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ABSTRACT 

Background: Compared to unstructured representation of clinical 

evidence in bibliographic databases such as PubMed, structured 

results data available in clinical trial registries may be more timely, 

complete, and accessible. But these data remain underutilized. 

Objective: The clinical trial information is extracted from the 

semi-structured records on ClinicalTrials.gov to construct a PICO-

based knowledge graph for representing clinical evidence. The 

knowledge graph is expected to give a whole picture on the research 

protocol and reported results of clinical trials. It can be quickly 

searched, visualized, and exported in batches and on-demand. 

Methods: We collected 6279 registered clinical trials on COVID-

19 in ClinicalTrials.gov, among which 71 trials had reported results. 

Information extraction and term standardization were carried out in 

a semi-automated manner. The knowledge graph was constructed 

using neo4j. 

Results: Two knowledge graphs are constructed. The first COVID-

19 Trial Knowledge Graph (CTKG) contains 66856 nodes with 10 

types and 1217673 relations with 9 types in total. The second 

COVID-19 Trial Results Knowledge Graph (CTRKG) contains 

1067 nodes with 12 types and 1405 relations with 13 types in total. 

The graphs allow for queries, batch exports, and provide data for 

comprehensive clinical evidence based on PICO. 

Conclusions: Our work validated the idea of “computable evidence 

synthesis” via presenting PICO data elements results data in trial 

registries in a standardized, structured format with consistent 

ontologies, such as UMLS. Queries and batch export of information 

can be acquired in Graph Database built by neo4j through Cypher. 

It can help researchers obtain the latest data in batches and form a 

basis for the synthesis of real-world research evidence. Our 

methodology is also generalizable to other conditions and can 

incorporate registered clinical trial data from more platforms to 

achieve field unification of multi-source heterogeneous data. 
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1  Background 

Ravaud, P et al. proposed “the ‘one-off’ approach of 

systematic reviews is no longer sustainable; we need to move 

toward producing ‘living’ evidence syntheses (i.e., comprehensive, 

based on rigorous methods, and up-to-date) [1].” This could lead to 

better health care decision-making. Clinical evidence is usually 

represented as scientific claims by the PICO format. PICO stands 

for Population (patients with a condition), Intervention, 

Comparison and Outcomes. For example, drug A is (Intervention) 

effective for the relief of B condition in C Population in 

Comparison with X drug (or placebo) for Y Outcome (symptoms 

relieved, etc.). For a long time, clinical evidence is predominantly 

disseminated in unstructured, natural language scientific 

publications that describe the results of randomized control trials 

(RCTs). The community from natural language processing (NLP), 

semantic web and health informatics has developed several 

approaches to making the clinical evidence structural and 

computable.  It is difficult to quickly integrate the same high-

quality RCT research of PICO. Previous studies have shown that 

the information from the clinical trial registration platform can help 

solve this problem [2]. 

The representative developments include building semantic 

representation for clinical trials and medical guidelines [3, 4], using 

linked data technologies to improve discovery of knowledge in 

systematic reviews by using the PICO framework as an ontology to 

aid in knowledge synthesis [5, 6]. The focus of NLP efforts is to 

identify the knowledge entities, namely the PICO elements and the 

general relations (e.g., hasPopulation, hasIntervention, 

hasOutcome) from RCTs. Nevertheless, they rarely take the effect-

relations between interventions and outcomes into account. Most 

recently, the intervention-outcome-effect (i.e., improved, increased, 

decreased, no difference, no occurrence, etc.) as an important 

semantic relationship is introduced to inform augmentation mining 

and evidence inference [7] [8]. Given a treatment A, a comparator 

B, and an outcome, one can infer the reported relationship between 

A and B with respect to a concerned outcome, and provide evidence 

supporting this from the text.  

