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Abstract
The problem of assessing the greenhouse gases fluxes from the Earth’s surface based on observations is
currently very urgent. To solve it, it is customary to use data assimilation systems (or a more general
concept — inverse modeling), which include the observations on the concentration of greenhouse gases
and models of the transport and diffusion. Since such problems involve large volumes of satellite data and
the global model of transport and diffusion, it has a huge dimension. For this reason, the development of
effective algorithms to enable the practical implementation of the task is required. The paper discusses
data assimilation algorithms based on the ensemble Kalman filter and ensemble Kalman smoothing,
which can be used to solve the problem of estimating greenhouse gases fluxes. Economical algorithms
for estimating a parameter that is constant over a given time interval are proposed.
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1. Introduction

Assessment of the state of the environment based on observational data is one of the most
urgent tasks at the present time. This assessment is performed using forecast models based on
data assimilation systems. The data assimilation problem is the problem of the joint accounting
of data and a mathematical model for the most accurate assessment of the spatial-temporal
distribution of the used variables. The study of the changes in space and time of greenhouse
gases, such as CO2 and CH4, as well as the assessment of fluxes from the Earth’s surface of
these gases is one of the urgent tasks of monitoring the state of the environment. To solve this
problem, it is customary to use data assimilation systems that include observational data and
a mathematical model of the transport of gases in the atmosphere. One of the approaches to
assessing greenhouse gases fluxes is an approach based on the assumption that the fluxes are
constant in a given subdomain and on a given time interval (on the order of a week). This is
due to both the need for an efficient implementation of the algorithm and the properties of the
observational data used in such problems.

This paper discusses an algorithm for estimating a constant in time and space greenhouse
gases fluxes by the observations from a given time interval. The proposed algorithm is a
variant of the ensemble Kalman smoothing [1]. An approach based on the use of efficient
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local algorithms based on previously developed ensemble filtering and smoothing algorithms
is considered [2, 3, 4, 5]. The results of model numerical experiments with a one-dimensional
transport and diffusion model are presented.

2. Ensemble algorithms for estimating greenhouse gases fluxes

There is a lot of papers devoted to estimating greenhouse gases fluxes using data assimilation
procedures. All these works use an approach called “inverse modeling” [6].

Let’s consider a series of works carried out by a team of authors in which the ensemble
Kalman filter is used [7, 8, 9, 10]. In these works, the estimated variable is the greenhouse
gases flux from the Earth’s surface. The Earth’s surface is divided into squares of equal area
(1000×1000 km) and it is assumed that it is required to estimate the mean flux value over the
subdomain. In addition, the average value over a given time period is estimated. The estimation
of the values of the averaged fluxes 𝑥𝛼 over the subdomains from the observational data 𝑦0 for
a given time interval and forecast 𝑥𝑓 is carried out according to the standard formulas of the
Kalman filter [11]:

𝑥𝛼 = 𝑥𝑓 +𝐾
[︁
𝑦0 −𝐻(𝑥𝑓 )

]︁
,

𝐾 = 𝑃 𝑓𝐻𝑇
(︁
𝐻𝑃 𝑓𝐻𝑇 +𝑅

)︁−1
,

where𝑥𝛼, 𝑥𝑓 — vectors of analysis and forecast values at grid nodes; 𝑦0 — vector of observations;
𝐻 — operator that translates forecast values into observations; 𝑃 𝑓 , 𝑅 — covariance matrices
of forecast (preliminary estimate) and observations errors.

It is assumed that the forecast step of the algorithm has the form

𝑥𝑓
𝑛+1 = 𝑥𝑓

𝑛,

where 𝑛 is the time step number.
To implement the ensemble Kalman filter, an ensemble of perturbations of the estimated

parameter is specified [7, 8, 9, 10]:

∆𝑥𝑓 =
1√
𝐿
[∆𝑥1, . . . ,∆𝑥𝐿]

𝑇 ,

Then the matrix 𝑃 𝑓 is estimated by the ensemble

𝑃 𝑓 = ∆𝑥𝑓 (∆𝑥𝑓 )𝑇 ,

𝐾 = ∆𝑥𝑓 (∆𝑦)𝑇
[︀
∆𝑦(∆𝑦)𝑇 +𝑅

]︀−1
,

∆𝑦 = 𝐻(𝑥𝑓 −∆𝑥𝑓 )−𝐻(𝑥𝑓 ),

where operator 𝐻 includes model forecast at the time of observation, interpolation from grid
nodes to observation points, and, in the case of satellite data, vertical averaging with known
coefficients (“average kernel”), 𝐿 is the number of ensemble elements.
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The period of time over which observations are used is called the assimilation window. In [7],
the assimilation window, consisting of 12 cycles of 8 days, is considered, and the average values
of the fluxes over 8 days are estimated.

