resp. violation) of
the property sooner, it can be removed from the system and its resources can
be reclaimed for other purposes.

The problem with PRV is that it requires additional knowledge on the sys-
tem in order to predict future events. Usually, this is represented through an
abstraction, the model, which is manually created by an expert of the system.
The problem with this approach is that such a model is not always available,
and even when it is, it might not be specified in a convenient way (e.g. wrong
formalism). One possible way to avoid errors due to human intervention in the
model generation step is to resort once again to observations collected at run-
time. The guiding principle here is to learn the model behavior by observing
real execution traces so as to create a sort of closed loop in which logs are used
to adjust the candidate models, models are used to predict faults with certain
confidence level, the confidence level increases with the log size, etc.

For this purpose, in this paper we present an initial study on how to use
Process Mining (PM) to automate the model generation phase in practical ap-
plications of PRV. PM is a rich research area which consists in – but is not
limited to – studying and developing automated techniques to synthesise models
from log files. Specifically, we focus on the branch of PM called Process Dis-
covery. We show how it can be applied in the context of PRV, and we present
the updated verification workflow; where, starting from a set of log files gener-
ated by the system execution, we obtain a model that can be used to predict
events for the monitor. We also show how the resulting approach can be used to
obtain incrementally predictive monitors, where more the monitors are used to
verify the system and more they improve at predicting future events, and thus,
at concluding the satisfaction (resp. violation) of the analysed property.

It is important to remark that, to avoid human intervention in the model
generation phase, the proposed approach has an empirical nature by construction
since it always works with partial information on the entire set of possible system
behaviours. In theory, a precise model of the system can be obtained only as the
limit of a sequence of possible inaccurate candidate models. For this reason,
our validation procedure returns truth values enriched with confidence scores
that depend on the frequency of observed events applied during the PM pre-
processing phase.

The remainder of this paper is structured as follows. Section 2 presents the
preliminary notions of RV, PRV and PM. Section 3 shows our general verifica-
tion workflow without selecting any specific formalism for properties and models.
Section 3.1 instantiates our workflow with the most used formalisms in formal
verification. Section 4 presents the prototype tool representing the implementa-
tion of our approach. Section 5 positions this contribution with respect to the
state of the art. Finally, Section 6 summarises the results of this work and points
out to future directions.

2 Preliminaries

2.1 Runtime Verification and Predictive Runtime Verification

A system is denoted by S, and its alphabet (all of its observable events) is denoted
by ΣS (or Σ where there is no confusion). Given an alphabet, Σ, a trace, σ, is a
sequence of events in Σ, and tr(Σ) is the set of all possible traces (the language)
over Σ. Properties are denoted by ϕ, potentially with subscripts, and ϕ denotes
their negation. Given an alphabet Σ, a property ϕ is satisfied by a trace σ over
Σ, written σ |= ϕ, if ϕ is true in σ. The set JϕK = {σ | σ |= ϕ} contains the set of
traces satisfying ϕ, and we denote that a particular trace σ satisfies a property ϕ
as σ ∈ JϕK. A property ϕ can be specified in any formalism such that for a given
alphabet Σ, and for any trace σ ∈ tr(Σ), the following two conditions hold:

σ ∈ JϕK is decidable (1)

σ ∈ JϕK ⇐⇒ σ /∈ JϕK (2)

Condition (1) states that, given a property ϕ specified with the formalism of
choice, we can always test if a trace σ satisfies ϕ, i.e. σ belongs to the set of traces
satisfying ϕ. This condition is mandatory since a monitor is defined upon the
notion of trace acceptance. As we are going to show in Definition 1, a monitor
requires to check if a trace satisfies the property under analysis, and this can be
done only when condition (1) holds. Condition (2), instead, implicitly states that
the formalism of choice has to be closed under negation and a trace σ satisfies
a property ϕ, if and only if, σ does not satisfy its negation ϕ. The negation of
properties will be used in Definition 2 to define monitors with predictive flavour,
where we will combine a model ψ with the negation of a property ϕ to check for
traces satisfying ψ but not ϕ.

Definition 1 (Monitor). Let S be a system with alphabet Σ, and ϕ be a
property. Then, a monitor for ϕ is a function Monϕ : tr(Σ) → B3, where
B3 = {>,⊥, ?}:

Monϕ(σ) =

> ∀u∈tr(Σ).σ • u ∈ JϕK
⊥ ∀u∈tr(Σ).σ • u /∈ JϕK
? otherwise

where • is the standard trace concatenation operator.

Intuitively, a monitor returns > if all continuations of σ satisfy ϕ; ⊥ if all
possible continuations of σ violate ϕ; ? otherwise.