Efforts aimed at increasing the pace of evidence synthesis 

have been primarily focused on the use of published articles, but 

these are a relatively delayed, incomplete, and at times biased 

source of study results data. Existing studies results have shown 
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that the same trial results are quite different from those reported in 

ClinicalTrials.gov and journal articles. Negative results in 

ClinicalTrials.gov tend to be frequently reported than in journal 

articles. This may be related to the fact that journal articles always 

report positive results. Further efforts should focus on decreasing 

existing published discrepancies to enhance the transparency and 

accuracy of data reporting in clinical trials [9, 10]. Compared to 

those in bibliographic databases, structured results data available in 

trial registries may be more timely, complete, and accessible, but 

these data remain underutilized [11]. Recently, a linked graph for 

registered COVID-19 clinical trials was built [12] to facilitate the 

retrieval of clinical trials. NLP tools were leveraged to extract and 

normalize the clinical trial information from both their eligibility 

criteria free texts and structured information from 

ClinicalTrials.gov. For example, an information extraction tool 

Critera2Query [13] is used to automatically identify entities from 

the text of eligibility criteria. Nevertheless, they did not extract the 

relations between interventions and outcomes, so they can only 

support the query of clinical trial information instead of clinical 

decision-making, such as determining which medical treatments 

work from the reported results in Clinicaltrials.gov. 

To solve this problem, we believe that the information in 

registered clinical trials can be made into a structured knowledge 

graph. Given the increasing importance of text analysis in biology 

and medicine, we believe a local graph database of clinical trials 

will provide helpful computing infrastructure for researchers. To 

overcome this, automation technology is being explored by many 

researchers. Our research implements this process in a semi-

automated progressing. We have carried out knowledge extraction, 

structured data visualization and query work. The specific contents 

include: 1) Automatically obtaining clinical trial data from 

registration platform. 2) Visualizing the structured data of the 

clinical trial registration platform through a knowledge graph. 3) 

Standardize indicators to realize the searchability of medical 

knowledge. 

2  Materials and Methods 

2.1  Data Source 

Our research flowchart is shown in Figure 1. ClinicalTrials.gov 

is a database storing privately and publicly funded clinical studies 

conducted around the world. ClinicalTrials.gov provides storage 

and download of structured data, such as csv format, but the key 

information is not It is not completely accurate, such as not 

distinguishing intervention from comparison, and the combination 

of drugs involved in Intervention cannot be accurately displayed; 

in addition, the outcome indicator lacks a detailed description. The 

U.S. National Library of Medicine (NLM) [14] distributes 

ClinicalTrials.gov in eXtensible Markup Language (XML) 

formatted text files for each study. As a computer understandable 

language, XML can improve the processing speed, interpretability 

and extensibility of text information. but it is difficult to query 

information in that format. We used self-compiled software tools 

to parse the ClinicalTrials.gov data files and load their contents into 

a graph database to show the entities, their relations and make 

information easy to query. Although the task is conceptually 

straightforward, the huge difference between clinical trial registries 

and results publications makes the task nontrivial. We collected 

6279 COVID-19 clinical trials from ClinicalTrials.gov in XML 

format on August 3, 2021. Among them 71 clinical trials have 

results reported. The useful information was extracted from the 

downloaded XML document. This process was achieved through 

the open-access package “xml. etree. ElementTree” in Python3.7. 

 

Figure 1: Flowchart of the research 

2.2  Data structure 

We extracted 14 fields from 6279 clinical trial XML files as 

following: Nctid, Title, Location, Study design, URL, other IDs, 

Conditions, Intervention/ Comparison, Outcomes, Funding, 

Enrollment, Gender, Age and Study type. Seventy one studies with 

results were added with two fields on this basis,i.e., Start Date and 

Completion Date. 

According to the clinical trial registration information, valid 

fields were extracted and divided into 5 categories: 1) The metadata 

of Clinical trials: including 10 fields study information. 2) 

Conditions: since this study uses COVID-19 as an example, all 

clinical studies included the same condition, which is COVID-19. 

And we also extracted all other diseases and/or conditions in these 

fields. The complications of the disease are not distinguished. 3) 

Population Feature: three demographic characteristics of the 

population, i.e., age, gender, and enrollment were extracted. 4) 

Intervention/comparison: According to the registration information 

of the existing clinical trial registrants, the intervention/comparison 
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measure types are divided into 7 categories. This classification has 

the subjectivity of the research designer. Since the CT.gov web 

information only displays the intervention field, most current 

studies do not distinguish between intervention and comparison. 

