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Abstract

Technology today is becoming increasingly autonomous, al-
ready comprising many features typically associated with hu-
man, animal, and even plant behaviour: for example decision-
making, problem-solving, prediction, adaptation, and self-
regulation. Drawing on and embodying techniques from ar-
tificial intelligence (AI) and bio-inspired computing, many
so-called intelligent, smart, and self-adaptive systems are
designed with the explicit intention of replicating such be-
haviours. At the same time, the study of artificial life has
explored many properties of living systems, both as they
are found in nature and as they can be built or conceived
of by humans. This has exposed a large variety of mech-
anisms that produce what we call qualities typically asso-
ciated with life. Examples include self-organisation, home-
ostasis, self-replication, evolution, learning, self-awareness,
and many others. As the technological world becomes ever
more complex, interconnected, fast, and invisible, there may
be substantial value in these qualities also being present in
the systems we build. In this paper, we take the first steps
to cast light on what constitute Lifelike Computing Systems,
why such systems are worth striving for in the first place, and
what we need in order to pave the road for them. We bring this
notion in line with existing research initiatives sharing the ex-
plicit systems engineering focus. Important research aspects
are derived that serve as the basis for a working agenda to-
wards lifelike computing systems.

I. Why Lifelike Computing Systems?

Technological systems have always been part of modern hu-
man life. Historically, while initially taking the form of
passive tools, such as axes and spoons, the industrial rev-
olution saw the advent of powered, mechanised technol-
ogy, operating “under their own steam” without direct hu-
man control over every action. By integrating more com-
plex information processing machinery, automation evolved
into autonomy, as decision-making and self-regulation be-
came features of modern technology. Now, so-called “in-
telligent”, “smart”, and “self-adaptive systems” find, main-
tain and recover suitable behaviours for changing contexts.
These are designed with the explicit intention of carrying
out ‘rational’ behaviours, leading to technology doing the
sorts of things often attributed to natural intelligence (Bo-
den, 2016). At the same time, the study of Artificial Life

(ALife) (Banzhaf and McMullin, 2012) has explored the
properties of living systems, both as they are found in na-
ture and as they can be built by humans, thereby pursuing a
“life-as-it-might-be” modeling philosophy (Langton, 1992).
This has exposed a large variety of mechanisms that pro-
duce qualities typically associated with life. Examples in-
clude self-organisation, homeostasis, self-replication, evolu-
tion, learning, self-awareness, and many others besides. As
the technological world becomes ever more complex and in-
terconnected (Weiser, 1999), fast (Tennenhouse, 2000) and
invisible (Norman, 1998), there may be substantial value in
these qualities also being present in the systems we build.

The “Lifelike Computing Systems” initiative aims to
learn from the study of life and living systems to develop
new, practical, computing systems that possess ‘lifelike’
properties; a further goal is to identify when such com-
plex features are of particular value. The initiative’s focus
lies primarily on engineered technological systems broadly
within the domain of computing. However, this term is not
intended to separate itself from or replace previous initia-
tives; in a large number of cases, there are already technolo-
gies and research efforts that strongly lean towards what we
deem lifelike computing systems in specific aspects. Rather,
our focus is on a holistic view of these properties, their de-
velopment as a suite, and their fruitful combination. In doing
so, the initiative aims to emphasise the drawing together of
existing approaches, technologies, and systems. On that ba-
sis, we aim to shine a light on existing research towards this
vision, and to also determine what future research is neces-
sary (i.e., open questions, knowledge gaps, and limitations)
in pursuing a holistic view of lifelike computing systems.