Definition 1 describes a generic monitor that does not impose constraints
on the formalism used. Consequently, we collapse the definition of tr(Σ) for
representing finite and infinite traces depending on what is supported by the
formalism that is used to define ϕ. Thus, if ϕ accepts only traces of infinite length,
then tr(Σ) = Σω; if ϕ accepts only traces of finite length, then tr(Σ) = Σ∗;
otherwise, tr(Σ) = Σ∗ ∪Σω.

Let S be a system with alphabet Σ. We denote its model by ψ, and use JψK ⊆
tr(Σ) to indicate the set of traces recognised by ψ (i.e., ψ represents a formal
abstraction of how S behaves). A model, ψ, can be specified in any formalism
such that for a given alphabet, Σ, for any trace, σ ∈ tr(Σ), and for any property,
ϕ, the following holds:

σ ∈ JψK is decidable (3)

JϕK ∩ JψK is computable (4)

We indicate (4) via the use of a binary relation ⊗, that is, Jϕ⊗ ψK = JϕK ∩ JψK.
Often, PRV frameworks express their properties in Linear-time Temporal

Logic (LTL) [22] (for example [17,31]); however, we took our inspiration from
a PRV framework where both the System Under Analysis (SUA) and property
are defined using Timed Automata (TA) [21]. The reason is that in works such
as [17,31], the predictive aspect is not formalised through a model of the system,
but as a set of finite suffixes. These suffixes are then concatenated to the given
trace σ allowing the monitor to predict the initial part of the possible contin-
uations u. Instead, in our work, as in [21], we explicitly represent the model
without focusing only on the first events after σ, but by applying the prediction
to the entire possible continuation. This can be obtained using a model of the
system as input to the monitor, alongside the property to be verified. Informally,
the model generates the set of event traces that can be observed by executing
the system. We follow the definition of a predictive monitor from [21], however,
in this paper we remain formalism-agnostic.

Definition 2 (Predictive Monitor). Let S be a system with alphabet Σ,
model ψ and let ϕ be a property. A predictive monitor for ϕ given ψ is a function,

Monϕ,ψ : tr(Σ)→ B3, where B3 = {>,⊥, ?}:

Monϕ,ψ(σ) =

> ∀u∈tr(Σ).σ • u /∈ Jϕ⊗ ψK
⊥ ∀u∈tr(Σ).σ • u /∈ Jϕ⊗ ψK
? otherwise

The intuitive meaning of the return values is the same as in the non-predictive
case (Definition 1). Note the use ⊗ in the definition. For instance, the case for
> requires all traces σ •u not to be in JϕK∩ JψK where ϕ represents the negation
of ϕ.

2.2 Process Mining

Process Mining (PM) [26] is a technique used in software engineering to auto-
matically synthesise a formal model which denotes the system behaviour. Such
analysis is usually performed on event logs generated by multiple executions of
the system.

In practice, by using data mining algorithms, knowledge is extracted by these
logs and corresponding formal models are generated. These models represent
an abstraction of the system, and can be used to understand how the system
behaves. Usually, once such models are extracted, an expert of the system can use
them to study and check whether the implemented system actually meets his/her
expectations. This check can be manually performed by the expert, who inspects
the extracted model and searches for inconsistencies, or it can be automatically
performed through conformance checking algorithms.

The power of PM lies in its being flexible, customisable and automated. Thus,
we decided to study and develop its integration in the context of PRV. Mostly
because, one of the drawbacks of PRV is the assumption that an existing model
of the system exists. Moreover, since PM completely depends on the event logs
generated by the system execution, more logs are used, and better (i.e., more
precise) models are extracted. Because of this, PM does not only allow PRV
to be applied when a model of the system does not exist, but it also makes
PRV more robust and reliable. For instance, when the system under analysis
presents dynamic aspects, to rely on a static model would eventually bring to
wrong predictions. Instead, if the model is automatically obtained by observing
how the system behaves, it may keep up with the change and be a more reliable
representation of how the system is currently behaving.

3 Incrementally Predictive Runtime Verification

When applying RV with a predictive flavour, we need a model of the system to
predict future events. Without such a knowledge, each event would be considered
observable in the future, and the monitor would need to evaluate all possible
continuations of the current analysed trace. Nonetheless, how the model of the
system is generated is not defined a priori. In previous works [6,30,21,31,17,10],

the model of the system is assumed to be manually created by an expert of the
system. Here, we show how the standard predictive runtime verification workflow
can be enhanced using process mining techniques to automatically synthesise the
model of the system.

log files

Process Mining Model Predictive Model (ψ)

trace of events

Verdict
Monitor

ϕ

(1)
(2)

(3)

(4) (4)
(5)

Fig. 1: Engineering steps to obtain incrementally predictive monitors.