We have obtained the measure type grouping situation from the 

XML documents, experimental and comparator group. As long as 

there exists evident cue word “experimental” in the type, the 

measure type is classified as intervention, and the null value or 

other value is classified as comparison. However, the type of many 

observational clinical trials is empty, and its grouping cannot be 

represented correctly. 5) Outcomes: We extracted all the outcomes 

descriptions from the XML data. As many clinical trials have not 

yet produced results or are not completed, many outcomes only stay 

at the trial design stage without corresponding reported result 

details. Fields contained in all categories, information in nodes are   

shown as Figure 2. 

 

Figure 2: The entities and relations represented in our 

knowledge graph 

2.3  Data terms standardization 

“The lack of a standardized outcome classification system 

results in inconsistencies due to ambiguity and variation in how 

outcomes are described across different studies.” [15] In order to 

 
1 https://www.nlm.nih.gov/mesh/mbinfo.html 

make better use of the visualized results and search for the research 

integrated into the knowledge graph, we give a standardized terms 

on fields such as conditions, intervention/comparison, and outcome. 

The Medical Text Indexer (MTI) produced by the NLM was 

adopted to extract standardized medical subject heading [12] terms 

in 6279 clinical trials conditions. And applied the results to 71 

clinical trials that had results. It has been mapped to the MeSH 

Unique ID (DUI) number. DUI number is MeSH Unique ID finds 

Descriptor, Qualifier, and Supplemental Concept Records by their 

Record Unique Identifier1. 

MetaMap is a highly configurable program developed by NLM 

to map biomedical text to the Unified Medical Language System 

(UMLS) Metathesaurus or, equivalently, to discover referred 

Metathesaurus concepts in the text. We standardized the 

intervention/comparison of 6279 clinical trials by using MetaMap 

tool. Among them, 5706 clinical trials have intervention/arm/group. 

No specific intervention was written in the 573 clinical trials. It may 

be because some clinical trials have not yet started, or because some 

clinical trials are observational studies without arm/intervention 

information. Finally, we analyzed a total of 5311 clinical trials. 

Since the clinical trials of has results announced specific plans for 

the combination of interventions, such as interventions including 

HCQ and AZT, the interventions used the two drugs as a result of 

the specific implementation. Therefore, we checked the measure 

groupings in 71 clinical trials with results manually. For 

standardized interventions/comparisons, we have performed 
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Concept Unique Identifiers [16] number mapping, and those that 

cannot be mapped are indicated by their original description. A key 

goal of Metathesaurus construction is to understand the intended 

meaning of each name in each source vocabulary and to link all the 

names from all of the source vocabularies that mean the same thing 

(the synonyms). Each CUI contains the letter C followed by seven-

digit numbers2.  

Since clinical trials that have not yet found results are only at 

the design stage, we only mapped the outcomes of 71 studies 

through the MetaMap tool and standardized them with manual 

work. In order to improve the visualization, all the unified 

standardized names first to be select to show is the abbreviation, 

and the detailed description in the field is contained in the nodes. 

2.4  Data visualization 

Graph database query language is indispensable for medical 

information queries. The Clinical Quality Language (CQL) [17] is 

a useful tool for defining search requests for data stores containing 

FHIR data. There are only few execution engines that are able to 

evaluate CQL queries as FHIR data represents a graph structure.  

We built the graph database in Neo4j 4.25. The Neo4j graph 

database and its query language, Cypher, provide efficient access 

to the complex Reactome data model, facilitating easy traversal and 

knowledge discovery. Cypher is a graph database query language 

that is easy to understand and does not require any deep 

programming knowledge [17]. Therefore, based on previous 

research experience, we used information from ClinicalTrials.gov 

for text mining, information extraction and the establishment of 

graph database in neo4j by Cypher. 

At present, many researchers make a great effort in the 

establishment of graph database in Neo4j, such as the developed 

applications to link Cytoscape and Neo4j by Summer et al. and 

providing a high-performance pathway data resource to the 

community through adopting graph database technology by 

Fabregat et al. [10, 18]. 