The basic motivation to develop more ‘lifelike’ systems
also has its roots in previous initiatives: cybernetics, for
example, considered the increasing complexity of system
behaviour, adaptive control and the resulting interrelation-
ships and challenges (Wiener, 2019). Later, the notion of
complex adaptive systems (Holland, 1992) introduced an-
other research perspective to capture and understand the
underlying principles of naturally existent systems such as
e.g., economies or ecology. Observing the advances and
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trends in computing technology, these insights were taken
up again, for example, at the beginning of this millen-
nium in the context of the Proactive (Tennenhouse, 2000),
Autonomic (Kephart and Chess, 2003), and Organic Com-
puting (Miiller-Schloer and Tomforde, 2017) initiatives; all
sharing the common understanding that the controllability
of future systems with at that time current techniques was
no longer achievable. Since then, we can observe a rapid
technological development, which on the one hand has re-
sulted in new types of machine intelligence, adaptive control
strategies, and accordingly more autonomous behaviour of
technical systems. On the other hand, this also created new
possibilities, in that new types of computing and communi-
cation technologies have greatly increased performance.

The difference compared to 20 years ago is now that (be-
sides the technological capabilities) the world is changing
towards a digitalised, data-driven, technology-mediated en-
vironment that intertwines everything into an integrated ‘su-
perorganism’, as e.g., visible in the context of the Internet-
of-Things (Ashton et al., 2009), Internet-of-Everything
(Snyder and Byrd, 2017), or social cyber-physical systems
(Sha et al., 2008), fields that aim at deeply integrating hu-
mans and technical systems. These systems are socio-
technical, and open-ended. As a result, the need grows for
systems that automatically find solutions for needs, chal-
lenges, and dynamics that were either simply not there, or
at least not within our sphere of awareness, during develop-
ment (Tomforde and Miiller-Schloer, 2014).

Building on a long and highly successful tradition in
biologically-inspired computing (cf. Bongard (2009)), the
‘lifelike’ vision not only seeks inspiration in the living
world, but also seeks to replicate its qualities explicitly in
technological systems. The envisaged agenda also goes be-
yond pure ALife research, often rightly exploratory in na-
ture, since it focuses explicitly on building purposeful and
reliable technological systems for people, indeed based on
both Al as well as ALife principles. In this context, the con-
struction of lifelike computing systems will build on sev-
eral decades of previous bio-inspired initiatives. However,
the vision of explicit replication of lifelike qualities marks
a departure: indeed, we cannot claim that all bio-inspired
systems remain lifelike, nor is this in-general even always a
desirable outcome for those designing bio-inspired systems.
For example, many evolutionary algorithms, such as a sim-
ple (1+1)-EA (cf. De Jong (2016)) are clearly biologically
inspired in origin. However, they contain very few of the
qualities that we would commonly ascribe to something life-
like. Other examples can be found in, for example, neural-
inspired machine learning systems.

In particular, we would like to have certain qualities avail-
able in the systems themselves — already implemented by de-
sign, when talking about lifelike computing systems. In this
paper, we provide an initial discussion what lifelike comput-
ing systems might be, by focusing on an initial selection of

certain qualities possessed by natural living systems (Sec-
tion II). This initial list will include rather intuitive aspects
such as open-ended evolution or different degrees of intel-
ligence, involving simple reactive behavior but also more
complex capabilities such as introspection. But also beyond
these intuitive qualities, further aspects such as emergence,
resilience and social behaviour will be discussed, which to-
gether are hypothesized to allow for more adaptive and reli-
able system behaviour, ensuring socially sensitive and com-
pliant actions, as well as still fostering transparency even
when evolving and self-integrating into higher order system
constitutions. However, this initial list will necessarily be
both incomplete and overly prescriptive since to our knowl-
edge there is yet no all-agreed consent on what exact ingre-
dients are defining life itself. Given the basic motivation
outlined before, the fundamental properties remain indeed
almost the same as they have been and still are for e.g., the
related Autonomic and Organic Computing initiatives: We
are on a quest for highly robust, flexible, trustworthy, reli-
able, and efficient solutions for technical systems designed
to act and survive under the challenging conditions the world
bears to them when they are embedded within it. Based on
our first discussion of, at least from the authors’ perspec-
tive essential, lifelike qualities, we will look at the current
state — what technology is already available from other re-
search initiatives concentrating on the systems engineering
aspect and to which of the delineated qualities they provide
valuable contributions (Section III). Based on this brief as-
sessment, we will sketch important aspects of research upon
which an initial research agenda can be build with the goal
of approaching ‘truly’ lifelike computing systems (Section
IV). Finally, the paper closes with a conclusion and outlook
(Section V).

