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Abstract

In socio-technical settings, operators are increasingly assisted
by decision support systems. By employing these, important
properties of socio-technical systems such as self-adaptation
and self-optimization are expected to improve further. To be
accepted by and engage efficiently with operators, decision
support systems need to be able to provide explanations re-
garding the reasoning behind specific decisions. In this pa-
per, we propose the usage of Learning Classifier Systems,
a family of rule-based machine learning methods, to facil-
itate transparent decision making and highlight some tech-
niques to improve that. We then raise three general research
questions that should be answered for any machine learning-
based recommendation agent and four additional questions
that are more tailored towards rule-based systems. These
seven stakeholder-focussed questions provide a template for
the approach of self-explaining decision support systems in
new domains or settings.

Introduction

Increasing automation of manufacturing creates a continu-
ous interest in properties commonly associated with life-
like or organic computing systems, such as self-adaptation
or self-optimisation, within the producing industry (Per-
min et al., 2016). These properties are often achieved us-
ing data driven and learning methods (Zhang et al., 2017}
Lughofer et all [2019; [Schoettler et al., [2020) as with in-
creasing digitalisation and IoT efforts, data can be collected
in large amounts. In modern factories, products are usually
inspected by the machines’ operators (or specialized qual-
ity assurance personnel; we subsume the different roles un-
der ‘operator’ here for the sake of simplicity) to assess their
quality, cf. Figure [l Recent advances into automated in-
spection often integrate computer vision-based approaches
(Margraf et al.l [2017). However, these can be of limited
use when quality is not assessable from the surface, e.g.
structural or chemical properties that involve laboratory test-
ing. Thus, these systems currently can only partially auto-
mate inspection while the conclusions with regards to ma-
chine reconfiguration are still reached manually. This re-
quires a large amount of operator knowledge and experience
to achieve optimal or even satisfactory results. In settings
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Figure 1: Operator-in-the-loop in today’s productions.

with heterogeneous machines and few operators, the strain
on operator experience is further increased and production
can be seriously threatened by a loss of qualified personnel,
e. g. through retirement.

To reduce reliance on specific knowledge of operators and
improve the self-adapting and self-optimizing systems, the
operator can be assisted by decision support systems. These
can easily incorporate large amounts of information simul-
taneously and are less biased to well known settings, espe-
cially compared to operators that only have limited under-
standing of or experience with the machines. Such decision
support systems utilise learning from past experience and
ongoing human expert feedback. Combining human opera-
tors and supervised learning (SL) agents that collaboratively
adjust machines (or lines thereof) manufacturing products
expands the socio-technical system with a decision making
dimension, cf. Figure 2] Typical shopfloor environments
will feature many workers operating on many machines but
not necessarily in a one to one array, e. g. multiple workers
might be needed to operate a single machine while other ma-
chines can be operated by a single worker due to automation.
Additionally, to utilise the available data most efficiently,
not every machine should need their own model but mod-
els should generalise over multiple machines of the same
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Figure 2: Assisted production using agent trained with su-
pervised learning (SL) during operation.

or similar type. For production lines where multiple mod-
els would participate, the parametrisation choices of preced-
ing machines would need to be accounted for by subsequent
models, e. g. through the help of models of higher abstrac-
tion. In this environment, models take input from and ad-
vise multiple operators while operators might interact with
different models throughout a shift.

An integral element for implementing these systems is
that operators are able to trust decisions made by their rec-
ommendation agents. This requires the system to be self-
explaining in both adequate form and abstraction level. This
involves both an explanation regarding the basis of the rec-
ommendation, e.g. what input parameters led to this out-
put, as well as an assessment of the quality of the decision,
e.g. what is the expected error in quality when executing
the recommended parametrisation. In this paper, we posit
that Learning Classifier Systems are well-suited to be used
within the proposed supervised learning agent by reviewing
different explainability techniques in light of this setting. We
then highlight a variety of open research questions that need
to be addressed to successfully apply LCSs (or other rule-
based systems) in this context.

Learning Classifier Systems

Learning Classifier Systems (LCSs) are a family of rule-
based learning systems (Urbanowicz and Moorel 2009).
While LCSs are a diverse field, they share some common
properties. In general, LCSs produce models consisting of a
finite number of if-then rules (classifiers) where individual
premises (conditions), and by extension the global model
structure, are optimized using a—typically evolutionary—
metaheuristic and the conclusions of the rules use a problem-
dependent model. These classifiers or local models can then
individually be ascribed a quality of their prediction within
their respective subspace of the global model’s input space.

