CEUR-WS.org/Vol-3007/2021-paper-2.pdf

A Concept for Self-Explanation of Macro-Level Behaviour
in Lifelike Computing Systems

Martin Goller! and Sven Tomforde!

Intelligent Systems, Christian-Albrechts-Universitit zu Kiel, Germany
goller.cau@gmail.com / st@informatik.uni-kiel.de

Abstract

The basic idea of developing future ’lifelike’ systems is to
transfer qualities in technical utilisation that go beyond well-
established mechanisms such as self-adaptation, learning,
and robustness. In this paper, we argue that the resulting sys-
tems will need components to self-explain their behaviour - if
we want to avoid acceptance issues that result from surpris-
ing and irritating system behaviour. Such self-explaining be-
haviour needs to answer the questions of when, what and how
explanations should be provided to the user. We review exist-
ing metrics, outline a concept of how to address the *when’
question and identify corresponding research challenges to-
wards an automated generation of explanations.

I. Introduction

Recent trends in information and communication technol-
ogy entailed increasingly autonomous systems that adapt
their own behaviour and try to optimise it over time — result-
ing in so-called self-adaptive and self-organising (SASO)
systems. Initiatives such as Organic (Miiller-Schloer and
Tomforde (2017)) and Autonomic Computing (Kephart and
Chess (2003)) are concrete manifestations and pioneers of
this trend, which is supported by new applications such as
autonomous driving (Levinson et al. (2011)) or the Internet
of Things (Weber and Weber (2010)). SASO technology
is understood as an approach to keeping the complexity of
increasingly integrated, open and dynamic systems manage-
able, as it is no longer possible to plan all possibilities in
advance at design time. At the same time, the integration of
machine learning methods is intended to create novel possi-
bilities to react appropriately to the unknown and at the same
time continuously strive for better behaviour.

Even though SASO technology already had its roots
in cybernetics and has been drastically strengthened again
in the last two decades (perhaps starting from Tennen-
house’s Proactive Computing, see (Tennenhouse (2000)),
and Weiser’s vision of Pervasive Computing, see (Weiser
(1999))), we can state that controllability and reacting or
adapting to the unknown remain the central challenges. This
realisation leads, among other things, to the approach of
making technical systems even more lifelike, which e.g.

takes up and continues the original motivation of the OC
and AC initiatives.

In this article, we note that in addition to the obvious
lifelike properties such as evolution and continuous adap-
tation to the ’living space’ or ’environmental niche’ as well
as focused response mechanisms (to name only the obvious
examples), another prominent challenge comes to the fore
in the acceptance of such systems by the human users (or
better: stakeholders or influenced persons). This raises the
question of how such systems can explain their behaviour to
humans in an automated way, which in turn leads directly
to the two crucial questions: When are explanations of be-
haviour necessary? And: What needs to be explained.

From a developer’s point of view, this primarily means
that we need a concept to answers the question of *when’,
which then enables us to answer the 'what’. Therefore,
this article explains a concept to measure system behaviour,
whereupon abnormal behaviour of these measurements will
then serve as an answer to the question when’.

Building on recent work, we present a measurement
framework for system behaviour that forms the basis for
such an explanation framework (Section II). In addition,
we discuss possible further variables that can be relevant
for lifelike behaviour and can therefore be integrated into
the framework. On this basis, we discuss a concept to
automatically detect events that serve as triggers for self-
explanations, which is combined with a principled, possible
use to answer the question what’ (Section III). Since this
is intended as a first concept, we highlight the most urgent
research challenges to automatically generate the resulting
self-explanations. The article concludes with a summary and
an outlook on how the defined concepts can be explored and
implemented.

II. A Measurement Framework for
Macro-Level Behaviour Assessment

The basis of our approach to self-explanatory mechanisms
of lifelike technical systems is the possibility of quantifying
system behaviour by means of (external) observation. To
this end, in this section, we first present our system model,

Copyright ©2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



which we currently assume - and which can form the ba-
sis for future lifelike systems. Using this system model, we
then explain existing and potential approaches for quantify-
ing system properties.