3  Results 

3.1  The Clinical Trials Results reported in 

registered platform vs. in bibliographic 

database 

We collected clinical trial studies related to COVID-19 at 

https://clinicaltrials.gov/ on August 3, 2021. A total of 6279 studies 

were collected, of which 71 studies have results. As we all know, 

the publication of bibliographic databases is delayed compared 

with clinical trials. In order to find the time difference between 

COVID-19-related clinical trials and publications, we searched 71 

studies of registered clinical trial numbers on the Dimensions 

platform. 59 publications (containing 4 not open access studies, 8 

not report the results) related to 35 studies in 71 registered clinical 

trial were retrieved. The completion time of clinical trials is on 

 
2 https://www.nlm.nih.gov/research/umls/new_users/online_learning/Meta_005.html 

average（79.81 ± 125.73）  days earlier than the bibliographic 

publications. 

3.2  Knowledge Graph Information 

Totally, there are 6279 registered clinical trials related to 

COVID-19 included in our research. Among them, 6208 (98.87%) 

studies have not yet registered results. So we generated two 

knowledge graphs. One contains all 6279 registration studies 

related to COVID-19, which is used to summarize the latest clinical 

trial studies to help researchers understand the trial progress and 

design plan. The other one includes 71 clinical trials that have 

registered results. Based on the framework of the first graph, we 

added fields for each intervention/comparison’s group name, 

baseline data, and post-test data to the outcome node in the second 

graph. The grouping of each intervention is clearer than the 

enrollment node. This data helps researchers to generate evidence 

synthesis based on clinical trial data from studies screened by the 

same conditions. 

The first COVID-19 Trial Knowledge Graph, which contains 

66856 nodes with 10 types and 1217673 relations with 9 types in 

total. The second is COVID-19 Registered Results Knowledge 

Graph contains 1067 nodes with 12 types and 1405 relations with 

13 types in total. The statistics of nodes and relations can be seen 

in Tables 1 and 2, respectively. The graph data files and codes are 

public available at: https://github.com/baiym13/COVID-19-Trial-

Knowledge-Graph/find/main. 

Table 1: Node types and the number of unique entities in 

Knowledge Graph 

 

 

 

 

 

  KG1 KG2 

clinical trial 6279 71 

condition 1395 104 

intervention 5730 98 

comparison 7168 50 

outcome 44784 537 

funding 13 3 

enrollment 1049 58 

gender 3 3 

age 426 22 

study tyoe 9 2 

start date — 58 

completion date — 63 
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Table 2: Relationship types and the number of unique relations 

in Knowledge Graph 

 
Conditions: There are 1395 nodes of conditions in 6279 studies, 

of which only 1278 have DUIs. We use the original description to 

supplement the conditions that are not mapped by the MTI tool. We 

used 0 to supplement the missing values of standard interventions 

and DUI in our knowledge graph. Some clinical trials regard the 

occurrence of COVID-19 as the clinical outcome of certain high-

risk groups. When the high-risk situation is refers to a disease, 

COVID-19 cannot be used as one of the complications. Therefore, 

in the list of conditions, the complications of the disease are not 

distinguished. There are 127 descriptions of conditions in 71 

studies (the same concept is not de-duplicated), all of which have 

DUIs. After deduplicating 23 identical concepts in the same clinical 

trial, a total of 104 nodes are left about conditions in the knowledge 

graph. The standardization method is the same as that of 6279 

clinical trials. A total of 26 standard condition-concepts were 

obtained after deduplication. 

Intervention/Comparison: We use MetaMap to standardize 

intervention/comparison terms. The standardized results were 

mapped to CUI. The results that cannot be mapped to the CUI used 

the original description. The problem of combining measures has 

been solved by manual verification, such the same drugs 

Favipiravir, Avigan and Aavilavir were merged to one. The 

standardized results preferentially use the abbreviation from 

MetaMap mapping through manual screening. 

Outcomes: The text of the original outcome description cannot 

be mapped to a single field in MetaMap, and there may be multiple 

entity types in the same field. Therefore, in this study, we only 

extracted the standardized results of the outcome of 71 clinical 

trials with registered results, taking into account the complexity of 

the mapping results. Field in outcome: the empty value in the field, 

Time frame, is filled by 0. Other fields involve numerical values, 

so NA is used to fill in missing values. 

