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ABSTRACT
This paper describes methods for classifying URLs referring to
research artifacts in scholarly papers, and examines their classi-
fication performance. The methods discriminate whether a URL
refers to a research artifact or not and classify the identified URL
into “tool” or “data.” The methods use distributed representations
obtained from citation contexts of the URL. Each component of
a URL can be regarded as a word, and the meaning of the entire
URL can be generated by synthesizing the distributed representa-
tion of each component using compositional functions. This paper
evaluates several types of compositional functions from the view-
point of classification performance. Experiments with using URLs
in international conference papers showed the effectiveness of our
proposed compositional functions.

CCS CONCEPTS
• Information systems→ Information extraction; Clustering
and classification; Digital libraries and archives.

KEYWORDS
Open science, Data repository, Information extraction, Data citation,
Scholarly document processing

1 INTRODUCTION
Open science is an activity for promoting sharing and utilizing
research artifacts1. One strategy for promoting these activities is
to develop and provide repositories for research artifacts. In recent
years, repositories of research artifacts have been developed, such
as Zenodo2 and Mendeley Data3. National infrastructures for shar-
ing research artifacts have also been developed, such as Australian
National Data Service4[28], European Open Science Cloud5[5], Re-
search Data Shared Service6, National Data Service7[27], and NII
Research Data Cloud8.

In order to establish a research artifact repository, it is required
to register research artifacts and their metadata9. The number of
research artifact citations in scholarly papers has been increasing

1In this paper, we denote research artifacts as materials generated or used in the
course of research activities, such as tools (e.g., software, program) and data (e.g.,
measurement data, test data).
2https://zenodo.org/
3https://data.mendeley.com/
4https://www.ands.org.au/
5https://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud
6https://www.jisc.ac.uk/rd/projects/research-data-shared-service
7http://www.nationaldataservice.org/
8https://rcos.nii.ac.jp/en/service/
9Information about research artifacts (e.g., name, creator, type, and usage)

Table 1: Metadata of Penn Treebank in OLAC (in part)

Property Value

title Treebank-3
contributor Mitchell P. Marcus et al.
publisher Linguistic Data Consortium
date 1999
type (DCMI) Text

description This release contains the following Treebank-2
Material … will include these missing files.

identifier DOI: 10.35111/gq1x-j780
https://catalog.ldc.upenn.edu/LDC99T42

in recent years. Automatically extracting information on research
artifacts from a large number of scholarly papers makes the devel-
opment or expansion of a repository more efficient.

This paper describes methods for classifying URLs referring to
research artifacts cited in scholarly papers, all of which are extended
from our previous method [29], and examines their classification
performance. The methods discriminate whether a URL in scholarly
papers refers to a research artifact or not, and classify identified
research artifacts into the type “tool” (e.g., programs and software)
or “data” (e.g., measurement data and test data).

Our previous approach uses words surrounding the URL in schol-
arly papers, that is, distributed representations obtained from cita-
tion contexts of the URL. The meanings of non-natural language
strings such as URLs can be expressed as distributed representa-
tions. Each component of a URL, such as domain name, directory
name, and file name, can be regarded as a word, and the meaning
of the entire URL can be generated by synthesizing the distributed
representation of each component using compositional functions.

This paper evaluated several types of compositional functions
from the viewpoint of classification performance. Experiments us-
ing URLs in international conference papers showed the effective-
ness of our proposed compositional functions.

2 URL REFERRING TO RESEARCH ARTIFACT
2.1 Metadata in Research Artifact Repository
Creating metadata is necessary to facilitate access to resources in
repositories. The most basic metadata scheme is Dublin Core Meta-
data Element Set10. As an example, Table 1 shows the metadata

10https://www.dublincore.org/specifications/dublin-core/dces/
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Figure 1: Design of classification task

of Penn Treebank [14] on the Open Language Archives Commu-
nity (OLAC)11 storing information on language resources12 (e.g.,
corpora, dictionaries) according to Dublin Core.

If such information can be extracted automatically, the genera-
tion of metadata can become easier. Kozawa et al. [12] have pro-
posed a method for automatically extracting usage information
about language resources from scholarly papers. The method identi-
fies language resources using their names registered in SHACHI13 [26]
as clues. For this reason, research artifacts whose usage informa-
tion can be extracted are limited to those in repositories. We aim to
extract information about the type of research artifact, including
ones not stored in existing repositories.