I1. What Are Lifelike Computing Systems?

The obvious question that arises here is, “Do we really need
yet another computing paradigm?”. We answer this question
with caution and want to clarify that the quest for Lifelike
Computing Systems is not to be considered an orthogonal
way of engineering complex computing systems, but an ad-
vancing one. That is, we build on existing research initia-
tives such as Organic, Autonomic, and Self-Aware Comput-
ing (cf. Sect. III), attempting to integrate their unique and
shared perspectives, the already achieved insights, but also
still open challenges into a unifying framework. In simpler
terms, we look at the advances and ways of thinking that
these research fields have given us, and ask: what’s next?

In this positioning work, we initiate this research endeav-
our by first identifying five striking properties or capabili-
ties of living systems that we deem especially valuable to
be brought into technical systems. However, it should be
clearly noted that our first attempt is necessarily incomplete
and that we by no means strive to propose a definition of life
itself here. Therefore, here we touch upon this initial set of



‘qualities of life’, and hope to stimulate the reader in pro-
voking deeper thoughts and creating broader interest on this
notion.

1. Open-ended Evolution. The first quality of living
organisms and natural systems is their continuing evolu-
tion (Darwin, 1859). Evolution is considered a mechanism
to change and thus constitutes a building block for continu-
ing system adaptation. Therefore, we not only think of typ-
ical evolutionary computation techniques (De Jong, 2016),
but explicitly emphasise open-ended evolution Taylor et al.
(2016). In real-world settings, the objectives provided to
computing systems by humans are usually neither static nor
fixed. Objectives vary, i.e., they are subject to gradual or
abrupt changes, seasonal impacts, are often multi-modal,
and can be highly contradictory in different sub-goals. In
open systems, objectives should also be considered to be
multi-scale: present over multiple system levels in a hier-
archy of abstraction, with each level (for example) having
an impact on the lower one. This clearly raises complex-
ity further still (Diaconescu et al., 2016). Accordingly, and
as noted by Stanley and Lehman (2015), relying exclusively
on fitness functions, i.e., a mathematical model used to in-
ternalise the system objectives into our engineered ‘intelli-
gent’ systems, appears to be unnecessarily limiting for the
production of the myriad of creative ways in which living
systems evolve to behave. Much more complex mechanisms
are needed to steer these systems toward continual adaptive,
flexible, and creative behavior, such as basing fitness also
on stimuli beyond numerical utility values. Detecting nov-
elty and positively reinforcing novel behaviors might be one
possible path to reach this goal (cf. e.g., Lehman and Stan-
ley (2008)), though more broadly, fitness may often arise
endogenously within the environment and the people and
others with which the system interacts.

2. Intelligence. One of the most distinguishing quali-
ties between living and non-living systems is intelligence.
As is already the case for the notion of life, there is again
no universally-accepted consensus on what exactly defines
natural intelligence. However, capabilities that are typi-
cally mentioned include, among others, rational thinking,
problem-solving, reasoning on certain (but more fascinat-
ingly uncertain) knowledge, the acquisition of competence,
skill, and knowledge by different forms of learning, the use
of intuition and other mental heuristics, self-awareness and
various forms of reflection, as well as emotional thinking,
and creativity. For artificial intelligence, however, numer-
ous attempts to delineate this scientific discipline can be
quickly spotted, especially in these days where Al is once
again perceived as probably the most promising technology
with outstanding disruptive potential. Definitions here range
from similarly listing competencies (e.g., Bellman (1978))
to more inclusive statements concerning machines that do
things like minds do (e.g., Boden (2016)). Following Rus-
sell and Norvig (2020), one can approach such a definition