From the point of view of the mathematical formulation of the problem, we highlight the
following points:

1) the fluxes are assessed without specifying the concentrations; the solution of the problem
in this formulation will not be optimal;

2) since the operator 𝐻 includes a mathematical model of impurity transport and diffusion,
this problem is a smoothing problem, not filtering [1].

In [7], an approach to the implementation of the algorithm based on the use of a trans-
formation matrix is considered. In this case, computational difficulties arise associated with
the large dimension of the matrices under consideration. From the point of view of practical
implementation, to solve this problem, it is required to specify a matrix 𝑅 — the covariance
matrix of the observation errors and the initial values of the fluxes.

3. Statistical optimization

Let’s consider the problem of estimating a parameter which is constant in time, from observations
on a given time interval. Let the concentration value 𝑞0 in a given region at the time 𝑡0 and
a preliminary estimate of the parameter at a given time interval 𝛼 are known. There are
observations on the time interval [𝑡0, 𝐿, 𝑡𝑁 ]. It is required to estimate the values according to
the observations.

If we consider the finite-difference analogue of the transport-diffusion equation in operator
form 𝑞𝑛+1 = 𝐴𝑛𝑞

𝑛 +𝛼, where 𝑛 is the time step number, 𝑞0 is the concentration value, and
𝛼 are the greenhouse gases fluxes from the Earth’s surface, then

𝑞𝑛+1 =

𝑛∏︁
𝑘=1

𝐴𝑘𝑞
0 +

𝑛−1∑︁
𝑘=1

𝑘∏︁
𝑙=1

𝐴𝑙𝛼 = 𝐹 𝑛
1 𝑞

0 + 𝐹 𝑛
2 𝛼 = �̃�

𝑛
𝜙,

where �̃�
𝑛
= (𝐹 𝑛

1 ,𝐹
𝑛
2 ). Let the observations at the time 𝑡𝑛 be related to the “true” value 𝜙𝑡

using the operator 𝑀𝑛:
𝑦𝑛
0 = 𝑀𝑛𝜙𝑡 + 𝜀𝑛0 .

Observations can be represented as

𝑦𝑛
0 = 𝐻𝑛

(︀
𝐹 𝑛
1 𝑞

𝑡
0 + 𝐹 𝑛

2 𝛼
𝑡
)︀
+ 𝜀𝑛0 = 𝐻𝑛

0 �̃�
𝑛
𝜙𝑡 + 𝜀𝑛0 ,

where 𝐻𝑛
0 — interpolation to the observation point and averaging along the vertical (in the

case of satellite data, this is the “average kernel”), 𝜀𝑛0 is the random observation error with zero
mean value and covariance matrix 𝑅𝑛.

Let 𝑌 = [𝑦0, . . . ,𝑦𝑁 ] — observations over the entire time interval, �̃� = [𝑀0, . . . ,𝑀𝑁 ] —
“generalized” observation operator: 𝑌 = �̃�𝜙𝑡+𝜀0, 𝜀0 =

[︀
𝜀00, . . . , 𝜀

𝑁
0

]︀
— random observation

errors. As in [1], we will seek an estimate based on the minimum of the functional

𝐽 [𝜙] = (𝜙−𝜙𝑓 )
𝑇𝐴1(𝜙−𝜙𝑓 ) + (𝑌 − �̃�𝜙𝑓 )

𝑇𝐴2(𝑌 − �̃�𝜙𝑓 ),
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where 𝜙𝑓 — preliminary estimate (forecast), 𝐴−1
1 and 𝐴−1

2 are the covariance matrixes of
forecast and observation errors.