2.2 Research Artifact Citation
Recently, research artifacts, such as datasets and software, have
been increasingly cited in scholarly papers. Thus, there is a growing
movement to establish formal rules for data and software citations,
as FORCE11 has declared “Data Citation Principles” [6] and “Soft-
ware Citation Principles” [24]. However, it is a long way off before
this practice is widely spread among researchers. Howison and
Bullard [8] have shown that there were many informal citations ap-
pearing in biology papers. One strategy for automatic identification
of the informal citations is to identify research artifact mentions in
the body text [13]. Some studies address the identification of dataset
names [10, 20, 23] while others do that of software names [3, 4, 22].
On the other hand, there are many cases in which research artifacts
are listed in the reference section [11] or are cited by providing the
corresponding URL.

Providing URLs in papers is a common form ofWeb citation. Yang
et al. [31] have analyzed such citations, and NLPExplorer14 [17],
which is a service for searching scholarly papers, provides access
to URLs cited by the papers. We also focus on URLs in scholarly
papers because many published research artifacts are accessible
on the Web. However, not all URLs in scholarly papers refer to
research artifacts. Therefore, we aim to identify URLs referring to
the research artifacts in scholarly papers.

2.3 Classification of URLs in Scholarly Papers
Fig. 1 illustrates the design of task in our study. The goal is to
identify URLs referring to research artifacts from scholarly papers

11http://www.language-archives.org/
12In the field of natural language processing, the accumulation and use of the meta-
data of language resources have long been encouraged because the need for their
repositories have been recognized [9].
13http://shachi.org/
14http://nlpexplorer.org

Figure 2: Example of different semantic units for giving
meaning to a URL. The sentence is quoted from [30].

and categorize them. In this task, URLs in scholarly papers are
classified into the following three categories15:

• tool: program, software, toolkit, etc.
– https://nlp.stanford.edu/projects/glove/
– https://github.com/google-research/bert
– http://www.nltk.org/

• data: observation data, experimental data, data source, etc.
– http://qwone.com/~jason/20Newsgroups/
– http://babelnet.org
– http://answers.yahoo.com16

• other: Not research artifacts (e.g., publications, services).
– http://is.muni.cz/publication/884893/en
– http://www.apple.com/ios/siri
– https://www.mturk.com

Our previous method [29] uses words surrounding a URL for
a classifier. URLs are placed on either footnote, reference section,
or body text. Even if a URL is in a footnote or the reference sec-
tion, the sentences referring to the corresponding footnote or ref-
erence generally exist in the body text. For example, a footnote
“6http://lemurproject.org/clueweb09/” is referred to by the follow-
ing sentence in the body text [32]:

The ClueWeb096 dataset is a collection of 1 billion
webpages (5TB compressed in raw HTML) in 10
languages by Carnegie Mellon University in 2009.

By observing this sentence, it turns out that the above URL is
provided to refer to a corpus.This paper calls one sentence referring
to a URL in the body text as “citation context.”

3 URL CLASSIFICATION BASED ON
DISTRIBUTED REPRESENTATIONS

A comprehensive view of all citation contexts for each URL al-
lows us to classify it properly. Based on this idea, our previous
approach [29] obtains a distributed representation of a URL from
its citation contexts and uses it for classification. According to
the distributional hypothesis [7], even for non-natural language
strings such as URLs, their meaning could be obtained from words
co-occurring in their surroundings. The following two approaches
with different semantic units can be considered:

• regarding an entire string of a URL as a word
• regarding each component of a URL as a word, and obtain-

ing the meaning of the URL from that of each component

15Enumerated URLs in each category are examples of URLs belonging to the category.
16This URL refers to a Web page for a Q&A service. However, the scholarly papers
tend to refer to the URL for pointing to a data source of question answering datasets.
Therefore, in scholarly papers, the type can be considered to the “data.”
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Fig. 2 shows an example for two different semantic units. The ac-
quisition unit of a distributed representation also varies depending
on the employed approach.