from four directions, where an Al is thought of as (1) Think-
ing Humanly, (2) Acting Humanly, (3) Thinking rationally,
and (4) Acting rationally. For the overarching purpose of en-
gineering and understanding complex computing systems,
we often follow the fourth angle and define intelligence in
a technical sense as being brought into systems through an
agent (software) that acts rationally, which is further defined
in the sense of a way that maximises a numeric measure of
utility shaped by external performance standards. Accord-
ing to this perspective, an ‘intelligent system’ is essentially a
system that can maintain its utility under challenging condi-
tions (e.g., time-varying environments, emergent situations,
or disturbances) by autonomously adapting its behaviour to
changing circumstances. In line with this notion, learning
is often one of the most obvious and intuitive functions of
an intelligent system. Next to the explicit goal of improving
a system’s performance in well-defined (and therefore, typi-
cally narrowly-defined) tasks, learning also enables a system
to extend its knowledge and, thus, to expand its concept of
known environments (cf. concept drift and generalisation).
This is possible by taking advantage of already gained ex-
periences and direct interaction with the environment to ex-
perience new situations in an explorative fashion; the latter
however usually comes at the cost of trial-and-error situa-
tions, which in the online case, can add additional risk or
cost. But beyond this specific perspcetive on ‘learning and
acting’ in response to perceived stimuli and feedback in or-
der to maintain a user-defined utility level, when considering
lifelike computing systems, we subsume further capabilities
of naturally intelligent organisms under this quality. For ex-
ample, creativity is a prerequisite to solving many intricate
problems, as well as for developing framings with which
to express newly discovered problems. Bringing creativity
into our systems by, e.g., computer simulations or models
that imitate mental processes detached from the purely reac-
tive timescale, we expect to increase the problem-solving ca-
pabilities of systems tremendously. Another distinguishing
property of intelligent beings such as humans is their ability
for introspection. Humans are (to varying degrees at various
times) self-aware. We can reflect on our behaviour (even
if it often happens retrospectively), e.g., to assess our own
knowledge and strengths, and we often have an inner clue
that serves as a measure for their quality of work (e.g., per-
fectionism). And this this section, we have only touched on
aspects commonly associated with human intelligence; there
are many other quite different forms of intelligence found in
the natural world, with quite radically different emphases, to
learn from and emulate.

3. Emergence. Beyond thinking of intelligence on an in-
dividual scale, for lifelike computing systems, we want to
emphasize the importance of collective intelligence. In nat-
ural living systems, often not every organism can be consid-
ered particularly intelligent on an individual basis. However,
nature also reveals remarkable capabilities when ‘simple’



(non-intelligent) species act collectively, either in smaller
groups or in larger swarms. Often the principle of self-
organization governs in such decentralized (Swarm) systems,
what results in emergent phenomena sometimes understood
as intelligence of a ‘superorganism’. Prominent examples
from nature are ant colonies or bee hives which exhibit in-
triguing capabilities by far not possible to be anticipated by
looking at only one single member of the superordinate col-
lective. Nevertheless, emergent effects as a product of local
interaction between a large number of self-motivated enti-
ties (self-organisation) and resulting feedback loops do not
always lead to what we might see as desired system behav-
ior. If we strive for evolving computing systems comprised
of intelligent system components, we must not only bear
in mind the potentially undesired side-effects, but also de-
velop ways to quantify and measure them (cf. e.g., Mnif
and Miiller-Schloer (2011)). In lifelike computing systems,
emergence thus needs to be detected and “controlled” (or
perhaps steered), in the sense that the system itself is en-
abled to enforce positive (e.g., robustness, adaptivity) and
simultaneously dampen adverse (e.g., stalling competition
for scarce resources) emergent effects.

4. Resilience. Another striking property of living sys-
tems is their resilience despite disturbing events, such as
volatile climate conditions, natural disasters, and also grad-
ually changing conditions, where they can still successfully
recover to maintain acceptable performance, or perhaps to
simply survive. Yet, it is clear that this occurs at multiple
levels, often depending on the severity: the level of the indi-
vidual organism, at the population level, and further, at the
level of whole ecosystems. Indeed, resilience can, and needs
to be viewed on different hierarchical and temporal scales.

