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Abstract 

Hybrid approaches (Approach 1 and Approach 2) that combine Supervised Learning with 

Linear Combinatorial Optimization are offered to solve the problem of minimization of the 

total delivery expenditure for supplying customers by batches of rocks. Approach 1 applies 

multi-class classification for customers’ assessment delivery expenditures, and Approach 2 

solves an additional regression prediction problem. Numeric characteristics utilizing all 

available information are proposed allowing to evaluate the effectiveness of applying the 

approaches. The presented way to deal with classification problems with additional constraints 

can be extended on wide class real-world problems. 
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1. Introduction 

Combinatorial optimization problems (CO problems, COPs) arise in almost every practice area 

where decisions are made based on the choice of indivisible objects [1]. Since the absolute majority of 

real COPs are np-hard, difficulties in their solution arise in the development of pseudopolynomial 

algorithms for their exact solving [2, 3, 4, 5, 6, 7, 8, 9]. On the other hand, the presence of additional 

constraints does not allow developing effective heuristics. Conditionally, to the class of COPs, it is 

possible to include the classical problems of Machine Learning, such as classification and clustering. 

At the same time, the main Supervised and Unsupervised Learning methods heuristic. This is due to the 

fact that, in these problems, there are no restrictions preventing forming an arbitrarily large sample of 

feasible solutions to the problem and applying heuristics to them. Indeed, each sample can be assigned 

to any class in a classification problem and an arbitrary cluster in a clustering problem. However, 

passing from the classical formulations to a practical problem, we invariably face natural constraints 

imposed on single elements or their combinations. This can be restrictions on the number of elements 

in some classes, constraints from above and below, on the distance between elements of the same or 

different classes, etc. In addition, some additional information is often known, such as misclassification 

penalties and correct classification rewards. Evidently, it is highly desirable to take them into account 

in the solution, but this is not always possible when using classical methods of Classification and Cluster 

Analysis. Meanwhile, having formalized such COPs as discrete or continuous optimization problems, 

there appears a real opportunity to solve them in a reasonable time exactly or with the accuracy 

assessment by suitable methods. In this paper, we will consider a practical problem that can be 

effectively solved by combining Machine Learning methods with classical CO methods. 

Consider the following practical problem. 
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Problem statement. Rocks are mined in several quarries and supplied to consumers in batches. It 

is necessary to develop a delivery plan for a certain set of such batches in order to fulfill customers’ 

demand and minimize the total delivery expenditure consisting of delivery costs, expenses for 

exceeding the price of rocks to the customer requests and penalties for the supply of rock batches of 

lower quality than provided for by the contract with the consumers. 

This problem can be thought of as a classification problem, where the samples are the batches and 

classes are the consumers. Also, on the one hand, additional constraints are imposed on the delivery 

volume to particular consumers. On the other hand, a target function appears expressing the total 

delivery expenditure. 

The presence of these two essential components deduce the problem from the standard classification 

problems, respectively, do not allow its solving by standard methods of classification. Therefore, we 

need new approaches to solving this problem. This is what this work is about. This paper offers two 

hybrid approaches (Approach 1 and Approach 2), combining Supervised Machine Learning with 

classical Combinatorial Optimization methods dealing with a generalized Linear Assignment Problem 

that directly maps these batches to the set of consumers. Approach 1 solves one more classification 

problem at the first stage of Machine Learning, which identifies a class of rock batches, and Approach 

2 solves this problem, where the cost of a batch of rocks is predicted. 

Supposedly, the proposed way will allow, on the one hand, to use historical data, namely, to apply 

Machine Learning on batches of rocks previously mined in these quarries, and on the other hand, to 

implement the linear programming method in the second phase of the approaches. 