Figure 1 shows a general overview of our approach. At this level, we do not
pick any specific formalism for representing the properties and the models (as it
is done in Section 2), but we focus on the necessary steps to define the workflow
for obtaining an incrementally predictive RV approach.

Step 1: Model extraction As it is true for all process mining algorithms, ev-
erything starts from a set of log files. These log files contain information about
previous executions of the system, and can be used to predict future executions as
well. Given such a set of log files, a process mining algorithm of choice can be se-
lected to parse the logs and generate a model representing the system behaviour
(Process Mining Model). Depending on the algorithm, the resulting model may
be different; even though usually the most common formalisms used to specify
such models are Petri Net (PN) [20] and Directly-Follows Graph (DFG) [5].

Step 2: Predictive Model derivation The model extracted by the process min-
ing algorithm (step (1)) may not be directly usable to synthesise a predictive
monitor (e.g. formalism mismatch). If that is the case, one or more additional
transformation steps are required1. These steps aim to transform the Process
Mining Model into a more suitable Predictive Model, which can be used to syn-
thesise predictive monitors as we show in Section 2. Again, these models can
be specified using different formalisms which depend on the kind of predictive
monitor we want to synthesise.

1 Naturally, if the Process Mining Model is already defined in a suitable way for the
predictive monitor (i.e., the Process Mining Model and Predictive Model coincide),
the entire step (2) can be removed.

Step 3: Monitor synthesis Once the model of the system ψ is obtained (steps
(1-2)), it can be used to synthesise a predictive monitor. Such synthesis depends
on which formalism is used for defining the property ϕ to verify, and which
formalism has been used at step (2) to generate ψ. In principle, the synthesised
monitor has to follow Definition 2; where the model is used to predict future
events and to prune impossible continuations of the current analysed trace.

Step 4: Monitor execution The predictive monitor obtained at step (3) for the
property ϕ and the Predictive Model ψ is used to analyse the system. More
in detail, a trace representing the system execution is passed as input to the
monitor. Such a trace can be retrieved incrementally while the system is running
(events are passed to the monitor as soon as they are generated), or, it can be
stored in a log file. In the former, we refer to online RV, while in the latter, we
refer to offline RV. In both cases, the verification process ends with a verdict
produced by the monitor. If the verdict is positive (>), then the system execution
has satisfied ϕ. If the verdict is negative (⊥), then the system execution has
violated ϕ. Finally, if the system execution neither satisfies nor violates ϕ, the
verdict is inconclusive (?).

Step 5: Log files update An interesting aspect of our approach is that log files
can be used at two separate levels. They are used to synthesise the model of the
system through process mining at step (1), and are used to verify the current
system execution against a formal property ϕ at step (4). Nonetheless, in both
cases they are nothing more than traces of events obtained by executing the
system under analysis. When the monitor is done with a trace of events (it
has completed the verification), in standard RV such a trace is discarded. Even
though this is true for standard RV, it is not the case for PRV. Indeed, we can
use the trace of events analysed by the monitor to increase the knowledge we
have of the system. Specifically, this new trace of events can be added to the
log files on which process mining is applied. In this way, more the predictive
monitor is used to verify a system, and more it improves at predicting events
on that system. Initially, the set of log files used at step (1) might be small,
which would bring to a non informative model of the system; but, by using the
predictive monitor to verify the system, additional event traces would be added
to the set of log files. The addition of new traces enriches the knowledge the
process mining algorithm has of the system, and consequently, it improves the
quality of the synthesised model.

3.1 Incrementally Predictive Runtime Verification instantiation

In Section 3, we present the general workflow, where no specific formalism is
fixed. In this way, depending on the domain, the approach can be customised for
obtaining better results. Nonetheless, for a better understanding, we present an
instantiation of our approach, where we use DFG as formalism for representing
the Process Mining Model, Probabilistic Finite-State Machine (PFSM) [24] and

log files

ev1

ev2
ev4

ev3

v1,2

v3,4

v2,4

v4,1
〈ev2, 1.0〉

〈ev3,
v2,3

v2,3 + v2,4
〉

〈ev4, 1.0〉

〈ev1, 1.0〉

v2,3 〈ev4,
v2,4

v2,3 + v2,4
〉

〈ev1, 1.0〉

ev2

ev3

ev4

ev1

ev4

ev1

init

s0

s1

s2

s3

init

s0

s1

s2

s3

Directly-Follows Graph

Probabilistic Finite-State Machine

Buchi Automaton

(1)

Monitor

ϕ

trace of events

Verdict

(2a)

(2b)

(3)

(4)

(4)

(5)

Fig. 2: Instantiated engineering steps to obtain predictive monitors.