In our view, these commonalities are sufficient to motivate
their application within a decision support system, however,
we acknowledge that choosing the “right” LCS for an actual
implementation needs to be done use-case specific as some
LCSs will yield better results than others.

Explainability in LCSs

Explainbility of machine learning is usually differentiated
into transparent methods, allowing interpretation of deci-
sions and comprehension of the model from the structure
itself, and post-hoc methods, utilising visualisation, model
transformation into intrinsicly interpretable models and sim-
ilar techniques on models that are not by themselves in-
terpretable (Barredo Arrieta et al., [2020). As rule-based
learning systems, LCSs generally fall into the domain of
transparent models and are regarded as excellent for inter-
pretability due to their relation to human behaviour. How-
ever, several factors can limit the degree to which humans
can easily comprehend the model and follow its decision
making process. Most notable are the number of classi-
fiers and the formulation thereof. Conditions in complex
feature spaces are harder to understand than those that oper-
ate directly on the data, e. g. higher level features aggregat-
ing multiple sensor readings versus the readings themselves.
Additionally, conditions can be formulated using complex
non-linear functions rather than readable decision bound-
aries (Bull and O’Hara, [2002). Conclusions that utilise com-
plex black box models, such as neural networks (Lanzi and
Loiacono, 2006), are also harder to understand than linear
or constant models even if these local black box models are
usually much smaller than a model of the same class that
encompasses the complete problem space would need to be.

These issues can warrant design adjustments within the
LCS or the application of post-hoc methods. The number
of rules can be combated depending on the type of sys-
tem considered: For Pittsburgh-style systems, this is usu-
ally achieved by promoting small individuals through adjust-
ments of the fitness function (Bacardit and Garrelll, |2007)
whereas, in Michigan-style systems, rule subsumption and
compaction methods are applied (Tan et al., 2013 |Liu et al.,
2019). An improved understanding of singular classifiers
can be pursued by promoting simplicity during training
through a suitable fitness function, by applying analysis typ-
ical for the respective models, e. g. feature importance es-
timations in neural networks, and with a variety of visual-
isation methods (Urbanowicz et al., 2012; [Liu et al., 2019}
2021).

LCSs in Industrial decision support systems

Many different LCSs have been proposed over the years
and while originally envisioned as a powerful reinforcement
learner, they have been extended for all learning paradigms
(Urbanowicz and Moore} |2009). We consider the applica-
tion as a decision support system that proposes settings to



an operator and informs them of the reasoning behind this
choice to be a supervised learning task. This can be solved
with either online or offline learning as long as the model
used to make recommendations provides a compacted ver-
sion of itself for inference and subsequently serving expla-
nations. The LCS learns from experiences including sensor
readings, product information, used machine settings and re-
sulting quality measures, all of which will be a mixture of
real and categorical values. When tasked with assisting an
operator, the SL agent uses sensor readings and product in-
formation to propose machine settings and predict the ex-
pected quality.

Besides the previously introduced explainability tech-
niques, LCSs also easily allow us to provide operators with
all examples from our training data that formed the local
model (as we know which samples were matched by the
classifier’s condition). This can help further the trust that the
model’s predictions are actually based on existing expertise.
Going beyond traditional explaining by example (Barredo
Arrieta et al., 2020), each example that influenced this clas-
sifier’s weights could theoretically be listed, whereas in
black box models usually the entire sample influences ev-
ery weight.

In Michigan-style LCSs, each individual classifier gets as-
cribed a quality measure (or multiple thereof in XCS(F)).
This (or in case of multiple measures, at least one of them)
represents the classifier’s fitness and is used to guide the evo-
lutionary process. Moreover, we can utilise these measures
to provide our operator with additional information on how
exact and therefore useful a recommendation is. Classifiers
with a low prediction quality and thus a high expected error
might provide poor machine settings while other classifiers
in the model might actually provide very useful settings.
This disparity in niches of the feature space can also allow
insights into where new sampling should take place (Stein
et al., [2017) and allows to differentiate the model further.
Even if—viewed globally—the model is less than optimal,
it can still be used within the SL agent and aid operators on
tasks where it is well fit.