Other nodes: funding, enrollment, gender, age, study type, start 

date, completion date are extracted directly from the download 

XML files. 

In addition to the relationship directly displayed in the 

structured data of clinical trials, we have established a new 

relationship between the node intervention/comparison and the 

outcome, filtered based on the P-value extracted from the XML file. 

The established relations are “has significant” or “no difference”. 

This is used to help researchers understand the effects of current 

measures on specific outcomes more intuitively. 

3.3  Research Visualization 

The knowledge graph below shows the basic information (age 

groups, genders, study types, start dates, completion dates, 

conditions, interventions, outcomes) of the 71 clinical trials with 

registered results. For visualization purposes, this graph only shows 

the top 300 nodes. The nodes at the center of the graph have more 

relations with other nodes. Several obvious clusters appear on the 

graph, which provides an overview of the 71 clinical trials results. 

The main age group of enrollments is 18 and older, with 11 clinical 

trials including children in the study population. Most of the studied 

populations are on both male and female, while 4 studies focus on 

the population of male and one study only focus on the population 

of female. The number of participants lies between 1 and 20460. 

The majority (63 out of 71) of studies are interventional, and the 

rest are observational. More than half of the clinical trials started in 

the period from March to May 2020 and were finished in the period 

from May 2020 to May 2021. Among all the studies with results, 

National Institutes of Health (NIH) has funded 5 studies, related 

industries have funded 23 studies, and the rest of the studies are 

funded by others, including individuals, universities and 

organizations). Most clinical trials focus solely on COVID-19, 

while 5 studies respectively investigated the relationship between 

COVID-19 and androgenetic alopecia, pregnancy, neoplasm, 

influenza and adolescent depression. As for interventions, among 

the 300 nodes, two drug interventions in three different trials were 

found to have significant difference on the experimental groups, 

which are Avigan and HCQ (Figure 3). 
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Figure 3: Knowledge graph related to COVID-19 

3.4  Case Query 

3.4.1 Nodes information of Clinical trial knowledge graph An 

example of a single clinical trial query is shown in Figure4. By 

using Cypher, the study record of 'NCT04452435' is extracted. The 

general information of the study and the population features are 

connected directly to the clinical trial node. In this clinical trial, the 

intervention is C21 (an experimental drug) and the comparison is 

placebo, therefore, the relationship between the clinical trial and 

intervention is captured by a directed connection from the trial node 

to the intervention node, named as has_intervention. Similarly, the 

comparison node is connected to the clinical trial node with a 

directed relationship, named as has_comparison. In this clinical 

trial, the intervention measure was found to take effect on the 

experimental groups, resulted in statistical significance on several 

outcomes. Therefore, on the graph, the three red relations, named 

as has_significant, indicate that the intervention, C21, led to a 

significant difference on the three outcomes compared to the 

comparator group. Similarly, by examining the p-value, the 

intervention was also found to have no significant difference on the 

other 8 outcomes. In these cases, the green lines, named as 

no_difference, are used to formulate this relationship. The last 

outcome, oxygen (supply), has no connections with the intervention, 

which means no statistical information can be extracted to deduct 

their relations and no connection is drawn (Figure 4). 

 

Figure 4: Node information of Clinical trial knowledge graph 

3.4.2 Case query for outcome data Taking “c-reactive protein” 

as an example, we use the Cypher language to query all the outcome 

nodes with the standardized name "CRP". The result shows a total 

of 8 CRP nodes. Through the expansion of the node-related 

relationship, it can be seen that there are to 6 clinical trials, 3 

interventions and 1 comparison. And it contains 4 relations “has 

significant” (Figure 5). 

Cypher query command: 

MATCH (n{standard_outcome:'CRP'}) RETURN n; 

 

Figure 5: Result of the query for specific outcomes 

All the node information obtained by the query can be 

exported as a csv file or a Json file in neo4j. This study takes all 

pieces of information in Json format in the CRP query result as an 

example (Figure 6). The intervention/comparison measures are 

numbered “O+number” in the XML files. The number of repeated 

occurrences of the fields “group info”, “participate group num” and 

“outcome group num” corresponds to the “time frame” in order. 