2. Prerequisites 

2.1. Supervised Learning elements 

Practical Machine Learning (ML) mostly uses Supervised Learning (SL) [10, 11, 12, 13]. In SL, you 

have an input variable vector (𝑥) and an output variable (𝑦) and you use a SL algorithm to learn the 

mapping function from the input 𝑥 to the output 𝑦 = 𝑓 (𝑥), where 𝑥 ∈ 𝑋. The goal is to approximate the 

mapping function 𝑓 so well that when you have new input data 𝑥′ that you can predict the output 

variables 𝑦′ for that data. We come to regression or classification problems depending on which values, 

discrete or continuous, takes the function 𝑓. Particularly, if 𝑓 ∶ 𝑋 → ℝ1, the problem of its finding is a 

regression problem (RP) [10]. In contrast, if 𝑓 ∶ 𝑋 → 𝕐, where |𝕐| < ∞, the problem under consideration 

is a classification problem (CP) [10]. 

In other words, a CP [10, 14] is a problem of identifying to which class a new instance belongs based 

on available class membership for instances in a training set (TS). 

Instances to which regression/classification is applied form a test set (TeS). 

In classification, a TS-instance is given by a feature tuple 𝑥 and a class label 𝑦. A TeS-instance is 

given by a feature tuple 𝑥′, while a class label 𝑦′ is unknown and needs to be found. 

In regression, 𝑦 - is a real value representing outcome, while the task is to predict the real value 𝑦′ 

for the input vector 𝑥. 

𝑥 can be a numeric vector but not necessarily since features presented in 𝑥-components character- 

ize certain instance’ properties, which can be categorical, ordinal, integer-valued, or real-valued.  

If categorical or ordinal features are present, a preprocessing stage is required making mapping 𝑥 

into     Euclidean space: 

 .Lx x


 → X R  (1) 

Let  

  0= ,..., sC CC  

be a set of classes. 

To X , we will refer to as an instances' space and to  
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  is called a minor class (negative class).  A classification algorithm (CA) is intended to 

train a classifier, which is a function mapping an instances' space X  into a class label space (2):  

 : .f →X Y  (3) 

Type of function 𝑓 , linear or not, defines two large groups of classification algorithms – linear CAs 

and nonlinear CAs (see overview in [15, 11]). In addition, a wide group of highly effective methods 

called ensemble CAs (ECAs) exists [16, 17, 18]. 

Popular CAs are: 

 

1. Linear CAs: 

a) Logistic Regression (generalized linear model, LR) [19]; 

b) Linear Support Vector Machine Classification (SVM) [20]; 

c) Naive Bayes (NB) [21]; 

d) Linear Discriminant Analysis (LDA) [22]; 

2. Nonlinear CAs: 

a) Decision Tree (DT) [23] - C4.5 [24], CART [25]; 

b) k-Nearest Neighbors (KNN) [26]; 

c) Artificial Neural Networks (Deep Learning, DL) [27]; 

d) Kernel SVM (KSVM) [28]; 

e) Quadratic Discriminant Analysis (QDA) [22]; 

3. Ensemble CAs: 

a) Bagged Decision Trees (BDT); 

b) Random Forest (RF) [25]; 

c) Extra Trees (ET); 

d) Adaptive Boosting (AdaB) [29]; 

e) Gradient Boosting Machine (GBM) [30]; 

f) Stochastic Gradient Boosting (SGB) [31]; 

g) Extreme Gradient Boosting (eXtreme Gradient Boosting,XGBoost, XGB) [30]. 

  

A regression algorithm (RA) is targeted to train a regressor, which is a function mapping an 

instances' space X  into a prediction space 
1Z R :  

 : .g →X Z  (4) 

In SL, most of the algorithms are CAs. Some of them are generalized to regression. Among  

regression algorithms (RAs) are:   

1. Linear Regression (LR) [13]; 

2. Linear Support Vector Machine Regression (SVR) [32]; 

3. Decision Tree Regression (DTR) [23]; 

4. Deep Learning Regression (DLR) [33]; 

5. Random Forest regression (RFR) [25, 34]. 

 

2.2. Linear Assignment Problem 

Assignment problems (APs) deal with the question of how to assign 𝑛 items (jobs) to 𝑛 machines 

(workers) in the best possible way. APs consist of two components: the assignment as an underlying 

combinatorial structure and an objective function describing the "best way" [35, 36, 37]. 