Let’s consider an ensemble approach to solving this problem. We will assume that an
ensemble of forecasts {𝜙𝑖

𝑓 , 𝑖 = 1, . . . , 𝐿} is given. Then the ensemble of analysis values
{𝜙𝑖

𝛼, 𝑖 = 1, . . . , 𝐿} has the form [1]

𝜙𝑖
𝛼=𝜙𝑖

𝑓+
1

𝐿−1
𝐷𝜙𝑓

(︁
�̃�𝐷𝜙𝑓

)︁𝑇
[︂

1

𝐿−1
�̃�𝐷𝜙𝑓

(︁
�̃�𝐷𝜙𝑓

)︁𝑇
+�̃�

]︂−1(︁
𝑌+𝑑𝑖

0−�̃�𝐷𝜙𝑖
𝑓

)︁
, (1)

where 𝐷𝜙𝑓 =
{︁
𝑑𝜙1

𝑓 , . . . ,𝑑𝜙
𝐿
𝑓

}︁
, 𝑑𝜙𝑖

𝑓 = 𝜙𝑖
𝑓 − 𝜙𝑖

𝑓
¯ , 𝜙𝑖

𝑓
¯ =

𝐿∑︀
𝑖=1

𝜙𝑖
𝑓/𝐿, {𝑑𝑖

0, 𝑖 = 1, . . . , 𝐿} —

ensemble of random perturbations of observations corresponding to the covariance matrix �̃�.
The following relation is used for the estimation �̃�𝐷𝜙𝑓 :

�̃�(𝑑𝜙𝑖
𝑓 ) = �̃�(𝜙𝑓 + 𝑑𝜙𝑖

𝑓 )− �̃�(𝜙𝑓 ).

The implementation of the vector 𝜙𝑖
𝛼 estimation algorithm according to formula (1) requires

the calculation of the inverse matrix of high dimension. For more efficient computations,
an algorithm for the implementation of the stochastic ensemble Kalman filter (ensemble 𝜋-
algorithm) [2, 3] can be applied. The condition for applying the ensemble 𝜋-algorithm is the
fulfillment of the relation between the matrices of the Kalman filter 𝑃𝛼 = (𝐼−𝐾�̃�)𝑃𝑓 , where
𝑃𝑓 and 𝑃𝛼 — covariance matrices of forecast (first guess) and analysis (estimate) [11]. From
formula (1), one can obtain the ratio for deviations from the mean value of the ensemble of
analyzes: 𝑑𝜙𝛼

𝑖 = 𝑑𝜙𝑓
𝑖 +𝐾(𝑑0

𝑖 − �̃�𝑑𝜙𝑓
𝑖 ). Hence, we can conclude that the required relation

between the matrices is satisfied if the errors of observation and the forecast do not correlate. In
this case, you can use the relation 𝐾 = 𝑃𝛼�̃�

𝑇
�̃�

−1
[11] and the formulas of the 𝜋-algorithm

can be applied [2, 3].
The algorithm can be used to estimate only the parameter 𝛼 (if it is assumed that 𝑞0 is given).

In the case when 𝑞0 is known, we get

𝑀𝑛(𝑑𝛼𝑖) = 𝐻𝑛
[︁
�̃�

𝑛
(𝑞0,𝛼+ 𝑑𝛼𝑖)− �̃�

𝑛
(𝑞0,𝛼)

]︁
.

The ensemble 𝜋-algorithm is a stochastic Kalman filter [6, 12] in which the analysis step is
performed only for the ensemble mean:

𝜙�̄� = 𝜙�̄� +
1

𝐿− 1
𝐷𝜙𝛼

(︁
�̃�𝐷𝜙𝛼

)︁𝑇
�̃�

−1
[︁
𝑌 − �̃�𝜙�̄�

]︁
. (2)

The ensemble of analysis errors 𝐷𝜙𝛼 — matrix of dimension (𝐽 × 𝐿), columns of which
are vectors of dimension 𝐽 {𝑑𝜙𝑖

𝛼, 𝑖 = 1, . . . , 𝐿}, is obtained by transforming the ensemble of
forecast errors 𝐷𝜙𝑓 — a matrix with columns {𝑑𝜙𝑖

𝑓 , 𝑖 = 1, . . . , 𝐿} : 𝐷𝜙𝑇
𝛼 = (𝐼+Π𝑇 )−1𝑑𝜙𝑇

𝑓

while
Π𝑇 = (𝐶 + 0.25𝐼)1/2 − 0.5𝐼,

𝐶 =
1

𝐿− 1
𝐷𝜙𝑇

𝑓 �̃�
𝑇
�̃�

−1
(�̃�𝐷𝜙𝑓 +𝐸) = 𝐶1 +𝐶2.
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where 𝐸 — matrix whose columns are equal to the vector 𝑑𝑓
0 — the ensemble of observation

errors, 𝐼 — the identity matrix. More detailed calculations are given in [2, 3].
The elements of matrix Π are calculated for given matrices �̃� and �̃� over an ensemble of

forecast errors 𝐷𝜙𝑓 and do not depend on the grid node. This makes it possible to implement
the algorithm locally. An efficient method for implementing the ensemble 𝜋-algorithm was
proposed in [3].