System Model

In this article, we refer to a technical system S as a collection
A of autonomous subsystems a; that are able to adapt their
behaviour based on self-awareness of the internal and ex-
ternal conditions. We further assume that such a subsystem
is an entity that interacts with other entities, i.e., other sys-
tems, including hardware, software, humans, and the phys-
ical world with its natural phenomena. These other entities
are referred to as the environment of the given system. The
system boundary is the common frontier between the system
and its environment.

Each a; € Aisequipped with sensors and actuators (both,
physical or virtual). Internally, each a; consists of two parts:
The productive system part PS, which is responsible for the
basic purpose of the system, and the control mechanism CM,
which controls the behaviour of the PS (i.e., performs self-
adaptation) and decides about relations to other subsystems.
In comparison to other system models, this corresponds to
the separation of concerns between System under Observa-
tion and Control (SuOC) and Observer/Controller tandem
(Tomforde et al. (2011)) in the terminology of Organic Com-
puting (OC) (Tomforde et al. (2017b)) or Managed Resource
and Autonomic Manager in terms of Autonomic Comput-
ing (Kephart and Chess (2003)). Figure 1 illustrates this con-
cept with its input and output relations. The user describes
the system purpose by providing a utility or goal function U
which determines the behaviour of the subsystem. The User
usually takes no further action to influence the decisions of
the subsystem. Actual decisions are taken by the productive
system and the CM based on the external and internal con-
ditions and messages exchanged with other subsystems. We
model each subsystem to act autonomously, i.e., there are
no control hierarchies in the overall system. Please note that
for the context of this article an explicit local configuration
of the PS is necessary — which in turn limits the scope of
the applicability of the proposed method. Furthermore, each
subsystem must provide read-access to the configuration.

At each point in time, the productive system of each a; is
configured using a vector ¢;. This vector contains a specific
value for each control variable that can be altered to steer the
behaviour, independently of the particular realisation of the
parameter (e.g., as real value, boolean/flag, integer or cate-
gorical variable). Each subsystem has its own configuration
space, i.e. an n-dimensional space defining all possible real-
isations of the configuration vector. The combination of the
current configuration vectors of all contained subsystems of
the overall system S defines the joint configuration of S.
We assume that modifications of the configuration vectors
are done by the different C'M only, i.e. locally at each sub-

\ Communication bus

1 "/ ‘\‘ Goals ’l‘,"\ l”‘

(U
Control mechanism (CM) u =<

Read

il il =
T Productive system (PS) _.ﬁ CES

A

Execution of
interventions

Observation of
raw data

Environment

Figure 1: Schematic illustration of a subsystem a;
from (Tomforde et al. (2011)). The arrows from the sen-
sors and PS to the CM indicate observation flows, while the
arrows from the CM to the PS and the actuators indicate con-
trol flows. Dashed arrows emphasise a possible path that is
typically not used. Not shown: The CM is able to communi-
cate with other CMs in the shared environment to exchange
information such as sensor reading and to negotiate policies
using the communication bus.

system, and are the result of the self-adaptation process of
the CM.

This system model describes an approach based on the
current state-of-the-art in the field of self-adaptive and self-
organising systems. We assume that ongoing research to-
wards more lifelike systems will shift the boundaries in
terms of the underlying technology as well as the possibility
to alter higher-levelled design decisions — but it will most
likely not result in entirely new design concepts. In turn, we
assume that fundamental questions will arise about how the
CM evolves according to the characteristics of its “environ-
mental niche’, for instance, but the separation of concerns
between CM and PS remain visible.

