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Abstract
The article describes the problem of automated recognition of the anthropogenic elements of landscape.
The recognition is based on the aerospace data in the optical range of the spectrum and a feature
model of an object, consisting of the geometric and reflectance characteristics. Using this model, we
formed training samples for a convolutional neural network. There is a real example of the practical
implementation of the model in identification of the aviation objects.
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1. Introduction

At present, convolutional neural networks (CNN) are widely used in the automated decoding
of space imagery. These technologies help confidently detect and recognize both natural and
anthropogenic objects of landscape [1, 2]. However, this approach has its drawbacks. The main
one is that neural network technologies usually require a sufficiently large volume of a training
sample, which is not always possible to form within experimental data. The designated problem
can be solved if the images generated according to the so-called feature models of the object
will be applied as a training sample.

2. Feature models

At A.F. Mozhaisky’s academy we developed and successfully tested a CNN training method
to detect anthropogenic objects, which uses the model data including two basic reference
components:

— the geometric characteristics of an anthropogenic object;
— the reflectance characteristics of an anthropogenic object and related backgrounds.

Creating models of anthropogenic objects, we used a contour of figure in the form of a
four-connected chain code as a shape reference. For this purpose, adjacent elements of the
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object boundaries are connected by vectors in the vertical and horizontal directions [3]. The
direction of each vector is encoded with a number. The vector module determines the scale
(level of detail) of contour. As a result, the formalized description of the contour is a set of
direction codes obtained by tracking the object boundary clockwise.

The reflectance references of anthropogenic objects and related backgrounds consist of two
groups of features:

— the color histograms for each component (red, green, blue), which indicate the spatial
distribution of pixel brightness over the image surface;

— the spectral signatures of the object and the background in the form of mathematical
expectations and standard deviations (SD) of the spectral reflectance coefficient (SRC)
and their derivatives (indices, signs of the spectral signature shape, etc.) [4].

In the developed approach, the reflectance features are used for image segmentation into the
object and the background at the very first stage of processing. On the other hand, the first
group of features is valid for panchromatic and color photographs, but is not always informative
for image segmentation. For some objects, the only way to isolate the areas of their potential
location is to process multi- or even hyperspectral data [5].

After segmentation the object is detected on a segmented binary image by a trained CNN.
Additionally, the segmented image undergoes some morphological operations: opening (or
closing) of polygons, filling of one-pixel holes and elimination of the object shadows influencing
each other (when the object has elements of different heights).

The required sample volume for CNN training is achieved through the generation of images
using feature models adapted to different monitoring conditions.

3. Adaptation of the feature model to the monitoring conditions

The reflectance references are recalculated into pixel brightness values for each color component.
The pixel brightness depends on the magnitude of the output of the CCD element. Its value,
expressed in the number of photoelectrons accumulated during the exposure time 𝑡𝑛 of shooting,
is calculated with the following formula:

𝐻el =
𝐸(𝜆) · 𝑡𝑛 · 𝑆 · 𝜆

ℎ𝑃𝐿 · 𝑐
,

where 𝑆 is the area of matrix element, m2; ℎPL = 6.26 · 10−34 J·s is Planck’s constant;
𝑐 = 299792458 m/s is the speed of light in vacuum; 𝐸 = 0.25𝐾−2𝑒𝑠𝑢𝑚(𝜆)𝑃𝜏𝑜𝜏𝑠𝜇[(𝑟 + 𝑟𝑑) +
𝑘𝑝(𝑟+ 𝑟𝑑)] is the image irradiance, W/m2; 𝐾 is the lens f-number; 𝜏𝑜, 𝜏𝑠 is the transmission co-
efficients of the optical system and light filter; 𝜇 is the receiver sensitivity; 𝑒 is the total spectral
irradiance at the equipment entrance; 𝑟 and 𝑟𝑑 are the spectral reflectance coefficients of the
object and the background; 𝑘𝑝 is the light scattering coefficient of radiation in the monitoring
equipment; 𝑃 is the spectral transmittance of the atmosphere.

Geometric references should be adapted to different values of the linear resolution of the
image. At the same time, the linear resolution depends not only on the technical properties of
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the camera and the ballistic parameters of the spacecraft orbit, but also on the illumination of
the scene.

In general, the linear resolution on the ground is determined with the formula:

𝐿 =
𝑀

2𝑅𝑐
=

𝐻𝑓

2𝑓 ·𝑅𝑐
,

where 𝑀 = 𝐻𝑓/𝑓 is the image scale; 𝑅𝑐 is the camera resolution with the contrast of the
object/background pair (C), reaching the entrance pupil of the camera lens; 𝐻𝑓 is the monitoring
height, m; 𝑓 is the focal length of the camera, mm.