Büchi Automata (BA) [8] for the Predictive Model, and finally, LTL for the
properties to verify at runtime with the monitor.

Figure 2 shows an overview of the instantiated verification workflow; where,
starting from a set of log files representing different system executions, and an
LTL property ϕ to verify, we obtain a predictive monitor. The verification process
consists in 6 steps (since step (2) of Figure 1 is split into (2a) and (2b)).

Step 1: Model extraction First of all, using the log files generated by multi-
ple system executions, a DFG [5] is created. Such a graph represents the sys-
tem behaviour and can be obtained by applying state of the art process min-
ing algorithms, such as Alpha Miner [2,29], Heuristics Miner [4,28], Inductive
Miner [16,13], Process Skeletonization [3], and Graph-Based Miner [27,25] (a
thorough review can be found in [5]). The output’s formalism of these algo-
rithms can vary, but the most common representations are Petri Net [20], Causal
Net [1], BPMN [9] and DFG. We decided to use DFG because their translation
to automata is more direct. The DFG so generated is a graph where the states
are labeled with events evi observed in the log files, and a directed edge goes
from a state evi to a state evj if there is at least one trace in the log files where
the event evi is followed by the event evj . Naturally, these events are domain
dependent, e.g. messages, function calls, actions, etc. Moreover, each transition
is labelled with the number of traces (vi,j) where such causality relation is ob-

served. For instance, in Figure 2, ev1 is followed by ev2 in v1,2 traces in the log
files, ev2 is followed by ev3 in v2,3 traces and by ev4 in v2,4 traces, and so on.

Step 2a: Addition of probabilities After generating a DFG of the system, the next
step is to explicitly represent which events can be observed and with which prob-
ability. This is achieved in step (2a), where starting from a DFG, a correspond-
ing PFSM [24] is obtained. A PFSM is an extension of standard Finite-State
Machine (FSM) where the transitions amongst states are labelled with tuples
〈evi, pi〉, which denote that the event (evi) can be observed with probability (pi)
in that state. Since the PFSM is obtained by a DFG, the events and probabili-
ties are extracted accordingly. If there is an edge from evi to evj labelled with
vi,j , and an edge from evi to evk labelled with vi,k, then in the corresponding
PFSM, a state s is generated, with two transitions labelled 〈evj , vi,j

vi,j+vi,k
〉 and

〈evk, vi,k
vi,j+vi,k

〉. These two transitions specify the probability of observing events

evj and evk in s. For instance, in Figure 2, in the DFG, the state ev2 is followed
by the states ev3 and ev4. This is mapped to state s1 in the PFSM, in which the
two events ev3, and ev4 can be observed. The probability attached to ev3 is the
probability of observing ev3 after ev1, which can be computed as the number of
times ev3 has followed ev1 in the log files (v1,3) divided by the total number of
traces where ev1 has been observed (similar reasoning for ev4). Let us assume
v1,3 = 7 and v1,4 = 3, then the probability of observing ev3 after ev1 is 7

7+3 = 0.7

(i.e., 70%); while the probability of ev4 is 3
7+3 = 0.3 (i.e., 30%). Thus, the tran-

sitions from state s1 to states s2 and s3 are 〈ev3, 0.7〉 and 〈ev4, 0.3〉, respectively.
It is important to note that, each state in PFSM has a transition for each pos-
sible event of the system. The events that have never been observed in a state
have zero probability (such transitions are omitted in Figure 2 for readability).
For instance, in state s1, the event ev1 has zero probability to be observed, since
no trace has ever been observed with an event ev2 followed by an event ev1.
Nonetheless, we need to explicitly represent the events with zero probability as
well because initially, when the model extracted at step (1) is not trustworthy,
any event has to be considered possible. How much trust we put in the PFSM
is determined by the following step (2b), where a probability threshold is used
to prune (resp. keep) transitions on the basis of their probability values.

Step 2b: Approximation with a threshold In a standard predictive RV approach,
the model of the system does not contain probabilities. Instead, it simply speci-
fies which traces can be generated by the system execution. Probabilities, even
though relevant, are not usually taken in consideration when the model is used
for predicting future events [30,21,31,17,10]. Nonetheless, probabilities can be
used to select which events are observable in which states. One possible way to
give importance to probabilities without explicitly reporting them in the model
is to set a probability threshold. Given a probability threshold, all transitions
with a probability less than the threshold can be removed (grey transition in Fig-
ure 2), while the transitions with a probability greater than the threshold can
be preserved (but deprived of the probability information). In this way, given a