Standard Measures

Traditionally, the success and the behaviour of a technical
system is quantified using the primary purpose of the appli-
cation. In the first place, this directly refers to the system
goal. Based on the categorisation proposed by McGeoch in
McGeoch (2012), we distinguish between the two perfor-
mance aspects quality of the solution and time required for
the solution. The latter defines how much time the system
required to solve the given purpose or application — where
the time can be given in CPU cycles, in real-time, or even in
alogical time. Intuitively, such a time-based measure comes
with high precision depending on the underlying resolution
but it does not include any statements about the quality or
generality. In particular, it may depend on the specific hard-
ware equipment that has been used in the experiments. In
turn, the quality itself (which may be expressed in a degree
of goal achievement) says nothing about the time required
to accomplish the goal.



These overarching aspects of system behaviour are aug-
mented with a more theoretical analysis of the applicabil-
ity. In particular, given techniques such as the O(n) nota-
tion, runtime and memory complexity are quantified. This
can be extended with verification of processes, i.e., guaran-
tees that may be quantified in terms of coverage or degree
of guarantee-able behaviour. As an alternative, the ’restore-
invariant approach’ by Nafz et al. Nafz et al. (2011) estab-
lishes a formal framework for self-organisation behaviour
that may serve as a quantifiable basis.

In addition to these considerations, the robustness and re-
silience of systems, as well as their behaviour, can be quanti-
fied using specific metrics. One recent example from the do-
main of Organic Computing systems can be found in (Tom-
forde et al. (2018)).

Self-Adaptation-based Measures

Due to the shift in responsibility as visualised by our system
model depicted in Figure 1 —a CM is added to the PS that
performs (semi-)autonomous decisions — research on SASO
systems entailed augmenting the measurement framework
by several SASO-specific metrics. For instance, Kaddoum et
al. (Kaddoum et al. (2010)) discuss the need to refine classi-
cal performance metrics to SASO purposes and present spe-
cific metrics for self-adaptive systems. They distinguish be-
tween “nominal” and “self-*” situations and their relations:
The approach measures the operation time about the adapta-
tion time to determine the effort. This includes aspects such
as the adaptation speed to detected changes. Some of the
developed metrics have been investigated in detail by Ca-
mara et al. for software architecture scenarios (Camara et al.
(2014)). Besides, success and adaptation efforts and ways to
measure autonomy have been investigated, see e.g. (Gronau
(2016)).

In addition to these goal- and effort-based metrics, several
further measurements indicate a macro-level behaviour of a
set of autonomous subsystems. The most important are:

a) Emergence is basically described as the emergence
of macroscopic behaviour from microscopic interactions of
self-organised entities (Holland (2000)). In the context of
SASO systems, this refers to the formation of patterns in the
system-wide behaviour, for instance. Examples for quantifi-
cation methods are (Mnif and Miiller-Schloer (2011)) and
(Fernandez et al. (2014)).

b) Self-organisation can be expressed as a degree to
which the autonomous subsystems forming an overall SASO
system decide about the system’s structure without ex-
ternal control, where the structure is expressed as in-
teraction/cooperation/relation among individual subsystems
(Miiller-Schloer and Tomforde (2017)). Examples of quan-
tification methods are using a static approach (see (Schmeck
et al. (2010)) and methods using a dynamic approach, see
(Tomforde et al. (2017a)). An alternative discussion of
self-organisation and its relation to emergence is given by

De Wolf and Holvoet (2004).

c) Self-adaptation refers to the ability of systems to
change their behaviour according to environmental condi-
tions, typically with the goal to increase a utility func-
tion. The degree of adaptivity can be measured using static
(Schmeck et al. (2010)) and dynamic (Tomforde and Goller
(2020)) approaches.

d) Scalability is a property that defines how far the under-
lying mechanisms are still promising if the number of partic-
ipants grows strongly. Quantitatively, this can be expressed
as an exponent for the control overhead, for instance.

e) Stability is to a certain degree a meta-measure applied,
e.g., to the degrees of self-adaptation and self-organisation.
It determines how far the metrics are static allowing for stan-
dard changes and identifying deviations from the expected
behaviour. An example can be found in (Goller and Tom-
forde (2020)).