Mathematically an assignment can be seen a bijective mapping of a finite set ={1,..., }nJ n  into 

itself, i.e., an n -permutation of nJ  forming a permutation set n . Assignments can be modelled in 

different ways: every permutation 
n   corresponds in a unique way to a permutation matrix 

,= ( )ij i jX x  with = 1ijx  for = ( )j i  and = 0ijx  for j i . If the objective function is linear on 

X -components, the AP is called linear (LAP); if quadratic, it is called a quadratic AP (QAP) etc. 

LAP integer programming model is [35]: find 𝑋 ∈ Π′ 𝑛 such that 
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Here, ( )
,

= ij i j
C c  is the cost matrix of the assignments. 

LAP is polynomially solvable [36]. It is generalized differently, such as allowing multiple 

assignments, when multiple machines can be assigned to one worker [35, 37]. As a result, the classical 

LAP-model (3)-(6) becomes 
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where m n , 
1 ... =mn n n+ + . The AP (9)-(12) as it is reducible to LAP with columns having 

multiplicities 
1,..., mn n , respectively. 

3. Approaches 1,2 description 
3.1. Modelling 

Let us build a mathematical model of the problem stated in Introduction. Let CC  be class of 

rocks such as granite, marble, limestone, etc., = ( )y y C +Z  be its number (a label), while = ( )z p y  

be the known price of the rock batch of class y . 

Suppose that several rocks can be mined in a quarry, rock samples are automatically processed. 

Namely, their size, shape, spectral characteristics are measured, after which the type of rock is 

automatically determined. Based on this information, the rock class of the entire batch is predicted. 

Suppose all the features are numeric, thus, = XX . 

As a training set TS, we use historical data on rock batches for which their type is known, then 

ix X  is a vector of parameters of the shape, size and spectral characteristics of a training batch 



( 
ni J ), while 

ix X   is a vector the same parameters for the batch involving in our problem, i.e. an 

element of our training set TS (
ni J ). Respectively, = ( )i J

n
Y y   are real labels of TS, = ( )i i J

n
Z z  , 

where = ( )i iz p y  are the real cost of the batch i  in a TS. 

In order to assess the effectiveness of our approaches numerically, we offer two metrics that use 

actual labels of the test set. So, let = ( )i i J
n

Y y  
   be real labels of TeS, then = ( )i i J

n
Z z  
  , where 

= ( )i iz p y   will be the real cost of the batch i  in a TeS ( ni J  ). 

multiplicities 
1,..., mn n , respectively. 

3.1.1. Stage 1 

The first stage differs for these two approaches that we offer. 

Approach 1. Here, the training set has the form of  

  = , ,i i i J
n

TS x y


 

while the test set is  

  = .i i J
n

TeS x
 

  

Stage 1 consists of solving a CP on TS and applying a found classificator f  for predicting labels of 

a TeS. It results in a multiset  

 ˆ ˆ ˆ ˆ' = { ' } , where ' = ( ' ), .i i J i i n
n

Y y y f x i J  
  

Ŷ  can be used for prediction of the cost of the batches, particularly, the collection of the prediction 

is  

 ˆ ˆˆ ˆ' = { ' } , where ' = ( ' ), .i i J i i n
n

Z z z p y i J  
  

Approach 2. At Stage 1, we set a regression problem. In this case, the training set looks like this:  

  = , .i i i J
n

TS x z


 

 The result of applying a regression algorithm to the set TS  will be the regressor g . Applying it to 

our test set TeS, we obtain a set  

 ( )' = , ,i i nz g x i J 
   

where 
'

iz  is a predicted cost of a rock batch i  obtained by Approach 2. 