PFSM, we can generate a corresponding BA [8], for a certain probability thresh-
old. Such a BA explicitly describes the language recognised by the model of the
system. We decided to use BA because is one of the most used formalisms in for-
mal verification. By generating a BA, we assure a wider use of our solution, since
existing predictive RV tools already support BA. Depending on the threshold,
the BA can be more or less reliable. For instance, if the threshold is 0.01 (i.e.,
1%), then all transitions with probabilities less than 0.01 are pruned. This means
that, the BA so generated recognises all traces generated by the log files, except
for the traces that are unlikely. Naturally, higher is the threshold, and smaller
is the language recognised by the BA; since more transitions are pruned in the
process from PFSM to BA. Because of this, the threshold needs to be chosen
carefully. In principle, more we trust the model generated at step (1), and higher
we can set the threshold. Indeed, if we trust the model extracted by the process
mining algorithm, then we can trust that the transitions with low probability
represent outliers, and by pruning them we can have a faster2 verification. On
the other hand, if we do not trust the model generated at step (1), we can select
a lower threshold and prune less transitions in the transformation from PFSM
to BA. For instance, this can happen when not many log files are available, and
the process mining is not accurate enough. While the threshold can be increased
later on, when more log files are available and the resulting process mining is
more trustworthy. Note that, the BA corresponds to an over-approximation of
the DFG obtained at step (1). Since the DFG only specifies the cause-effect re-
lation amongst the system’s events, in presence of loops in the DFG (resp. in the
BA), we cannot infer the number of times the system execution passes on such
loops. Because of this, in order to not prune possible system executions from the
BA model, each state in the BA is set to be final. In this way, the BA recognises
a superset of the execution traces generated by the system.

Step 3: Monitor synthesis Once we obtain a model of the system, a predictive
monitor can be synthesised (following Definition 2). In [31], the authors present
the approach for synthesising predictive monitors for LTL properties, where the
model of the system is assumed being a BA. Following the same approach, at step
(3), we synthesise a predictive monitor by combining an LTL property ϕ given in
input, and the BA obtained at step (2b). Naturally, depending on the formalism
used at step (2b), the monitor synthesis may vary. For instance, instead of BA,
we could use timed automata to denote the model of the system, as it is done
in [17]. Note that, this would cause a modification of only step (2b) and (3); the
remaining steps of the workflow would remain unchanged. In fact, we selected
LTL and BA as formalisms for representing properties and models because are
widely used and well-known. Nonetheless, the workflow presented in this work
is not constrained to any specific formalism. With few modifications it can be
adapted to other formalisms as well.

Steps 4-5: Monitor execution and Log files update These steps do not depend on
the specific instantiation and are the same as the steps in Section 3.

2 Since less future continuations have to be considered.

4 Implementation

The Python implementation of our approach is publicly available as a GitHub
repository3. We implemented all the engineering steps presented in this paper,
when instantiated to the case with LTL properties and BA models. More in
detail, the resulting tool takes in input: (i) a set of log files (expressed as a single
XES file4), which is the standard format used in PM to represent event logs; (ii)
a threshold to guide the mapping from PFSM to BA; (iii) an LTL property to
verify; (iv) a trace generated by the current system execution to analyse.

To implement step (1), i.e. the application of process mining to the log files,
we used the PM4Py5 Python library. PM4Py is the leading open source pro-
cess mining platform written in Python, and is developed by the process mining
group of Fraunhofer Institute for Applied Information Technology6. Such a li-
brary allows to develop process mining applications very quickly. In fact, the
step (1) of our approach has been completely implemented by calling PM4Py
API. Starting from the XES file denoting the knowledge we have of the system,
PM4Py generates a DFG as a Python object. The rest of the code has been fully
implemented in Python from scratch. First, the Python object representing the
DFG is translated into another Python object denoting the corresponding PFSM
(step (2a)). Such translation is straightforward, because it is enough to unroll the
transitions amongst states in the DFG; similarly to what it is usually done when
translating Kripke structures [15] to BA. Once the Python object representing
the PFSM is obtained, the tool goes on with its translation to BA (step (2b)).
Again, this translation is direct because it simply requires to prune the tran-
sitions with a probability lower than the chosen threshold, and make all states
final. With the BA Python object, a predictive monitor is then generated. This,
in particular, is obtained by using a Python library supporting the generation of
predictive monitors for LTL properties and BA models7. This library has been
developed by one of the authors of this paper as well. Using this library, the
step (3) is completed, and a predictive monitor ready to be used is synthesised.
Finally, the tool terminates by using such a monitor to verify a trace of events
given in input, and reporting the final verdict to the user (step (4)). The trace
so analysed can then be integrated (step (5)) inside the XES file given in input
to enhance future process mining phases (i.e., next times the approach is used).