f) Variability or Heterogeneity are terms referring to pop-
ulation of individual subsystems as they focus on the dif-
ferences in the behaviour, the capabilities or the strategies
followed by the subsystems. Examples can be found in
(Schmeck et al. (2010)) and (Lewis et al. (2015)).

g) Mutual influences among distributed autonomous sub-
systems indicate that the decisions of one have an impact
(e.g., on the degree of utility achievement) of another sub-
system (Rudolph et al. (2019)). An example for a quan-
tification technique based on the utilisation of dependency
measures is given inRudolph et al. (2016).

Possible Lifelike-oriented Measures

Considering the concept of lifelike technical systems and
their desired capabilities, the set of existing metrics is prob-
ably not sufficient enough to cover the entire behaviour. In
particular, we will have to investigate novel measurement
techniques that explicitly cover lifelike attributes. Although
there is currently no exact definition of what lifelike com-
puting systems are, we can approach the question of what
is missing in the measurement framework by considering
’qualities of life’ that we aim to transfer to technical usage
and that go beyond the SASO-based scalability, adaptation,
organisation, or robustness questions. In particular, we iden-
tified the following aspects as primary options based on the
considerations of how we consider lifelike systems outlined
in Section I:

First, lifelike system will evolve over time which may in-
clude an adaptation of its primary usage. Consequently, a
first measure should aim at quantifying the evolution be-
haviour itself and a second one the coverage of the primary
purpose. The latter case continues the ideas formulated in
the Organic Computing initiative when defining the property
of ’flexibility’, i.e. how far a SASO system can react appro-
priately to changing goal functions (Becker et al. (2012)).

Second, this evolution corresponds to an adaptation to the
niche in which the system survives. This may be expressed



with a measure of ’fitness in the niche’ or ’degree of niche
appropriateness’.

Third, such an evolution implies that the system is some-
how converted (or better: converts itself). Besides the de-
scription of this process of time, a more static measure based
on the design can aim at determining a ’degree of converta-
bility’, i.e. the freedom to which the system can evolve dur-
ing operation.

Fourth, this may include a transfer to an entirely different
niche, or in other words to another problem domain. This
can be expressed in a static manner by comparing the current
problem space with the initial one or in a dynamic manner
by a degree of transfer that the system has undergone.

Fifth, such a lifelike, evolutionary behaviour is done in
the context of the environmental conditions, which includes
the presence of other subsystems in open system constella-
tions. As a result, parts of the decisions of a lifelike system
are about the current integration into such a constellation, re-
sulting in ’self-improving system integration’ (Bellman et al.
(2021)). Although there is currently no integration mea-
sure available, recent work suggests that such an integration
state is probably a multi-objective function that builds upon
metrics mentioned in the context of SASO measures (Gruhl
et al. (2018)).

Finally, such a lifelike character obviously has implica-
tions on the way we design and operate systems. In con-
trast to current practices that take design-related decisions
and provide corridors of freedom for the self-* mechanisms,
design-time decisions themselves need to become reversible
or changeable by the systems, resulting in a degree of re-
versibility (in a static manner) or changes (in the sense of
how strong the design has already been altered).

Obviously, this list is not meant to be complete. It il-
lustrates the need for further techniques that are suitable to
quantify the lifelike-based properties. We are convinced that
a necessary path in lifelike research is to fill this gap with
an integrated measurement framework that provides a basis
for comparison and assessment of the observed runtime be-
haviour.

III. Self-Explanations based on Macro-Level
Behaviour Assessment

Within the last year, several contributions proposed steps to-
wards a self-explanation of technical systems, particularly
focusing on aspects of self-adaptation. The most prominent
examples can be found in Fahndrich et al. (2013) (with a
Bayesian reasoning approach), Guidotti et al. (2018) (with
a focus on black-box classification), Bencomo et al. (2012)
(with a software engineering approach considering the satis-
faction of the requirements of a self-adaptive system), Welsh
et al. (2014) (also from a software engineering point of view
with a focus on accomplishing runtime goals), Klos (2021)
(based on an integrated design and verification framework
— and the corresponding deviations), or Parra-Ullauri et al.