Nanba [16] obtained distributed representations of URLs based
on the former approach. He proposed a method named “W2V-
URL” of giving keywords to URLs by word2vec [15]. In W2V-URL,
words whose distributed representation is highly similar to that of
a URL are assigned to the URL as the keywords. We employed the
URL classification based on distributed representations of URLs as
baseline method [29]. The procedure of the baseline is as follows:

(1) Assign a unique ID to each URL in scholarly papers and
convert each URL to a tag with the corresponding ID17

(2) Obtain a distributed representation for each tag
(3) Classify URLs using distributed representations

On the other hand, we proposed the URL classification method
based on the latter approach [29]. Thus, the method regards each
component of a URL as a word and obtains its distributed represen-
tation. In some cases, the type of the target referred to by a URL can
be inferred from the domain or directory name constituting the URL.
For example, it can be inferred from the expressions of directory
names “tools” and “TreeTagger” that a URL “http://www.cis.uni-
muenchen.de/~schmid/tools/TreeTagger/” points to a tagging tool.
Distributed representations of these components obtained from
citation contexts may be able to capture the meaning of substrings.
This paper calls a component of URL as a URL element (e.g., host
name, domain name, directory name, file name, and extension).

In our previously proposed method, URLs in scholarly papers
are classified according to the following procedure18:

(1) Decompose each URL in scholarly papers into URL elements
(2) Assign a unique ID to each URL element and convert each

URL element into a tag with the corresponding ID
(3) Obtain a distributed representation for each tag
(4) Classify each URL using the vector computed by adding

distributed representation of each URL element in the URL

4 COMPOSITION OF DISTRIBUTED
REPRESENTATIONS OF URL ELEMENTS

Our previous method classifies URLs with vectors which are com-
puted by adding distributed representation of eachURL element [29].
In this paper, some types of compositional functions for distributed
representations of URL elements are evaluated.

Our previous method tends to misclassify URLs whose gold label
are “tool” into the “data” class and vice versa. In addition, mis-
classified URLs tend to be short (i.e., URLs with a small number
of directories). For example, the URL “https://twitter.com/,” which
has the “data” label, was misclassified into the “tool” class. It is
considered that this disadvantage is caused by URL elements with
extremely high frequency, such as host and domain names. For ex-
ample, URL element “com” is a generic top-level domain appearing
in many URLs. The bias of citation contexts in scholarly papers

17For example, every “http://nlp.stanford.edu/software/tagger.shtml” is converted to
the tag “[URL2495].”
18For example, a URL “http://nlp.stanford.edu/software/tagger.shtml” is converted to a
sequence of the URL elements: “nlp,” “stanford,” “edu,” “software,” “tagger,” “shtml.” In ad-
dition, each of them is converted to tags “[PARTS7070],” “[PARTS9479],” “[PARTS3891],”
“[PARTS9344],” “[PARTS9680],” “[PARTS9182],” respectively.

Figure 3: Architecture of our model using GRU

might lead to characterizing the distributed representation of “com”
as “tool” even though it is not critical evidence in the URL classi-
fication. The classification of short URLs especially is affected by
URL elements whose frequency is extremely high.

This paper revises the step (4) in the above procedure of the
previous classification method as follows:

(4)′ Classify a URL using the vector combined by 5 (E1, . . . , E=),
where 5 (·) is a compositional function, and E8 is the vector
of the 8Cℎ URL element in the URL

We evaluate fundamental manipulations as compositional functions,
such as averaging, summation, and max-pooling19. In addition, we
also evaluate several functions to improve our previous method.

URL elements with extremely high frequency, such as host and
domain names, are considered to be less useful for classification.
To weaken the influence of frequent URL elements, we extend the
fundamental manipulations by weighting with the entropy of URL
elements. The entropy is computed on the basis of frequency of
each URL element in scholarly papers. The entropy of each URL
element was computed by

− log2
�>D=C (F)

ΣF′�>D=C (F ′) (1)

whereF is the target URL element,F ′ is an arbitrary URL element
in the set of all URL elements, and �>D=C (·) is a function counting
its argument in the scholarly papers. In addition, the top-level do-
mains can be considered not to contribute much to the classification
of the targets referred to by URLs. Therefore, we also employed
manipulations except for distributed representations of top-level
domain names simply.

This task can be regarded as a sequence classification task. Using
a model based on recurrent neural networks (RNN) as the composi-
tional function may realize to get better weights for synthesizing
URL elements and incorporate order information into input fea-
tures. Therefore, we also verify a classification method employing
the gated recurrent unit (GRU) [2] as a gated RNN. Fig. 3 shows the
architecture of the verified model.

5 EXPERIMENT

19Taking the maximum value along each dimension.
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Table 2: Hyperparameters of the adopted distributed representation and classification model

Compositional function Parameters of word2vec Classification model Standardizationepochs window dimension

None (baseline method) 20 10 300 logistic regression with one-vs-rest False
averaging 10 5 800 logistic regression with one-vs-one True
summation 20 10 700 logistic regression with one-vs-rest True
max-pooling 20 5 400 logistic regression with one-vs-one True

Table 3: List of frequent URL elements in scholarly papers

Rank URL element Freq.