5 Related Work

RV is a rich research area, but PRV is still rising. One of the oldest works on
PRV is presented in [31]. In this work, the authors present an extension of the
standard RV approach when applied to LTL properties. Differently from the

3 https://github.com/AngeloFerrando/IncrementallyPredictiveRV
4 http://www.xes-standard.org/
5 https://pm4py.fit.fraunhofer.de/
6 http://fit.fraunhofer.de/process-mining
7 https://github.com/AngeloFerrando/MultiModelPredictiveRuntimeVerification

https://github.com/AngeloFerrando/IncrementallyPredictiveRV
http://www.xes-standard.org/
https://pm4py.fit.fraunhofer.de/
http://fit.fraunhofer.de/process-mining
https://github.com/AngeloFerrando/MultiModelPredictiveRuntimeVerification

rest of works in literature, the prediction of future events is not obtained using
a model of the system, but is limited to a single sequence of events (called finite
predictive word) that is concatenated to the analysed trace. With respect to our
solution, no explicit – nor complete – representation of the system is used. The
same year, one of the authors proposed an extended version [17], where instead
of considering one single predictive word, a BA model is integrated inside the
standard generation of LTL monitors. The resulting approach is at the basis
of the predictive library we use in our tool to synthesise predictive LTL moni-
tors. The main difference is in the generation of the BA, which in [17] is given,
while in our approach is automatically extracted through PM. Moreover, our
approach is intrinsically general. In fact, LTL and BA are just a possible instan-
tiation. A more recent work where prediction is obtained through assumptions
is presented in [10]. The authors propose a different way to synthesise predic-
tive monitors for LTL properties, where the model used to predict the future
events, instead of being a BA, is a Fair Kripke Structure (FKS) [14]. Similarly,
in [21], another PRV approach is presented, where the model is instead defined
as a Timed Automaton. In both cases, the main difference with our approach
is in the generality and the fact that the model is not given but automatically
synthesised. On a completely different line of research, we may find [6], where
probabilistic models, like Markov Models, are used. This work is very similar to
ours because, differently from the others mentioned before, it does not assume
the model of the system is given. In fact, the probabilistic model used in the
resulting RV framework is trained on samples generated by the system execu-
tion using the Baum-Welch algorithm [23]. Even though similar in principle,
this work differs from our solution in three aspects: (i) it uses machine learning
techniques to extract the model, while we rely on PM techniques; (ii) it does not
define any notion of incrementality; (iii) it considers only finite extensions. To
the best of our knowledge, the work that is closest to ours is presented in [19];
where the authors use PM to extract the model used for synthesising predic-
tive monitors as well. With respect to our approach, in [19] the objective of the
predictive monitor is slightly different. Instead of being purely focused on the
verification of the system under analysis, they are more interested in using the
monitors to recommend the system on how to proceed. To do so, they focus on
the probabilistic aspects and present a framework to suggest the best actions to
perform in order to increase the probability of satisfying a given LTL formula.
Moreover, their solution is less general than ours. Their approach is hard-coded
in the Business Process scenario, while our verification workflow is general and
tackles all the engineering steps necessary to integrate PM inside the creation of
predictive monitors.

6 Conclusions and Future Work

In this paper, we present a general verification workflow for integrating PM in
the generation of predictive monitors. We show all the engineering steps that,
from a set of log files, bring to the extraction of a model which can be used to

predict future events and speed up the RV process. We present an overview of
the verification workload where no formalism is enforced. This choice increases
the impact of the work in the verification community, since these engineering
steps can be customised w.r.t. the user’s needs. Nonetheless, to help better un-
derstanding the approach, we also show an instantiation with LTL properties
and BA models. The choice of these two formalisms is due to their being largely
used in the verification community.

Finally, a Python prototype tool is presented. We briefly show its features
and how it implements the engineering steps presented in the paper.

With respect to future directions; this is an initial work on the topic and
there are many different aspects that still need to be tackled. For instance, at
the current level, the probability is not considered in the monitor and it is lost
in the translation from PFSM to BA. Nonetheless, this is an interesting aspect
to explore further. Indeed, the notion of threshold could be used to add more
information to the monitor’s outcome. This could also bring to the generation of
multiple BA, each corresponding to a different threshold. This would be interest-
ing to analyse, and it could be a starting point for a more thorough comparison
between our approach, and the one presented in [19].