Open Research Questions

Following this theoretical examination of the applicability
of LCSs as decision support systems for the parametrisation
of industrial machinery in a complex socio-technical envi-
ronment, we want to raise several open research questions
we aim at answering in the coming years. Note that we
broaden the scope from our operators that interact directly
or indirectly with the machine to all stakeholders that have a
vested interest in the operation of the shopfloor, both digital
and analogue. Thus, this can also include regulatory bodies,
safety officers, management, customers and others.

1. To what extent does a stakeholder request explanations?
This can have numerous dimensions, such as depth, fre-
quency or diversity of explanations. In this question we

assume that stakeholders may seek explanations that go
beyond regulatory requirements, although a potential an-
swer may be that they are not interested in further/deeper
explanations. This raises another aspect: How important
is explainability deemed if prediction quality potentially
suffers?

. What are the differences between types of stakeholders?

Tying directly into the previous question, we assume that
the diverse stakeholders will answer this question differ-
ently. Someone that operates the machine directly might
prefer examples of past experiences while quality assur-
ance personnel might prefer visualisations or vice versa.
Stakeholders may also hold different understandings of
the machine itself, so explanations would need to accom-
modate specific levels of prior knowledge. Furthermore,
diversity between individual operators might be substan-
tial and warrant personalisation approaches.

. How many rules may the served model contain before be-

ing too large? For the full model, smaller rule sets are
easier to generate a general understanding on, while larger
rule sets can provide a more diverse coverage of the in-
put space and therefore more accurate and comprehensi-
ble predictions. In some cases, like explanations for spe-
cific decisions, the entirety of the rule set might not even
be of interest and operators may prefer explanations to be
limited to the rules whose conditions matched the situa-
tion.

. What form can conditions take before they are too com-

plex to be understood? Many rule representations have
been proposed in the past and while ellipsoids or neural
networks can provide improved results, cuboids might be
easier to comprehend. This should also probe whether the
exact condition is even considered relevant or if operators
are content with knowing that it applies in this instance.

. How important are explanations of why the decision

boundary of a classifier is placed a certain way? In LCSs,
the model structure (and decision boundary of each rule)
is optimized using a metaheuristic to localise the classi-
fiers in a way that they fit the data well. Within this ques-
tion, we want to ascertain how important insights into this
process are to operators.

. What form can conclusions take before they are too com-

plex to be understood? While linear models are widely
regarded as easily comprehensible, more complex models
might yield better results and typical explanations, such
as feature importance analysis, can satisfy the operators’
want for understanding the decision making process. This
also translates to the usage of mixing models (where mul-
tiple classifiers are used to construct a prediction) and the
comprehension thereof.



7. What information do operators request about the train-
ing process? Relating to question 5, this question aims
towards the training in general and what steps are per-
formed in the process rather than at an analysis of the
utilised model.

Conclusion

In this paper, we introduced a complex socio-technical sys-
tem within an industrial manufacturing setting where oper-
ators and supervised learning agents collaboratively adjust
machine settings to optimize product quality. In these sys-
tems, operators can interact with a variety of heterogeneous
machines and different agents throughout a single shift,
while the agents also interact with different operators. As-
sisting the operators with recommendations from the agents
decreases the necessity for experience and helps extract and
conserve experience of senior operators that might otherwise
be lost over time. We introduced Learning Classifier Sys-
tems (LCS) and reviewed why these rule-based systems are
generally considered explainable. Building on that, we ex-
panded on requirements for the design of an LCS within our
agent and highlighted beneficial properties of LCSs for this
application. This led to seven open research questions re-
garding the explainability and need thereof. Three of these
questions are applicable to a variety of machine learning
models, e. g. To what extent does a stakeholder request ex-
planations?, and aim at analysing general wants and needs,
while the other four questions are more specific for rule-
based systems (LCSs, decision trees, etc.). Answers to these
questions are likely very domain- and stakeholder-specific
and would need to be answered for each manufacturing
problem independently. Although we assume that general
trends should be transferable, these questions can also serve
as a template whenever applying rule-based learning sys-
tems to a new scenario where comprehensibility is essen-
tial. Consequently, we are confident that LCSs can introduce
self-explaining into these socio-technical-systems while ad-
vancing industrial manufacturing practices.
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