We parse the Json format to export operable data through self-

compiled code. 
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Figure 6: Information of outcome nodes example 

3.4.3 Relationship Query One feature of our knowledge graph 

that is different from the past is the establishment of a relationship 

between intervention/comparison and outcome. The purpose of this 

is to help researchers find all the measures that can or cannot 

improve the outcome of the disease in a particular trial. According 

to the automatically obtained P-value, the relationship 

“has_significant” or “no_difference” are defined according to the 

95% test level. Taking the "has_significant" query as an example, 

the result is shown in Figure.7. Through standardizing 

intervention/comparison, the number of various nodes can be 

counted and the measures that affect COVID-19 most can be found. 

The research purpose is well practiced (Figure 7).  

Cypher query command: 

MATCH p=()-[r:has_significant]->() RETURN p LIMIT 300 

 

Figure 7: Result of the query for relationship 

4  Discussion and Conclusion 

Meta-analyses are increasingly used to address the evidence 

synthesis problem. But they filter out a lot of information during 

the data processing. [19]. Evidence-based medicine is a labor-

intensive task, and its operation process determines that the results 

of evidence synthesis are delayed. The latest bibliographic 

publications are difficult to be included in the latest evidence 

synthesis results. 

Instead of using unstructured claims in scientific publication, 

our work validated the idea of “computable evidence synthesis” via 

presenting prespecified PICO data elements results data in trial 

registries in standardized, structured formats with controlled 

vocabularies. We used COVID-19 as a case in our research. By 

parsing the XML file, more detailed information can be obtained 

than the csv or txt format downloaded from Clinicaltrials.gov. In 

addition to the necessary elements contained in PICO, we also 

extracted data from the clinical trials results. To help form the basis 

of computable medical evidence. Query and batch export 

information in Graph Database built by neo4j through Cypher 

language. It can help researchers obtain the latest data in batches 

and form a basis for the synthesis of real-world research evidence. 

Compared with publications in bibliographic database, these data 

include negative and positive outcomes. More comprehensive and 

objective. Our methodology is also generalizable to other 

conditions, such as cancer clinical trials. We will incorporate 

registered clinical trial data from more platforms to achieve field 

unification of multi-source heterogeneous data in future research. 

ACKNOWLEDGMENTS 

This work was funded by Chinese Scientific and Technical 

Innovation Project 2030 (2018AAA0102100), the National Natural 

Science Foundation of China (71603280, 72074006), Peking 

University Health Science Center and the Young Elite Scientists 

Sponsorship Program by China Association for Science and 

Technology (2017QNRC001). 

REFERENCES 

[1] Ravaud, P., Crequit, P., Williams, H. C., Meerpohl, J., 

Craig, J. C. and Boutron, I. Future of evidence ecosystem 

series: 3. From an evidence synthesis ecosystem to an 

evidence ecosystem. Journal of Clinical Epidemiology, 123 

(Jul 2020), 153-161. 

[2] Atal, I., Zeitoun, J. D., Neveol, A., Ravaud, P., Porcher, 

R. and Trinquart, L. Automatic classification of registered 

clinical trials towards the Global Burden of Diseases 

taxonomy of diseases and injuries. BMC Bioinformatics, 17 

(Sep 2016), 14. 

[3] Huang, Z., ten Teije, A. and van Harmelen, F. 

SemanticCT: A Semantically-Enabled System for Clinical 

Trials. Springer International Publishing, City, 2013. 

[4] Hu, Q., Huang, Z. and Gu, J. Semantic representation of 

evidence-based medical guidelines and its use cases. Wuhan 

University Journal of Natural Sciences, 20, 5 (2015/10/01 

2015), 397-404. 

[5] Mavergames, C., Oliver, S. and Becker, L. Systematic 

Reviews as an Interface to the Web of (Trial) Data: using 

PICO as an Ontology for Knowledge Synthesis in Evidence-

based Healthcare Research. City, 2013. 

[6] Mavergames, C., Beecher, D., Becker, L. A. and Ali, A. 

Cochrane's Linked Data Project: How it Can Advance our 

64



EEKE 2021 - Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents 

 

Understanding of Surrogate Endpoints. journal of law 

medicine & ethics, 47, 3 (9/27/2019 2019), 374-380. 