Note that, in this step, we can use standard regression metrics to evaluate the quality of this 

prediction. 

Now, let us move to the second Combinatorial Optimization stage. 

3.1.2. Stage 2 

This stage will be common for our approaches. The only difference is that, in Approach 1, ˆ'Z  is 

used as a vector of predicted cost while, in Approach 2, it will be Z . 

Suppose that for the test set TeS, we also know from which quarry k  out of a set KJ  rocks come. 

Accordingly, it is known their location, distances between the quarries is the same as the location of the 



consumers and the distance between them and to the quarries. This makes it possible to find the cost of 

delivering a batch from each of the quarries to the consumers. 

Let 
1 mB B  be the customers, ( )=

,kj k J
k m

A a
j J 

 be a cost matrix, where kja  is the cost of 

delivery of the batch from the k -th quarry to the consumer jB . 

Approach 2. With the help of A , let us build another cost matrix  

 ( )' = ' ,ij i J
n

A a
 

 (13) 

where 'ija  is the predicted (with the help of Approach 2) total delivery expenditure of the batch i  to 

the consumer jB , 
mj J . 

Here, ija  includes, as one component, the delivery cost 
k
i

a j , where 
ik  is the quarry where the batch 

i  was mined. 

The other two components directly depend on how the real cost of the batch relates to the cost of the 

rocks ordered by the customer and on the penalties that the consumers regulate for violating the delivery 

quality. 

So, let jb  be the cost of the rock ordered by the customer jB , jv  be the volume of ordered rock 

batches, jd  be the penalty for delivering a low-quality batch i  (per unit). 

Then, if > iz b  is satisfied for  ' = 'i i J
n

z Z z


 , then the mining company owners will receive less 

money for exceeding the quality of rock batches of the ordered level. If = iz b , then there will be no 

additional costs. Finally if < iz b , then the company will have to pay ( )i ib z d−  currency units as a 

penalty for the delivery of poor quality rocks. Thus  

 
( )

' , if ' ;
' =

' , if ' < .

− 
+ 

−

i i i i

ij k j
i

j i j i i

z b z b
a a

b z d z b
 (14) 

Having filled the matrix 'A , we can proceed to the optimization step, in which it is decided where 

to send which batch in order to minimize the total delivery expenditure. This can be represented as the 

need to assign the batches to the consumers subject to the constraint on fulfilling the customers' orders. 

The mathematical model is: find a set  

 ( )=
,ij i J

n m

T t
j J  

 

of unknowns such that  

 
1,if the batch  goes to the customer ;

=
0,otherwise.





j

ij

i B
t  (15) 

The objective function is  

 ( )
=1 =1

' = ' min
n m

ij ij

i j

F t a t


→  (16) 

under constraints:   

− the batch is either supplied or not supplied at all, which can be expressed by inequality  

 
=1

1, ,
m

ij n

j

t i J    (17) 



− the costumers' orders are obligatory for execution:  

 
=

2

'
,



  ij j m

i i

n
t v j J  (18) 

 The problem (15)-(18) is a generalized linear assignment problem that can be solved in polynomial 

time in dimension by methods such as Hungarian. Let ( )* *=
,ij i J

n m

T t
j J 

 


 be an optimal solution to 

this AP. For the consistency of the problem, the condition  

 
=1

n

j

j

v n  (19) 

must be satisfied, meaning that the number of rock bathes is sufficient to meet the consumer demand.  

Approach 1. Here, the difference of this stage in Approach 1 compared to Approach 2 will be 

outlined. 

The formula (13) is replaced by  

 ( )ˆ ˆ' = ' ,ij i J
n

A a
 

 (20) 

where ˆ'ija  is the predicted (with the help of Approach 1) total delivery expenditure of the batch i  to 

the consumer jB , 
mj J . 

The formula (14) becomes  

 
( )

ˆ ˆ' , if ' ;
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ˆ ˆ' , if ' < .