1 org 4983
2 com 3545
3 www 3505
4 github 1964
5 aclweb 1712
6 anthology 1704
7 edu 1491
8 doi 920
9 html 757
10 cs 625

Rank URL element Freq.

11 pdf 3545
12 arxiv 3505
13 nlp 1964
14 google 1712
15 abs 1704
16 ac 1491
17 net 920
18 v1 757
19 p 318
20 stanford 309

5.1 Experimental Data
Experimental data were the same as our previous study [29]. The
data were generated from scholarly papers in the proceedings of
ACL 2010–2019, which are the international conferences in the
field of natural language processing. Concretely, we collected PDF
files from ACL Anthology [25] and converted them into texts in
preserving their structural information20 by PDFNLT-1.021 [1]. The
number of papers was 3,837. There were 12,568 URL occurrences22
and the number of distinct URLs was 9,480. The average number
of URL elements in the URLs was 4.72, and the number of distinct
URL elements is 11,724. Table 3 shows the frequent URL elements.

Many URLs are provided in footnotes or references23. To cap-
ture citation contexts, these URLs were mechanically inserted into
the body texts according to where the corresponding footnote or
reference is referred to. After that, URLs or URL elements were
converted to tags according to the procedure described in Section 3.
For example, in the baseline method of our previous study [29], the
citation context illustrated in Section 2.3 is transformed as follows:

The ClueWeb09 [URL2164] dataset is a collection of
1 billion webpages (5TB compressed in raw HTML)
in 10 languages by Carnegie Mellon University in
2009.

These processed texts of papers were used for obtaining the dis-
tributed representations.

To evaluate performances for URL classification, we labeled URLs
appearing frequently in the scholarly papers with “tool,” “data,” or
20Components of a scholarly paper such as title, authors, body text, figures, tables,
captions, footnotes, and reference list.
21https://github.com/KMCS-NII/PDFNLT-1.0
22Strings beginning with either “http://,” “https://,” or “ftp://” were identified as URLs.
23The rates of URLs in footnotes and references are 0.767 and 0.127, respectively.

Table 4: Experimental result of basic compositional functions

Compositional
function Accuracy Macro-averaging evaluation

precision recall F1-score

None
(baseline) 0.785 0.781 0.777 0.779

averaging 0.798 0.811 0.805 0.808
summation 0.800 0.807 0.809 0.808
max-pooling 0.750 0.749 0.759 0.754

“other.” The created dataset contains 500 annotated URLs. The URLs
described in Section 2.3 are examples extracted from this annotated
dataset. The labeling ratios of “tool,” “data,” and “other” in 500 URLs
are 39.8%, 33.6%, and 26.6%, respectively. Of them, 100 URLs are
used as a development set.

5.2 Experiment for Basic Functions
We used word2vec [15] to obtain distributed representations and
Gensim24 [21] for its implementation. Sentence segmentation and
word tokenization were also performed by using gensim.

As the baseline, we also evaluate the classification method re-
garding a URL as a single word (described in Section 3). Since the
baseline method does not decompose URLs into URL elements, the
compositional function does not exist.

For each method, the best parameters of word2vec25 were se-
lected on the basis of the performance in the development set. Sim-
ilarly, we also chose a classification model from logistic regression,
linear SVM, and nonlinear SVMwith RBF kernel, a multi-class classi-
fication approach from one-vs-one and one-vs-rest, and whether to
standardize input features. Table 2 presents the selected parameters.
We used scikit-learn26[19] for the implementation of classifiers.

The 10-fold cross-validation was performed on the 400 URLs,
excluding the development set. The development set was added to
the training data for each cross-validation split. For evaluation, we
computed the accuracy on the 400 URLs. We also measured preci-
sion, recall, and F1-score for each split by macro-averaging. Table 4
shows the results27. The results of the averaging and summation
are the best and competitive with each other.