(2020) (based on a multi-level reasoning approach using
temporal models).

In contrast to these approaches, we propose to develop
a self-explanation component for lifelike technical systems
that builds upon the metrics outlined above and establishes
an observation and explanation loop. The idea of such a self-
explanation is that this should cover the following aspects:

* It should only be provided if the system recognises unan-
ticipated behaviour or abrupt shifts that are perceived by
humans that interact with the system (otherwise we face
an attention problem of users)

* The explanations should contain information about what
changed and why this change happens, which includes the
triggers that have been identified as root causes (e.g. a
failure of a component, abnormal external effects or be-
haviour change of other systems)

* This may be augmented with an estimation of the impact
and severity as well as a prediction of the upcoming de-
velopments.

* Further, the self-explanation should come in a human-
understandable format, i.e. using human-interpretable ter-
minology (e.g., 'Device X became too hot due to overload
that was caused by new component Y’)

* Finally, these explanations have to be generated in a
timely and accurate manner and become subject to a
learning process that optimises the self-explanation per
user. In particular, this can consider direct (i.e., approval
or intervention at goal level) and indirect (i.e., recognition
and no following action by the user) feedback for optimi-
sation purposes. The result will then be a user-specific
degree of explanation behaviour.

Figure 2 illustrates the envisioned process that works as
follows:

1. An observation loop is established at the macro-level that
gathers all externally visible variables of the contained
subsystems. We aim at the maxro- or system-wide level
for explanations as we consider the autonomous subsys-
tems as components for the overall functionality. How-
ever, this system boundary choice depends on the purpose
and the perception of the user.

2. The resulting data is pre-processed, brought into an ap-

propriate representation and analysed to determine the
key figures. This includes static and dynamic indicators.

3. Based on novelty/anomaly/change detection such as

Gruhl et al. (2021), unexplainable or unanticipated be-
haviour of these key figures is recognised and assessed.
In particular, this should come up with scores for the de-
gree of uncertainty of the observed behaviour (with uncer-
tainty being defined as ’explainable from previously seen



1) Observation 2) |dentification of 3) Root cause
of key figures abnormal events determination
Dynamic measures
4) Generation of
self-explanations

Adaptation behaviour and stability
Organisation behaviour
Evolution and flexibility

Static measures
Transferability

Variability

ENVIRONMENT ENVIRONMENT

ENVIRONMENT

Figure 2: Schematic illustration of the self-explanation process using an external monitoring approach. Based on continuous
observation of static (i.e. design properties) and dynamic (i.e. time series) key indicators, unexpected or abnormal behaviour
is detected. For such events, possible root causes are identified and ranked according to their plausibility. This serves as input
to automatically generate self-explanations to the user that are human-interpretable and indicate i) What happens, ii) what the
root causes are and iii) what impact this has on the system behaviour. This may further be enriched with statements about the

expected impact or predicted future developments if possible.

behaviour’). Such an abnormal event answers the ques-
tion *when should a self-explanation be generated?’

4. As soon as this trigger is found, the states of the con-
tained subsystems and their sequences are analysed to
identify possible root causes. Again, this may make use
of anomaly detection techniques that consider the differ-
ent state variables and provide uncertainty values again.
These possible root causes are collected, aggregated, cor-
related, prioritised, resulting in an ordered list of possible
causes.

5. Based on this event-to-cause mapping, a self-explanation
is generated and provided to the user.

Please note that the integrated quantification framework
to assess the system behaviour and the corresponding ex-
planation loop is assumed to work at the macro-level (i.e.,
without any insight on the specific mechanisms and repre-
sentations of the individual subsystems), since some of the
metrics only occur at macro-level (e.g. emergence). How-
ever, this can be turned into a hybrid system approach, where
each subsystem cooperates with the system-wide loop to fil-
ter, augment, and customise the explanations.