− 
+ 

−
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 (21) 

Respectively, the objective function (16) becomes  

 ( )
=1 =1

ˆ ˆ' = ' min.
n m

ij ij

i j

F t a t


→  (22) 

Let a solution to the AP (22) with constraints (15), (17)-(19) be denoted ( )* *

,
= .

 

 
m

ij i J j J
n

T t  

3.2. Comparison metrics 

To compare the quality of the solutions 
* *,T T  , we solve one more AP, where actual costs of 

training set's items are used when comparing the optimal global solution with these two. This is an AP  

 ( )
=1 =1

= min,
n m

ij ij

i j

F t a t


  →  (23) 

subject to constraints (15), (17), (18), where  

 ( )= ij i J
n

A a
 

   (24) 

is a matrix of the total delivery expenditures, for instance, ija  is the total delivery expenditure for the 

batch i  delivered to the consumer jB , 
mj J . A  can be found similarly to (21) as  



 
( )

, if ;
=

,if < .

 − 
 + 

 −

i i i i

ij k j
i

j i j i i

z b z b
a a

b z d z b
 (25) 

Let 
*T  be an optimal solution for the AP (15), (17), (18), (23) and 

* *= ( )F F T   be its optimal 

value. Substituting 
*T  , 

*T   into the target function, we get not estimated but an actual delivery 

expenditure of implementing the plans 
*T  , 

*T   in real life. Let us denote 
* *' = ( )F F T  , 

* *ˆ' = ( )F F T  . If * *ˆ' = 'F F , then Approaches 1, 2 work equally, if * *ˆ' < 'F F , Approach 1 showed 

itself better, if * *ˆ' > 'F F , then it is the worst. 

To understand how much we lost applying the predicted cost rather than real, we analyze the 

increments  

 
* * * *ˆ ˆ ˆ= ' ' , = ' 'F F F F −  −  (26) 

representing absolute error if applying Approach 1 and Approach 2, respectively. The corresponding 

relative errors can be found using already found values  

 
* *ˆ ˆ ˆ= / ' , = / ' .F F     (27) 

In our opinion, the metrics (26), (27) highlight specifics of the problem under consideration better 

than any classification metrics applicable to multi-classification problems [14, 15, 38, 39] such as the 

accuracy, balanced accuracy, recall, precision, F -score, G -mean, etc. 

4. Discussion of Results and Future work 

The absolute majority of research literary sources relating to Combinatorial Optimization dealing with 

exact solutions and Machine Learning, these two research fields are exiled. Perhaps, this is because the 

combinatorial optimization problems are highly complex, including designing qualitative heuristics, 

while Machine Learning is entirely based on heuristics.  

The main contribution is that this paper presents an innovative approach to how these two research 

domains can be combined. The second one is the mathematical models developed here. Together with 

the scheme of both approaches, they provide a road map of implementing in programming languages 

such as Python, where powerful libraries in Machine Learning and Integer Linear Programming are 

embedded. 

Areas of further work are:   

− Generalization to a higher class of practical problems.  

− Collecting data on the location of  Ukrainian open pits and the structure of their rocks, followed 

by a computational experiment using the presented approaches.  

− Generalization to a class of stochastic programming problems, in which the predicted price is 

involved and predictions of the standard deviations from the average cost.  

At the next stage of the research, we plan to apply a generalization of the classical regression model 

with one output for two outcomes - the predicted cost and standard deviation. In this regard, this stage 

is supposed to be carried out using neural networks. 

5. Conclusion 

This paper offers two hybrid approaches to minimize the total delivery expenditure for supplying 

customers by rock batches. They combine Machine Learning techniques with classical Linear 

Combinatorial Optimization methods. Approach 1 solves an auxiliary classification problem at the stage 

of Machine Learning, while Approach 2 solves an additional regression problem instead. Numerical 

evaluation characteristics for assessing the approaches are presented. Ways to develop the contribution 

theoretically and experimentally are outlined. 
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