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011). https://doi.org/10.1007/978-3-642-
19345-3, https://doi.org/10.1007/978-3-642-19345-3

2. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discover-
ing process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–
1142 (2004). https://doi.org/10.1109/TKDE.2004.47, https://doi.org/10.1109/
TKDE.2004.47

3. Abe, M., Kudo, M.: Business monitoring framework for process discovery with
real-life logs. In: Sadiq, S.W., Soffer, P., Völzer, H. (eds.) Business Process
Management - 12th International Conference, BPM 2014, Haifa, Israel, Septem-
ber 7-11, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8659, pp.
416–423. Springer (2014). https://doi.org/10.1007/978-3-319-10172-9 30, https:

//doi.org/10.1007/978-3-319-10172-9_30

4. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Bruno, G.: Au-
tomated discovery of structured process models from event logs: The
discover-and-structure approach. Data Knowl. Eng. 117, 373–392 (2018).
https://doi.org/10.1016/j.datak.2018.04.007, https://doi.org/10.1016/j.

datak.2018.04.007

5. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Marrella,
A., Mecella, M., Soo, A.: Automated discovery of process models from event
logs: Review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–
705 (2019). https://doi.org/10.1109/TKDE.2018.2841877, https://doi.org/10.

1109/TKDE.2018.2841877

6. Babaee, R., Gurfinkel, A., Fischmeister, S.: Prevent : A predictive run-time
verification framework using statistical learning. In: Johnsen, E.B., Schaefer, I.

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1007/978-3-319-10172-9_30
https://doi.org/10.1007/978-3-319-10172-9_30
https://doi.org/10.1007/978-3-319-10172-9_30
https://doi.org/10.1016/j.datak.2018.04.007
https://doi.org/10.1016/j.datak.2018.04.007
https://doi.org/10.1016/j.datak.2018.04.007
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1109/TKDE.2018.2841877

(eds.) Software Engineering and Formal Methods - 16th International Confer-
ence, SEFM 2018, Held as Part of STAF 2018, Toulouse, France, June 27-
29, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10886, pp.
205–220. Springer (2018). https://doi.org/10.1007/978-3-319-92970-5 13, https:

//doi.org/10.1007/978-3-319-92970-5_13

7. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Lectures on Runtime Verification, pp. 1–33. Springer (2018)

8. Büchi, J.R.: On a Decision Method in Restricted Second Order Arithmetic, pp.
425–435. Springer New York, New York, NY (1990). https://doi.org/10.1007/978-
1-4613-8928-6 23, https://doi.org/10.1007/978-1-4613-8928-6_23

9. Business process model and notation. https://www.bpmn.org/, accessed: 2021-06-
24

10. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification with
partial observability and resets. In: Finkbeiner, B., Mariani, L. (eds.) Runtime
Verification - 19th International Conference, RV 2019, Porto, Portugal, Octo-
ber 8-11, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11757, pp.
165–184. Springer (2019). https://doi.org/10.1007/978-3-030-32079-9 10, https:

//doi.org/10.1007/978-3-030-32079-9_10

11. Clarke, E.M.: Model checking. In: International Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science. pp. 54–56. Springer (1997)

12. Fisher, M., Mascardi, V., Rozier, K.Y., Schlingloff, B., Winikoff, M., Yorke-Smith,
N.: Towards a framework for certification of reliable autonomous systems. Auton.
Agents Multi Agent Syst. 35(1), 8 (2021). https://doi.org/10.1007/s10458-020-
09487-2, https://doi.org/10.1007/s10458-020-09487-2

13. Ghawi, R.: Process discovery using inductive miner and decomposition. CoRR
abs/1610.07989 (2016), http://arxiv.org/abs/1610.07989

14. Kesten, Y., Pnueli, A., Raviv, L.: Algorithmic verification of linear temporal
logic specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) Automata,
Languages and Programming, 25th International Colloquium, ICALP’98, Aal-
borg, Denmark, July 13-17, 1998, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 1443, pp. 1–16. Springer (1998). https://doi.org/10.1007/BFb0055036,
https://doi.org/10.1007/BFb0055036

15. Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica
16, 83–94 (1963)

16. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - A constructive approach. In: Colom, J.M.,
Desel, J. (eds.) Application and Theory of Petri Nets and Concurrency -
34th International Conference, PETRI NETS 2013, Milan, Italy, June 24-28,
2013. Proceedings. Lecture Notes in Computer Science, vol. 7927, pp. 311–
329. Springer (2013). https://doi.org/10.1007/978-3-642-38697-8 17, https://

doi.org/10.1007/978-3-642-38697-8_17

17. Leucker, M.: Sliding between Model Checking and Runtime Verification. In: Run-
time Verification. LNCS, vol. 7687, pp. 82–87. Springer (2012)

18. Loveland, D.W.: Automated theorem proving: a logical basis, Fundamental studies
in computer science, vol. 6. North-Holland (1978), https://www.worldcat.org/
oclc/252520243