Considering this envisioned process towards automated
self-explanations in lifelike systems, we face several re-
search challenges. In the following paragraphs, we outline
the most urgent ones and provide first ideas on how to solve
them.

Challenge 1 - Metrics: The first challenge is concerned
with the metrics briefly summarised in Section II. In partic-
ular, we have to answer the questions, which of these metrics
is relevant? This includes answers to the question of what do
metrics for the quantification of lifelike qualities look like?
Based on this, we have to define a mechanism to pre-process,
and represent the incoming data — which defines a standard
time-series analysis problem.

Challenge 2 - Types of metrics and availability: As out-
lined above, we distinguish between static and dynamic
measures. Considering the inherent heterogeneity, we have
to find the concept of how to fuse the measures by integrat-
ing both, static and dynamic measures. This further results
in questions of how to augment the pure scores, i.e. if pre-
dictions of upcoming behaviour are required and in which
resolution to allow for proactive actions.

Challenge 3 - Anomaly/Novelty detection: The core of
our concept lies in a sophisticated detection of triggers,
which is defined as unexpected behaviour of the key in-
dicators. Technically, this should be realised in terms of
anomaly, novelty or change detection techniques. Conse-
quently, the questions arises which techniques are most ap-
propriate and how we can provide online methods. Here, we
can make use of approaches from the field of self-integrating
systems (Gruhl et al. (2021)) that already focus on the de-
sired capabilities.

Challenge 4 - Root cause detection: Given that a trig-



ger for self-explanation is detected, we have to identify the
root causes that have been responsible for the observed be-
haviour. This means to provide techniques that are able
to detect possible root causes (also as sequences of inter-
connected events and not just as isolated events) and rank
them? Based on such an approach, we have to investigate
how to select the most likely root cause or set/sequence of
root causes that explain the behaviour.

Challenge 5 - Definition of explanations: Above, we al-
ready mentioned which information an explanation to the
user should contain. This needs to be formalised and inves-
tigated in detail. In particular, this results in the challenge of
how to generate explanations and which aspects they should
comprise.

Challenge 6 - Presentation of explanations: Finally, ex-
planations have to be automatically presented to the user in a
human-understandable manner. This implies that we have to
develop concept of combining human-based terms (such as
cold/warm or fast/slow) with system-based measures. Pos-
sible concepts could establish joint input spaces and use hu-
man feedback to learn the resulting mapping. Using such
a joint representation, concepts from deliberative abductive
reasoning (Dessalles (2015)) may serve as a basis for these
approaches.

IV. Conclusions

In this paper, we outlined our notion of what lifelike tech-
nical systems should be - or better which qualities of life
we aim at imitating in technical systems that go beyond the
well-established field of self-adaptive and self-organising
systems. Based on this, we reviewed approaches to quantify
system behaviour mainly at the macro-level using a standard
system model for self-adaptation. This review also included
an identification of possible measurement approaches that
close the gap for observation and behaviour assessment of
future lifelike systems.

In our notion, an important property of these lifelike
systems will be to allow for self-explanation of decisions
and resulting behaviour, otherwise the acceptability of even
more autonomous and evolving systems will most likely
face acceptance problems. We outlined that such self-
explanation has to answer two major questions: i) When
to provide self-explanations to the user and ii) what is ex-
plained (including "how’). This paper proposed to address
the first question by using a measurement framework.

Future work will investigate possible metrics to quantify
especially the evolution aspects of lifelike behaviour, in-
cluding the properties of reversibility or transferability of
the system purpose. By using selected applications as use
cases, we aim at analysing how the identification of events
or conditions that need explanations to the users can be es-
tablished. Following this, the final goal of this research is
to provide mechanisms and techniques that actually derive
human-understandable self-explanations.