Quickly recovering from unforeseen or unanticipated dis-
turbances to maintain a viable system operation might be
considered short-term fault-tolerance or, more generally
technical robustness. However, the capability to consider
measures on multiple system scales, e.g., as a response to
changing goals that have a strong and long-term impact on
overall system properties, or acknowleding that reconfigu-
ration and diverse solution perspectives on a problem exist,
might be better referred to as ecosystem flexibility. Examples
might include the necessity to form entirely new constel-
lations of system parts or to self-integrate with other spe-
cialised systems (Bellman et al., 2021). Resilience such
as this can involve rapid or indeed more longer-term ex-
ploratory learning, but equally can rely on adaptive feedback
mechanisms either simple or complex.

The essence of this fourth quality is that, for lifelike com-
puting systems, mechanisms will be needed that minimize
the brittleness of technical systems in order to tackle the
inherent complexity of the world; and that this cannot be
done only by them being insulated from it. Indeed, socio-
technical settings from infrastructure services, healthcare,
and agriculture, to manufacturing, supply chains, and many

other besides, generate dynamic, often unforeseen, and com-
pound environmental, legal, or societal conditions. Lifelike
computing systems present an opportunity to move beyond
the Hobson’s choice of ‘carry on regardless even though the
scope has changed’ or ‘redesign and redeploy’.

This calls at least for appropriate degrees of redundancy
(cf. 3. Emergence), but also mechanisms for system in-
trospection (cf. 2. Intelligence), and suitable decentralized
system architectures that can quickly compensate. ‘Fail-
ures’ should instead be framed as failures in assumptions,
and be adapted to, reconfiguring into a new space of pos-
sibilities (cf. 1. Open-Ended Evolution), and drawing on
social awareness of supporting counterparts that can help
overcome the disturbance (cf. 5. Social Awareness, below).

5. Social Awareness. Finally, a fundamental quality of
human and animal societies is their ability to establish so-
cial behaviour, to empathise and reason socially about oth-
ers, and to establish and follow social norms. Such so-
cieties face challenges that increasingly occur in technical
systems: they have to interact with unknown populations,
sometimes without understanding their language and cul-
tural background, and have to find and maintain an inner
balance based on, for example, fairness and equality. Trans-
ferred to our human society, this ultimately involves the es-
tablishment and continuous consideration of ethical, value-
based actions. Technically, this implies — especially when
humans are seen as a fundamental part of the system and
no longer just as “users” — that systems need to be socially
sensitive (Lewis, 2017b) and to have a sense of the ethi-
cal implications of their actions (Bellman et al., 2017). In
view of lifelike computing systems, mechanisms are needed
to: (1) Interact with unknown participants in open systems
(e.g., technical trust (Reif et al., 2016)), (2) to recognise in-
terdependencies and mutual influences, especially of a hid-
den, indirect nature, e.g., Rudolph et al. (2019), (3) to de-
velop and comply to norms that govern autonomous indi-
vidual behaviour in accordance with overarching common
goals (e.g., Kantert et al. (2016)), and finally, (5) to ex-
plain their inner reasoning to involved human stakehold-
ers but also other computational counterparts, requiring both
an inter-operable abstracted language and context-sensitive
human-machine interfaces.

We reiterate that this is not intended as an exhaustive list
of characteristics. Rather, we hope it serves both to provoke
further thought on how these concepts might show up in the
behaviour of future socio-technical systems and to illustrate
how the compound nature of features often studied in sepa-
rate subdisciplines is important for a holistic view of lifelike
computing systems. Given the ambitious goals of this initia-
tive for these pivotal characteristics, in the next section we
focus on assessing where we are now.



II1. Where Are We Now?