The contrast of the object and the background, entering the entrance pupil of the lens, is
given by the expression:

𝐶 =
𝐸𝑜 − 𝐸𝜑

𝐸𝑜 + 𝐸𝜑
,

where 𝐸𝑜 and 𝐸𝜑 are the integrated illumination of the object and the background in the focal
plane (at the entrance to the optical system) in a given wavelength interval, W/m2.

After calculating the linear resolution, it is necessary to adapt the geometric reference of
the object to a specified scale. The traditional way to solve this problem is to reduce a highly
detailed image with rasterization. At this point, the original and the scaled elements of the
image are represented by the areal objects. The color of the scaled element is calculated as a
proportion of the colors of original element, the area of which intersects the area of the scaled
element. The consequence of this approach for segmented images is the appearance of a fuzzy
boundary of the adapted segment and the issue of probability of a pixel belonging to an object,
which is unacceptable in the geometric analysis.

In the vector description of the object geometry, the scale is set by the modulus of vectors
that make up the contour of figure. However, in relation to the objective, if the modulus of
vectors of the chain code is proportionally decreased, it will not result in loss of detail in the
original image. Therefore, we developed a special conversion algorithm for the chain code to
adapt the geometric reference to the linear resolution of the image.

The chain code is adapted by means of vector algebra using vector addition rules. The input
data for the algorithm are the original chained code and the scaling parameter, which defines
the necessary increase of the modulus of vector of chained code. The parameter is calculated as
a ratio of the image resolution to the original scale of the reference data. Object drawings or its
highly detailed images should be used as the initial data for a geometry reference of the object.
In this case, there is no need to increase the scale of the contour (increase its detail).

In the algorithm, all vectors of the original chain code are considered as unit vectors (the
modules of vectors are taken to be equal to 1), but have a different direction. Then the objective
is to obtain a contour consisting of vectors, whose modulus equals a given scaling parameter.
For this, unit vectors are sequentially added until the modulus of the resultant equals to or
exceeds the scaling parameter. The group of vectors is replaced by one vector with a discrete
direction (a vector can have only a horizontal or vertical direction). The direction of the new
(resulting) vector is determined by a minimum difference between this vector and the result of
the unit vectors addition. The calculated difference is added to the sum of the next group of
unit vectors. The described operation is repeated until the new longer vectors replaced all the
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Figure 1: The result of the adaptation of the chain code to the monitoring conditions.

unit vectors. An example of the adaptation of the chain code to the monitoring conditions is
shown in Figure 1.

4. Conclusions and example

The data set collected with the help of adaptation can provide a sufficient sample for CNN
training in the detection of anthropogenic objects. A high efficiency of the described method
was experimentally confirmed by the success in the detection of aircrafts at an airfield. YOLO 3

Example of the original image

Example of the result of segmentation and recognition

Figure 2: The result of using a feature model of an aircraft for its recognition.
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was used as a CNN. In this case, as related backgrounds we considered typical airfield pavements:
asphalt and concrete. The geometric references of the aircraft (chain codes) were calculated
upon their digital drawings. The spectral reflectance coefficient of the objects and related
backgrounds were extracted from a special database developed at the Academy. It’s based on
the results of the Academy’s own field experiments and in-flight spectrometric measurements
carried out for over thirty years. Figure 2 shows an example of the feature model of an aircraft
used for its recognition.

Therefore, the obtained data indicate that thematic processing of images with neural networks
gives a high reliability results.

Additionally, there is an important advantage of the proposed approach: it allows recognizing
the desired object even without its image references, and the described list of references of
anthropogenic objects and related backgrounds supports the necessary level of quality for CNN
training.

References

[1] Jamali A., Mahdianpari M., Brisco B., Granger J., Mohammadimanesh F., Salehi B.
Comparing solo versus ensemble convolutional neural networks for wetland classifi-
cation using multi-spectral satellite imagery // Remote Sensing. 2021. Vol. 13. P. 2046.
DOI:10.3390/rs13112046.

[2] Ivanov E.S., Tishchenko I.P., Vinogradov A.N. Multispectral image segmentation using
convolutional neural network // Current Problems in Remote Sensing of the Earth from
Space. 2019. Vol. 16. No. 1. P. 25–34.

[3] Gonzalez R.C., Woods R.E. Digital image processing. 2th edition. 2002. ISBN-10:0201180758.
[4] Grigorieva O.V., Markov A.V., Ivanez M.O., Zhukov D.V. Methods of preparation of for-

mal etalon features for target detection using hyperspectral remote sensing data // Vth
All-Russian Scientific and Technical Conference with International Participation “Focal
Problems of Space-Rocket Hardware” (Vth Kozlov Readings). Samara: JSC SRC Progress,
2017. Vol. 1. P. 281–286.

[5] Grigoryeva O.V. Observation of forest degradation using hyperspectral data aerial and
satellite sensing // Earth Observation and Remote Sensing. 2014. No. 1. P. 43–48.

88


	1 Introduction
	2 Feature models
	3 Adaptation of the feature model to the monitoring conditions
	4 Conclusions and example