References

Becker, C., Hihner, J., and Tomforde, S. (2012). Flexibility in or-
ganic systems - remarks on mechanisms for adapting system
goals at runtime. In Proc. of 9th Int. Conf. on Inf. in Control,
Automation and Robotics, pages 287-292.

Bellman, K. L., Botev, J., Diaconescu, A., Esterle, L., Gruhl, C.,
Landauer, C., Lewis, P. R., Nelson, P. R., Pournaras, E., Stein,
A., and Tomforde, S. (2021). Self-improving system integra-
tion: Mastering continuous change. Future Gener. Comput.
Syst., 117:29-46.

Bencomo, N., Welsh, K., Sawyer, P., and Whittle, J. (2012). Self-
explanation in adaptive systems. In 2012 IEEE 17th Inter-
national Conference on Engineering of Complex Computer
Systems, pages 157-166. IEEE.

Camara, J., Correia, P., de Lemos, R., and Vieira, M. (2014).
Empirical resilience evaluation of an architecture-based self-
adaptive software system. In Pro. of 10th Int. ACM Sigsoft
Conf. on Quality of Softw. Architectures, pages 63—72.

De Wolf, T. and Holvoet, T. (2004). Emergence versus self-
organisation: Different concepts but promising when com-
bined. In International workshop on engineering self-
organising applications, pages 1-15. Springer.

Dessalles, J.-L. (2015). A cognitive approach to relevant argument
generation. In Principles and Practice of Multi-Agent Sys-
tems, pages 3—15. Springer.

Féhndrich, J., Ahrndt, S., and Albayrak, S. (2013). Towards self-
explaining agents. Trends in Practical Applications of Agents
and Multiagent Systems, pages 147-154.

Fernandez, N., Maldonado, C., and Gershenson, C. (2014).
Information measures of complexity, emergence, self-
organization, homeostasis, and autopoiesis. In Guided self-
organization: Inception, pages 19-51. Springer.

Goller, M. and Tomforde, S. (2020). Towards a continuous assess-
ment of stability in (self-)adaptation behaviour. In 2020 IEEE
International Conference on Autonomic Computing and Self-
Organizing Systems, ACSOS 2020, pages 154—159.

Gronau, N. (2016). Determinants of an appropriate degree of au-
tonomy in a cyber-physical production system. Proc. of 6th
Int. Conf. on Changeable, Agile, Reconfigurable, and Virtual
Production, 52:1 — 5.

Gruhl, C., Sick, B., and Tomforde, S. (2021). Novelty detection in
continuously changing environments. Future Gener. Comput.
Syst., 114:138-154.

Gruhl, C., Tomforde, S., and Sick, B. (2018). Aspects of measur-
ing and evaluating the integration status of a (sub-)system at
runtime. In 2018 IEEE 3rd International Workshops on Foun-
dations and Applications of Self* Systems, pages 198-203.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F.,
and Pedreschi, D. (2018). A survey of methods for explaining
black box models. ACM computing surveys (CSUR), 51(5):1-
42.

Holland, J. H. (2000). Emergence: From chaos to order. OUP
Oxford.



Kaddoum, E., Raibulet, C., Georgé, J.-P., Picard, G., and Gleizes,
M.-P. (2010). Ceriteria for the evaluation of self-* systems.
In Pro. of ICSE Works. on Softw. Eng. for Adaptive and Self-
Managing Sys., pages 29-38.

Kephart, J. and Chess, D. (2003). The Vision of Autonomic Com-
puting. I[EEE Computer, 36(1):41-50.

Kl6s, V. (2021). Safe, intelligent and explainable self-adaptive sys-
tems. PhD thesis, Technical University Berlin, Germany.

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kam-
mel, S., Kolter, J. Z., Langer, D., Pink, O., Pratt, V., et al.
(2011). Towards fully autonomous driving: Systems and al-
gorithms. In 2011 IEEFE Intelligent Vehicles Symposium (IV),
pages 163-168. IEEE.