The vision of establishing lifelike qualities in future techni-
cal systems has its roots in and draws upon previous ini-
tiatives, which we briefly review in the following in or-
der to provide an overview of the evolution of the field.
Due to space restrictions, we however concentrate on those
with an explicit engineering perspective.  Accordingly,
research fields such as artificial life, theoretical biology,
self-organization, etc., are necessarily neglected here, even
though they provide the relevant insights for capturing and
analysing the complexity of living systems upon which such
engineering efforts sit. In the future, we believe the field
would be well-served by focussed reviews concerning how
insights from these disciplines can tangibly impact the de-
sign and operation of lifelike computing systems.

Multi-agent Systems (MAS). MAS consist of several in-
teracting, intelligent entities — so-called agents (Wooldridge,
2009). In this context, the term ‘agent’ refers to a software
unit that autonomously processes tasks on behalf of a user
or administrator — but it can also refer to robots, humans,
or even heterogeneous constellations of them (Wooldridge,
2009). Agents are used to model or solve problems that
cannot be handled in a standard monolithic way due to
high degrees of parallelism and/or complexity. Usually,
a MAS forms a sort of heuristic approach for an other-
wise intractable or too complex to model problem (Jennings,
2000). In literature, the concept has been successfully ap-
plied to several well-known tasks, e.g., modelling social
structures (Sun and Naveh, 2004), on-line trading (Rogers
et al., 2007) or devising agent-based models for agricultural
systems (Berger, 2001). In an MAS, agents take their deci-
sions based on predefined goals and are able to interact with
each other. For our envisioned lifelike computing systems,
especially the existing technology for interaction schemes
and protocols provide valuable starting points for the delin-
eated qualities of ‘emergence’ and ‘social awareness’.

Proactive Computing (PAC). Tennenhouse (2000) stated
that — as he called it — “human-in-the-loop computing” has
its limits. Embedded computing devices became increas-
ingly popular, which resulted in a dramatic increase in the
number of utilised devices running information and com-
munication technology. The sheer number demanded a
paradigm shift in administration to further guarantee con-
trollability, not unlike the challenges we now face more than
twenty years later. Although PAC mainly presented a vision
and had a strong focus on hardware challenges, the motiva-
tion still holds for lifelike computing systems and we can
draw inspiration upon PACs vision for nearly all qualities
we mentioned above.

Autonomic Computing (AC). Motivated by the increas-
ing complexity in large data centres, Kephart and Chess
(2003) argued that computing systems need an automated
backbone structure similar to the autonomic nervous sys-
tem of humans. The idea is that this autonomic structure

relieves the designer from specifying all possibly occurring
situations and configurations within the design process. In-
stead, the system itself takes over the responsibility to find
appropriate reactions to perceived changes in environmental
conditions. It also relieves the administrator of configura-
tion and maintenance tasks, especially in finding optimised
settings for resources. Although this is still limited to ded-
icated control problems, use cases, and controlled decision
freedom of the autonomic systems, the basis for certain as-
pects of lifelike behaviour by means of feedback and self-
adaptation is already laid. Concerning the five qualities of
life, AC’s achievements have clearly contributed to equip
technical systems with more ‘intelligence’ and ‘resilience’.

Organic Computing (OC). Based on the motivation of
mastering the ever-growing complexity in technical sys-
tems, the OC initiative took inspiration from and bring ba-
sic concepts from natural and biological into technical sys-
tems (Miiller-Schloer and Tomforde, 2017; Tomforde et al.,
2017) with the aim of transferring formalisations of self-
X properties to engineered technological systems. These
supported the achievement of higher-order system charac-
teristics, such as robustness, flexibility, and viability under
challenging real-world conditions. As a result, traditional
design-time decisions are shifted to run time, and into the re-
sponsibilities of systems themselves. This includes adapta-
tion decisions based on machine learning technology, detect-
ing changes in the underlying processes to be controlled, or
maintaining relationships among distributed systems. How-
ever, the concrete control problem is still narrowly defined
and dealt with within, to the best possible degree predeter-
mined boundaries. Already from the motivation, but also
from the obtained achievements regarding self-adaptive and
self-organising system technology, OC can be considered a
substantial basis for further developing the qualities of ‘re-
silience’, ‘emergence’ and also ‘intelligence’.