24https://radimrehurek.com/gensim/
25The epoch was 10 or 20, and the window size was 5 or 10. Dimension sizes range
from 100 to 1000 in increments of 100. The other hyperparameters were the default
values, except that the pruning threshold for low-frequency words was set to 3.
26https://scikit-learn.org/stable/
27Precision, Recall, and F1-score are the averages over 10 splits.
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Table 5: Results of extended compositional functions and GRU

Type Composition function Accuracy F1-score
macro average tool data other

baseline None 0.785 (314/400) 0.779 0.830 0.801 0.663
averaging-based averaging 0.796 (319/400) 0.808 0.789 0.744 0.859

weighted by entropy 0.790 (316/400) 0.796 0.806 0.728 0.821
except top-level domain 0.788 (315/400) 0.799 0.793 0.729 0.842

summation-based summation 0.800 (320/400) 0.808 0.809 0.725 0.857
weighted by entropy 0.798 (319/400) 0.805 0.810 0.732 0.842
except top-level domain 0.813 (325/400) 0.816 0.821 0.745 0.864

RNN-based GRU 0.823 (329/400) 0.820 0.835 0.746 0.865

Figure 4: A heatmap of error rates for each depth of URLs

F1-score for each label in the baseline, averaging, and summation
is shown in Table 5. Compared to the baseline, both compositional
functions have the disadvantage of identifying the “tool” and “data”
class. This result is the same as our previous study and it may be
improved by less considering URL elements with a negative effect.

5.3 Experiment for Extended Functions
According to the results in Section 5.2, we used the averaging and
summation as a basic compositional function and modified it. There-
fore, the averaging and summation were extended to a weighted
averaging and weighted summation by the entropy of URL ele-
ments, respectively. The entropy was computed based on frequency
of each URL element in the experimental data. In addition, we also
employed averaging and summation except for distributed repre-
sentations of top-level domain names simply. For each function, the
parameters are selected in the same way described in Section 5.2.
Other experimental settings are also the same.

Table 5 shows the results. A part of extended compositional
functions improved the discrimination performance of “tool” and
“data” classes, which was a disadvantage of the proposed method.
However, accuracy and macro-averaging F1-score of extended com-
positional functions are lower than that of basic compositional
functions, excluding summation except top-level domain.

Fig. 4 shows error rates of each compositional function based on
the summation for each depth of URLs. In Fig. 4, the higher the error
rate was, the more intense the color was. As described in Section 4,
summation tends to misclassify short URLs. Although the weighted
summation had worse results, the performance of the summation
except top-level domain was improved. This result indicates that
there are frequent URL elements with useful information for the
URL classification and simply excluding the top-level domains is

effective for the summation. As a case study, the URL “http://www.
imsdb.com/” misclassified into the “tool” class by the summation is
correctly classified into the “data” class by excluding the distributed
representation of “com” from the summation.

5.4 Experiment for RNN-based Function
As with the above Sections, we evaluate the classification method
using GRU [2] as a compositional function. The model was imple-
mented in PyTorch28 [18]. In the training step, we used Adam as an
optimizer and cross entropy loss. In addition, dropout was applied
on inputs for GRU. The weights of the embedding layer were fixed
by the pre-trained distributed representations of the URL elements
described in Section 5.2. The best parameters were selected based
on the classification performance on the development set29.

After setting parameters, the method employing GRU was eval-
uated by 10-fold cross-validation with the same setting as in Sec-
tion 5.2. The experimental results are shown in Table 5. GRU outper-
formed other compositional functions in the accuracy and macro-
averaging F1-score as well as F1-score for “tool” and “data” class
which basic compositional functions had difficulty identifying. Fig. 4
shows the error rates of GRU for each depth of URLs. GRU also
improved the classification performance of short URLs compared
to the basic compositional function.

6 CONCLUSION
This paper described methods for classifying URLs referring to
research artifacts in scholarly papers and examined their classifi-
cation performance. The methods use distributed representations
obtained from citation contexts of the URL. Our approach regards
each component of URLs as a word, and input features for a classi-
fier are generated by synthesizing the distributed representation
of each component using compositional functions. Experimental
results showed the effectiveness of our compositional functions.

28https://pytorch.org/
29We trained the model employing each combination of parameters for 300 epochs
and selected the best epoch. The selected dimension size of hidden state in GRU was
50 from 25, 50, 100, and 200; the selected batch size was 32 from 4, 8, 16, 32, and
64; the selected learning rate was 1.0e-3 from 1.0e-3, 1.0e-4, and 1.0e-5; the selected
dropout rate was 0.2 from 0.0, 0.2, 0.4, 0.6, and 0.8; the selected epoch was 98. The
epoch, window size, and dimension size of selected distributed representations of URL
elements were 20, 5, and 600, respectively.
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