19. Maggi, F.M., Francescomarino, C.D., Dumas, M., Ghidini, C.: Predictive mon-
itoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) Advanced Information
Systems Engineering - 26th International Conference, CAiSE 2014, Thessaloniki,

https://doi.org/10.1007/978-3-319-92970-5_13
https://doi.org/10.1007/978-3-319-92970-5_13
https://doi.org/10.1007/978-3-319-92970-5_13
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1007/978-1-4613-8928-6_23
https://www.bpmn.org/
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/s10458-020-09487-2
https://doi.org/10.1007/s10458-020-09487-2
https://doi.org/10.1007/s10458-020-09487-2
http://arxiv.org/abs/1610.07989
https://doi.org/10.1007/BFb0055036
https://doi.org/10.1007/BFb0055036
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-38697-8_17
https://www.worldcat.org/oclc/252520243
https://www.worldcat.org/oclc/252520243

Greece, June 16-20, 2014. Proceedings. Lecture Notes in Computer Science,
vol. 8484, pp. 457–472. Springer (2014). https://doi.org/10.1007/978-3-319-07881-
6 31, https://doi.org/10.1007/978-3-319-07881-6_31

20. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Universität Hamburg
(1962)

21. Pinisetty, S., Jéron, T., Tripakis, S., Falcone, Y., Marchand, H., Preoteasa, V.: Pre-
dictive Runtime Verification of Timed Properties. Journal of Systems and Software
132, 353–365 (2017)

22. Pnueli, A.: The temporal logic of programs. In: 18th Annual Sympo-
sium on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977. pp. 46–57. IEEE Computer Society
(1977). https://doi.org/10.1109/SFCS.1977.32, https://doi.org/10.1109/SFCS.
1977.32

23. Rabiner, L.: A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989).
https://doi.org/10.1109/5.18626

24. SALOMAA, A.: Chapter ii - finite non-deterministic and probabilistic automata.
In: SALOMAA, A. (ed.) Theory of Automata, International Series of Monographs
on Pure and Applied Mathematics, vol. 100, pp. 71–113. Pergamon (1969).
https://doi.org/https://doi.org/10.1016/B978-0-08-013376-8.50008-3, https:

//www.sciencedirect.com/science/article/pii/B9780080133768500083

25. Sarno, R., Sungkono, K.R., Johanes, R., Sunaryono, D.: Graph-based algorithms
for discovering a process model containing invisible tasks. International Journal of
Intelligent Engineering and Systems 12, 85–94 (2019)

26. Van Der Aalst, W.: Data science in action. In: Process mining, pp. 3–23. Springer
(2016)

27. Waspada, I., Sarno, R., Sungkono, K.: An improved method of paral-
lel model detection for graph-based process model discovery. International
Journal of Intelligent Engineering and Systems 13, 127–139 (04 2020).
https://doi.org/10.22266/ijies2020.0430.13

28. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: Pro-
ceedings of the IEEE Symposium on Computational Intelligence and Data
Mining, CIDM 2011, part of the IEEE Symposium Series on Computa-
tional Intelligence 2011, April 11-15, 2011, Paris, France. pp. 310–317. IEEE
(2011). https://doi.org/10.1109/CIDM.2011.5949453, https://doi.org/10.1109/
CIDM.2011.5949453

29. Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: Mining pro-
cess models with prime invisible tasks. Data Knowl. Eng. 69(10), 999–1021
(2010). https://doi.org/10.1016/j.datak.2010.06.001, https://doi.org/10.1016/

j.datak.2010.06.001

30. Yu, K., Chen, Z., Dong, W.: A Predictive Runtime Verification Framework for
Cyber-Physical Systems. In: Software Security and Reliability-Companion. pp.
223–227. IEEE (2014)

31. Zhang, X., Leucker, M., Dong, W.: Runtime Verification with Predictive Semantics.
In: NASA Formal Methods. LNCS, vol. 7226, pp. 418–432. Springer (2012)

https://doi.org/10.1007/978-3-319-07881-6_31
https://doi.org/10.1007/978-3-319-07881-6_31
https://doi.org/10.1007/978-3-319-07881-6_31
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/5.18626
https://doi.org/https://doi.org/10.1016/B978-0-08-013376-8.50008-3
https://www.sciencedirect.com/science/article/pii/B9780080133768500083
https://www.sciencedirect.com/science/article/pii/B9780080133768500083
https://doi.org/10.22266/ijies2020.0430.13
https://doi.org/10.1109/CIDM.2011.5949453
https://doi.org/10.1109/CIDM.2011.5949453
https://doi.org/10.1109/CIDM.2011.5949453
https://doi.org/10.1016/j.datak.2010.06.001
https://doi.org/10.1016/j.datak.2010.06.001
https://doi.org/10.1016/j.datak.2010.06.001

	Incrementally Predictive Runtime Verification