Self-Aware Computing (SeAC). The idea of self-
awareness in computing arose over many years in a vari-
ety of areas of computer science, artificial intelligence, and
engineering. Over the last ten years, however, drawing on
self-awareness theories in psychology, a fundamental un-
derstanding of what self-awareness concepts can mean for
the design and operation of computing systems has been
developed (e.g., Lewis et al. (2011, 2016); Kounev et al.
(2017)). This led to a number of contributions in terms of
definitions, architectures, algorithms and case studies, tar-
geted at explicitly designing computational self-awareness
into technical systems. Computational self-awareness capa-
bilities typically reference internal state, history, social or
physical environment, goals, and even a system’s own way
of representing and reasoning about these things.

A number of architectures for self-aware systems exist
(e.g. Lewis et al. (2015); Kounev et al. (2017)), and these
typically extend the (self-)knowledge representational and
acquisition capabilities of intelligent systems (e.g., building



on the MAPE-K architecture or any of the other knowledge-
based or learning-based agents (Russell and Norvig, 2020))
with fine-grained details concerning the system itself.

Consequently, the notion of computational self-awareness
is clearly also key to lifelike computing systems when it
comes to establishing ‘intelligence’ and the capability of in-
trospection. Lewis (2017a) provides a summary.

Interwoven Systems (IwS) In contrast to traditional sys-
tem design, the rising utilisation of communication technol-
ogy and the increasing interconnectedness of systems re-
sulted in blurring system boundaries. Instead of following
the ‘separation of concerns’ idea by building modules that
are combined during the development process, the IwS ini-
tiative (Bellman et al., 2014) focuses on changing system
goals that define the setup and configuration of the compo-
sition and structures at runtime. A contained component
system can in turn consist of autonomous systems itself,
modules can aggregate different groups of entities towards
a (sub-)system, and even the goal that is followed might
change continually (Bellman et al., 2021). Hence, IwS on
the one hand already considers aspects of the ‘open-ended
evolution’ quality in respect to evolving system composi-
tions, but also involves ‘social awareness’, both deemed key
also in lifelike computing systems.

Summary

As aresult of the research done in the context of these fields,
we find a wide variety of techniques, methods, and archi-
tectural approaches that can serve as the basis for lifelike
computing systems. Several concepts for designing individ-
ual component systems have been proposed, such as the ob-
server/controller pattern (Tomforde et al., 2011) from OC,
the monitor-analyse-plan-execute cycle (Kephart and Chess,
2003) from AC, several from self-aware computing (Lewis,
2017a), as well as those from Al and robotics (Russell and
Norvig, 2020). Essentially, however, we note that these are
simply agent patterns that each includes or emphasises a dif-
ferent set of features or processes, from our list of character-
istics, over the other. One key question will be how to find
unifying metamodels (at least in the conceptual space, if not
for actual implementation) that support the holistic consid-
eration of lifelike systems in general.

IV. Approaching Lifelike Computing Systems

Based on the notion of lifelike qualities from Section II and
the brief overview of available technology from Section III,
we now discuss first research avenues for approaching life-
like computing systems. It turns out that available technol-
ogy from the various fields that have emerged over the past
few decades can already be combined very well and inte-
grated with each other. As we have sketched in this pa-
per, several important aspects of potential lifelike computing
systems are partly missing in some of the existing related re-
search directions. On the other hand, several of these aspects

are treated deeply but in an isolated fashion in others. In an
attempt to bridge this gap, in the following, we delineate
four important aspects upon which we propose a research
agenda towards lifelike computing systems be based:

i) Framework: An integrated approach requires a com-
mon understanding of existing activities and techniques.
Therefore, much as was done in successfully unifying the
field of evolutionary computation (De Jong, 2016), we pro-
pose to revisit existing research and technology, integrating
it into a unifying framework, resulting in a ‘toolbox’ in the
sense of a methodological repertoire and an architectural
metamodel for lifelike computing systems. Thus, each of
these specific initiatives can then be clearly seen as address-
ing a part, a perspective perhaps, on the whole.