As can be seen from the formulas of the ensemble 𝜋-algorithm, in order to use it in the case
of the implementation of the above method, the following steps must be taken.

1. Forecast by values 𝜙 = (𝑞0,𝛼)𝑇 from time 𝑡0 to a time 𝑡𝑁 .
2. Calculation of residuals (𝑌 − �̃�𝜙𝑖

𝑓 ).

3. Calculation of �̃�𝑑𝜙𝑖
𝑓 =

{︁
𝑀1𝑑𝜙

𝑖
𝑓 , . . . ,𝑀𝑁𝑑𝜙𝑖

𝑓

}︁
.

4. Calculation of matrix𝐶 of𝜋-algorithm. Calculation can be carried out sequentially in time:

𝐷𝜙𝑇
𝑓 �̃�

𝑇
�̃�

−1
�̃�𝐷𝜙𝑓 =

𝑁∑︀
𝑛=1

(𝐷𝜙
(𝑛)
𝑓 )𝑇𝑀𝑇

𝑛 𝑅−1
𝑛 𝑀𝑛𝐷𝜙

(𝑛)
𝑓 ,𝐷𝜙𝑓 = {𝑑𝜙1

𝑓 , . . . ,𝑑𝜙
𝑁
𝑓 }.

5. Calculation of �̃�𝐷𝜙𝑖
𝛼.

6. Estimation of 𝜙 = (𝑞0,𝛼) by the formula (2).

4. Numerical experiments with a one-dimensional transport and
diffusion model

With the proposed algorithm based on the method of statistical optimization, numerical experi-
ments with a 1-dimensional model of the transport and diffusion of a passive impurity were
carried out. The following equation was considered:

𝜕�̃�

𝜕𝑡
+ 𝑢

𝜕�̃�

𝜕𝑥
= 𝑘2

𝜕2�̃�

𝜕𝑥2
+ �̃�(𝑥, 𝑡),

where �̃� — the predicted variable, �̃�(𝑥, 𝑡) is an unknown source of passive impurity. To solve
the equation, the semi-Lagrangian method was used, with an implicit scheme in time and a
scheme of central differences in space. To solve the finite-difference analogue of the diffusion
equation, the cyclic sweep method was used. The equation was solved on the space interval
(0, 1), while the periodic boundary conditions were considered. 240 grid points were set, 𝑢 = 1,
𝑘2 = 0.6× 10−3.

Let consider a finite-difference analogue of this equation in the form

𝑞𝑘+1 = 𝐴𝑘𝑞𝑘 +𝛼𝑘,

where 𝐴𝑘 — linear operator, 𝑘 — the time step number.
The following numerical experiments were carried out with model data. The given initial

values 𝑞𝑡0, 𝛼𝑡
0 were considered “true”. To obtain the initial data 𝑞𝑑0 , 𝛼𝑑

0 for forecasting by
the model, a disturbance was added to the “true” initial data 𝑞𝑑0 = 𝑞𝑡0 + 𝛿, 𝛿 ∼ 𝑁(0, 𝑠0),
𝛼𝑑

0 = 𝛼𝑡
0 + 𝛿𝛼, 𝛿𝛼 ∼ 𝑁(0, 𝑑𝑔0). 𝑁(𝑎, 𝑏) denotes a random variable distributed according to

the normal law with a mathematical expectation equal to 𝑎 and variance equal to 𝑏.
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To organize numerical experiments, the following were set: an ensemble of initial fields: 𝑞𝑛0 =
𝑞𝑑0 + 𝛿𝑛, 𝛿𝑛 ∼ 𝑁(0, 𝑠0), 𝑛 = 1, . . . , 𝑁𝑒𝑛𝑠; 𝛼𝑛