Lewis, P. R., Esterle, L., Chandra, A., Rinner, B., Torresen, J., and
Yao, X. (2015). Static, dynamic, and adaptive heterogeneity
in distributed smart camera networks. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), 10(2):1-30.

McGeoch, C. C. (2012). A guide to experimental algorithmics.
Cambridge University Press.

Mnif, M. and Miiller-Schloer, C. (2011). Quantitative emergence.
In Organic Computing—A Paradigm Shift for Complex Sys-
tems, pages 39-52. Springer.

Miiller-Schloer, C. and Tomforde, S. (2017). Organic Computing —
Technical Systems for Survival in the Real World. Autonomic
Systems. Birkhduser Verlag.

Nafz, F., Seebach, H., Steghofer, J.-P., Anders, G., and Reif, W.
(2011). Constraining self-organisation through corridors of
correct behaviour: The restore invariant approach. In Organic
Computing—A Paradigm Shift for Complex Systems, pages
79-93. Springer.

Parra-Ullauri, J. M., Garcia-Dominguez, A., Garcia-Paucar, L. H.,
and Bencomo, N. (2020). Temporal models for history-aware
explainability. In Proceedings of the 12th System Analysis
and Modelling Conference, pages 155-164.

Rudolph, S., Hihn, R., Tomforde, S., and Hahner, J. (2016). Com-
parison of dependency measures for the detection of mutual
influences in organic computing systems. In Architecture of
Computing Systems - ARCS 2016 - 29th International Con-
ference, Nuremberg, Germany, April 4-7, 2016, Proceedings,
pages 334-347.

Rudolph, S., Tomforde, S., and Héihner, J. (2019). Mutual
influence-aware runtime learning of self-adaptation behavior.
ACM Trans. Auton. Adapt. Syst., 14(1):4:1-4:37.

Schmeck, H., Miiller-Schloer, C., Cakar, E., Mnif, M., and Richter,
U. (2010). Adaptivity and self-organization in organic com-
puting systems. ACM Trans. Auton. Adapt. Syst., 5(3):10:1-
10:32.

Tennenhouse, D. (2000). Proactive computing. Communications
of the ACM, 43(5):43-50.

Tomforde, S. and Goller, M. (2020). To adapt or not to adapt: A
quantification technique for measuring an expected degree of
self-adaptation. Comput., 9(1):21.

Tomforde, S., Kantert, J., Miiller-Schloer, C., Bodelt, S., and Sick,
B. (2018). Comparing the effects of disturbances in self-
adaptive systems - A generalised approach for the quantifi-
cation of robustness. Trans. Comput. Collect. Intell., 28:193—
220.

Tomforde, S., Kantert, J., and Sick, B. (2017a). Measuring self-
organisation at runtime - A quantification method based on
divergence measures. In Proc. of 9th Int. Conf. on Agents and
Art. Int., pages 96-106.

Tomforde, S., Prothmann, H., Branke, J., Héihner, J., Mnif, M.,
Miiller-Schloer, C., Richter, U., and Schmeck, H. (2011). Ob-
servation and Control of Organic Systems. In Miiller-Schloer,
C., Schmeck, H., and Ungerer, T., editors, Organic Comput-
ing - A Paradigm Shift for Complex Systems, Autonomic Sys-
tems, pages 325 — 338. Birkhduser Verlag.

Tomforde, S., Sick, B., and Miiller-Schloer, C. (2017b). Organic
computing in the spotlight. CoRR, abs/1701.08125.

Weber, R. H. and Weber, R. (2010). Internet of things, volume 12.
Springer.

Weiser, M. (1999). The computer for the 21st century. ACM
SIGMOBILE mobile computing and communications review,
3(3):3-11.

Welsh, K., Bencomo, N., Sawyer, P., and Whittle, J. (2014). Self-
explanation in adaptive systems based on runtime goal-based
models. In Transactions on Computational Collective Intelli-

gence XVI, pages 122—145. Springer.