ii) Testbeds: It is worth noting that initiatives such as
OC and AC, despite 20 years of successful research history,
cannot provide uniform benchmarks or testbeds — as is the
case, for example, in machine learning. This is mainly due
to the challenge that, as by definition an open-ended prob-
lem space, a use case that also draws on the reader’s intuition
as to the possibilities is always necessary to demonstrate the
technology. This makes transferability of approaches fun-
damentally difficult, but neither is this complexity necessar-
ily something to be wished away. For example, it could be
argued that in constructing common benchmarking sets for
machine learning, the scope of what machine learning sys-
tems are expected to do is by definition artificially narrowed.
Nevertheless, we believe that for lifelike computing systems,
it is important to consider how to establish generic testbeds,
that provide for reproducability and comparability, while not
sacrificing generality and open-endedness.

iii) System quantification: Typically, the success of tech-
nical systems is considered in relation to a specific utility
function. For lifelike computing systems, this will only
make part of the evaluation. Thus, metrics that have been
derived in part for OC/AC systems, e.g., for measuring adap-
tivity, self-organisation, or robustness, need to be extended
in order to quantify the complex inner states of the sys-
tems, as well as how these relate to broader interactions and
ecosystems. The hierarchical nature of goals and resilience,
as discussed in Section II will be an essential consideration.

iv) Computational approaches: In order to realize life-
like computing systems, novel computational processes and
their implementations will be needed to underpin and in-
stantiate the above. For instance, beyond conventional ap-
proaches like evolutionary computation, mainly targeted at
optimization problems and automatic programming, novel
algorithms, computational models, architectures, and reflec-
tive processes are required that rather aim at establishing
the more fundamental requirement for adaptive behaviour
in open-ended settings on different scales of system design.
As another example, the basic capability of the systems
must go beyond the mere data-driven building of knowl-
edge through experience. In particular, we note that com-



putational introspection and reflection, creativity, empathy,
and social intelligence are still in their infancy. Introspec-
tion, for example, involves the systematic assessment of a
system’s own knowledge but also an intrinsic motivation for
continual self-improvement (e.g., artificial curiosity). Fur-
ther, the multi-level nature of resilience is a largely unex-
plored area in computing. This requires a micro-macro per-
spective, which implies cooperation with other entities on
microscopic levels, but also monitoring of emergent macro-
scopic behavior. Finally, the focus of interest should also
be that lifelike computing systems have broad compatibil-
ity: with legacy systems; with heterogeneous approaches to
problem solving; with upcoming solutions whose existence
is yet unknown but which lifelike computing systems ought
to be ‘prepared’ for from first principles; and finally, com-
patible with the ‘socio-’ side of the socio-technical systems
of which they are part — with human society.

As with our list of characteristics, we do not claim this
short sketch of areas of required research focus to be exhaus-
tive. Rather, we see this as a starting point in our pursuit of
a unifying research agenda.

V. Conclusion and Outlook

This work presents an initial step towards introducing the
vision of lifelike computing systems: technological systems,
of benefit to people, that are not only inspired by the living
world, but are explicitly intended to replicate its qualities.

The capabilities of traditional technical systems no longer
suffice to master the increasing complexity within the larger
contexts they operate. Therefore, we postulated five quali-
ties of life that we deem essential for future computing sys-
tems, in order to meet these heightened requirements. This
set of qualities is necessarily incomplete, and the agenda of
lifelike computing systems is intended not as any fundamen-
tally new paradigm, but instead to ask the question: ‘what’s
next?’ for adaptive, bio-inspired technical systems — and fur-
ther, to ask if these initiatives can be placed within a broader
unified perspective. In this paper, we sketched what such a
perspective might look like, at least some of what it ought to
draw on, and how we might answer these questions.
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