[7] Marshall, I. J., Nye, B., Kuiper, J., Noel-Storr, A., 

Marshall, R., Maclean, R., Soboczenski, F., Nenkova, A., 

Thomas, J. and Wallace, B. C. Trialstreamer: A living, 

automatically updated database of clinical trial reports. 

Journal of the American Medical Informatics Association : 

JAMIA, 27, 12 (Dec 9 2020), 1903-1912. 

[8] Mayer, T., Marro, S., Cabrio, E. and Villata, S. 

Enhancing Evidence-Based Medicine with Natural 

Language Argumentative Analysis of Clinical Trials. 

artificial intelligence in medicine (5/7/2021 2021). 

[9] Pradhan, R. and Singh, S. Comparison of Data on Serious 

Adverse Events and Mortality in ClinicalTrials.gov, 

Corresponding Journal Articles, and FDA Medical Reviews: 

Cross-Sectional Analysis. Drug Saf., 41, 9 (2018/09/01 

2018), 849-857. 

[10] Summer, G., Kelder, T., Ono, K., Radonjic, M., 

Heymans, S. and Demchak, B. cyNeo4j: connecting Neo4j 

and Cytoscape. Bioinformatics, 31, 23 (Dec 2015), 3868-

3869. 

[11] Dunn, A. G. and Bourgeois, F. T. Is it time for 

computable evidence synthesis? Journal of the American 

Medical Informatics Association : JAMIA, 27, 6 (Jun 1 2020), 

972-975. 

[12] Du, J., Wang, Q., Wang, J., Ramesh, P., Xiang, Y., 

Jiang, X. and Tao, C. COVID-19 Trial Graph: A Linked 

Graph for COVID-19 Clinical Trials. Journal of the 

American Medical Informatics Association : JAMIA (Apr 24 

2021). 

[13] Yuan, C., Ryan, P. B., Ta, C., Guo, Y., Li, Z., Hardin, 

J., Makadia, R., Jin, P., Shang, N., Kang, T. and Weng, C. 

Criteria2Query: a natural language interface to clinical 

databases for cohort definition. Journal of the American 

Medical Informatics Association : JAMIA, 26, 4 (Apr 1 

2019), 294-305. 

[14] Wang, H. D., Abbas, K. M., Abbasifard, M. and al., e. 

Global age-sex-specific fertility, mortality, healthy life 

expectancy (HALE), and population estimates in 204 

countries and territories, 1950-2019: a comprehensive 

demographic analysis for the Global Burden of Disease 

Study 2019. Lancet, 396, 10258 (Oct 2020), 1160-1203. 

[15] Dodd, S., Clarke, M., Becker, L., Mavergames, C., Fish, 

R. and Williamson, P. R. A taxonomy has been developed 

for outcomes in medical research to help improve knowledge 

discovery. Journal of Clinical Epidemiology, 96 (Apr 2018), 

84-92. 

[16] Pan, X. L., Yan, E. J., Cui, M. and Hua, W. N. 

Examining the usage, citation, and diffusion patterns of 

bibliometric mapping software: A comparative study of 

three tools. J. Informetr., 12, 2 (May 2018), 481-493. 

[17] Fette, G., Kaspar, M., Liman, L., Ertl, M., Krebs, J., 

Stork, S. and Puppe, F. Implementation of a HL7-CQL 

Engine Using the Graph Database Neo4J. City, 2019. 

[18] Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., 

Marin-Garcia, P., Ping, P. P., Wu, G. M., Stein, L., 

D'Eustachio, P. and Hermjakob, H. Reactome graph 

database: Efficient access to complex pathway data. PLoS 

Comput. Biol., 14, 1 (Jan 2018), 13. 

[19] Stroup, D. F., Berlin, J. A., Morton, S. C., Olkin, I., 

Williamson, G. D., Rennie, D., Moher, D., Becker, B. J., 

Sipe, T. A., Thacker, S. B. and Grp, M. Meta-analysis of 

observational studies in epidemiology - A proposal for 

reporting. JAMA-J. Am. Med. Assoc., 283, 15 (Apr 2000), 

2008-2012. 
 

65