0 = 𝛼𝑑
0 + 𝛿𝑛𝛼, 𝛿𝑛𝛼 ∼ 𝑁(0, 𝑑𝛼0), 𝑛 = 1, . . . , 𝑁𝑒𝑛𝑠;

observations 𝑦0 = 𝑞𝑡0 + 𝛿0; 𝛿0 ∼ 𝑁(0, 𝜀0); ensemble of observations with perturbations
𝑦𝑛
0 = 𝑦0 + 𝛿𝑛0 , 𝛿𝑛0 ∼ 𝑁(0, 𝜀0), 𝑛 = 1, . . . , 𝑁𝑒𝑛𝑠. Through 𝑁𝑒𝑛𝑠 denotes the number of

elements of the ensemble. The observations were considered to be known throughout the
integration area. In all numerical experiments 𝑅 = 𝜀20𝐼 was considered. In the analysis at grid
node 𝑙, observational data from the interval (𝑙 − 𝑖𝑑, 𝑙 + 𝑖𝑑) were taken. In this case, in the
analysis at the grid node 𝑙, instead of the matrix 𝑅, we took the matrix 𝑅′ = 𝑅 ∘ 𝑒−0.5(𝑟𝑖𝑙/𝑏𝑐)

2
,

where 𝑟𝑖𝑙 — distance between grid node and observation, “∘” — element-wise multiplication
sign. In the experiments, we took the values 𝑖𝑑 = 5, 𝑏𝑐 = 5∆𝑥 (∆𝑥 — the grid step). This
algorithm is called 𝑅-localization. It is commonly used in ensemble methods to suppress
spurious covariances at large distances due to the small size of the sample (ensemble) [12].

Numerical experiments were carried out to estimate the average fluxes over a given time
interval. For this, the “true” values of the fluxes were set, as well as the initial estimate of the
fluxes (both equal to zero and nonzero). The forecast ensembles were modeled for a given time
period with perturbed flux values. In this case, the ensemble 𝜋-algorithm was implemented.
The application of the ensemble 𝜋-algorithm in the problem of transport and diffusion of a
passive impurity is described in detail in [5].

The following numerical experiments were carried out. In numerical experiments, the
“assimilation window” 𝑛𝑡 = 10 time steps was used. To estimate the parameter values on a time
interval {𝑡𝑘, . . . , 𝑡𝑘+𝑛𝑡}, we used the observations of this time interval. Numerical experiments
were carried out for the values: 𝑠0 = 𝜀0 = 0.01, 𝑑𝛼0 = 0.1, 𝑁𝑒𝑛𝑠 = 40.

In the formulation of the parameter estimation problem, it is assumed that the parameter
does not change at the forecasting step. In the experiments, the “true” value of the parameter
was taken constant in time, namely, it was set in the form of a discrete analogue of the function
𝛼0(𝑥), where

𝛼0(𝑥) =

{︂
0.1, if 0.375 ≤ 𝑥 ≤ 0.625,
0, else.

Two series of numerical experiments were carried out. In the first, 𝑞0 was considered given,
the ensemble {𝛼𝑖} was modeled. In the second series, an ensemble of initial values was set {𝑞𝑖0}.

a b

Figure 1: The “true” (a) and estimated (b) values of parameter 𝛼.
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In this case, the ensemble of deviations from the mean corresponds to the deviation of the
estimate from “true”. It should be noted that this did not affect the result, since the residual
values in (2) are kept the same in both cases. In both cases, the root-mean-square error of
the estimate (the difference between “true” value and estimated value) was 0.009. The results
of the first series of experiments are shown in Figure 1. Figure 1, a shows the “true” value
of the time-averaged emission, Figure 1, b shows the restoration of the value after applying
the procedure described in Section 3. In this case, at the initial moment of time, the value of
the estimated parameter was set equal to zero. As can be seen from the figures, the proposed
algorithm makes it possible to estimate the flux of a passive impurity based on observations
and forecast using the transport-diffusion model even if the information about it at the initial
moment is absent.

5. Conclusion

The task of assessing the fluxes of greenhouse gases from the Earth’s surface is currently being
solved using data assimilation systems. In this case, models of the transport and diffusion of
a passive impurity in the atmosphere and meteorological fields of wind speed, temperature,
etc. are used. The ensemble Kalman filter and ensemble Kalman smoother are increasingly
used as a mathematical formulation of the problem. The article discusses an algorithm for
estimating time-averaged values of greenhouse gases fluxes based on the ensemble approach
and the theory of statistical optimization. The algorithm is economical and can be implemented
locally in each given subdomain.
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