
Trials and Tribulations of Developing Hybrid
Quantum-Classical Microservices Systems
Javier Rojo, Enrique Moguel*, David Valencia, Javier Berrocal, Jose García-Alonso*
and Juan M. Murillo

SPILab - Social and Pervasive Innovation Lab. Quercus Software Engineering Group. Escuela Politécnica. Avenida de la
Universidad s/n. University of Extremadura. 10004 - Cáceres. Spain
* Corresponding Author: enrique@unex.es / jgaralo@unex.es

Abstract
Quantum computing holds great promise to solve problems where classical computers cannot reach. To
the point where it already arouses the interest of both scientific and industrial communities. Thus, it
is expected that hybrid systems will start to appear where quantum software interacts with classical
systems. Such coexistence can be fostered by service computing. Unfortunately, how quantum code can
be offered as a service still misses out on many of the potential benefits of service computing. This paper
takes the traveling salesman problem and tackles the challenge of giving it an implementation in the
form of a quantum microservice. Then it is used to detect which of the benefits of service computing are
lost in the process. The conclusions help to measure the distance between the current state of technology
and the state that would be desirable to have a real quantum service engineering.

1. Introduction

Quantum computing has been a relevant research field for more than 20 years, bringing together
classical information theory, computer science, and quantum physics [1]. More recently, the
development of quantum computers has brought us to the Noisy Intermediate-Scale Quantum
(NISQ) era [2], where quantum computers with more than 50 qubits, although limited by the
noise in quantum gates, are starting to perform tasks that may surpass the capabilities of classic
computers.

Alongside this scientific development, quantum computing is also experiencing a significant
commercial growth [3]. Several major computing corporations have built their own quantum
computers and are offering them to users, mostly in a pay-per-use model. Engineers have
designed and implemented dozens of quantum programming languages, simulators, and toolkits.
All of this is paving the way for the development of quantum software and services.

Nevertheless, for the time being, classical and quantum services must not only coexist but
interact with each other [4]. This coexistence has been called by some researchers hybrid

2nd Quantum Software Engineering and Technology Workshop, co-located with IEEE International Conference on
Quantum Computing and Engineering (QCE21) (IEEE Quantum Week 2021), October 18–22, Virtual Conference
Envelope-Open javirojo@unex.es (J. Rojo); enrique@unex.es (E. Moguel*); davaleco@unex.es (D. Valencia); jberolm@unex.es
(J. Berrocal); jgaralo@unex.es (J. García-Alonso*); juanmamu@unex.es (J.M. Murillo)
Orcid 0000-0001-9189-1133 (J. Rojo); 0000-0002-4096-1282 (E. Moguel*); 0000-0001-5571-2142 (D. Valencia);
0000-0002-1007-2134 (J. Berrocal); 0000-0002-6819-0299 (J. García-Alonso*); 0000-0003-4961-4030 (J.M. Murillo)

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

© 2021 Copyright for this paper by its authors.

CEUR Workshop Proceedings (CEUR-WS.org)

38

mailto:javirojo@unex.es
mailto:enrique@unex.es
mailto:davaleco@unex.es
mailto:jberolm@unex.es
mailto:jgaralo@unex.es
mailto:juanmamu@unex.es
https://orcid.org/0000-0001-9189-1133
https://orcid.org/0000-0002-4096-1282
https://orcid.org/0000-0001-5571-2142
https://orcid.org/0000-0002-1007-2134
https://orcid.org/0000-0002-6819-0299
https://orcid.org/0000-0003-4961-4030
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

classical-quantum systems [5, 6]. A natural way to approach such collaborative coexistence is
by following the principles of service engineering and service computing.
Already, companies and researchers are leaning towards the use of quantum infrastructure

and quantum software as a service, as they are used to do with classical computing resources.
Offerings like IBM Quantum Computing1 or Amazon Braket2 allow them to use the still very
expensive to own and operate quantum computers with moderated costs. This model also fits
very well with the needs of hybrid systems where both classical and quantum software will be
executed on hardware on the cloud regardless of the type of computer needed.

Such deployment architectures are also perfectly aligned with the microservices architectural
pattern [7]. Following this architecture, a complex system is conceived as a set of distributed
microservices, where each microservice is a cohesive, independent process that interacts with
the rest of the system through messages. Bringing microservices to hybrid systems, we have
solutions where both classical and quantum services coexist to solve complex problems.
To achieve these hybrid microservices architectures, the first step is to convert a quantum

piece of software into a microservice. Conceptually, there is no difference between a classical
and a quantummicroservice, an independent process that can interact with the rest of the system
through messages. Furthermore, from a service engineering point of view the specific hardware
in which a microservice is executed, classical or quantum, should be irrelevant. However, the
current state of quantum services is very different from classical services and requires specific
approaches to create working hybrid microservices architectures.
Running a quantum algorithm as a microservice is possible. The quantum algorithm can

be wrapped by a classical service and integrated into the complex architecture. However, the
current technological state of the available quantum platforms imposes some limitations. First,
they make quantum services invocation and execution to be closely coupled with the quantum
processor in which they will be executed. Also, the different quantum computers provide
the results of the executed process in different ways thus making even stronger coupling. In
addition, due to the existing noise in quantum computers, results are subject to errors and
these errors are also usually dependent on each specific quantum computer and qbit topology.
This increases, again, the coupling between service and hardware. Finally, due to the quantum
system collapse, is not always possible to obtain intermediate verification of results which
drastically reduces services orchestration possibilities.
For all these reasons, invoking a quantum microservice in an agnostic way is not possible

and violates all the principles of software engineering. These limitations mean that most of
the advantages of service-oriented computing are lost when involving quantum microservices.
Especially, those related to the different software quality x-abilities like composability, main-
tainability, reusability, modularity, etc. To address this situation, techniques of classical service
engineering should be brought to the domain of quantum service engineering [8].
Specifically, in this paper, we focus on the technical aspects needed to create a quantum

microservice. To illustrate the current state of technology, we have developed a quantum
microservice to solve the well-known Traveling Salesman Problem (TSP). We use the Amazon
Braket platform to deploy it and to analyze its characteristics in the different quantum hardware

1https://www.ibm.com/quantum-computing/
2https://aws.amazon.com/braket/

39

supported by Amazon. Although a specific algorithm (TSP) and platform (Amazon Braket)
are used, we believe that the problems and limitations found are directly transferable to other
quantum algorithms and platforms. From the results obtained from executing this microservice,
we discuss the current limitations of hybrid microservices architectures and detect which of the
benefits of service computing are lost in the process.
In order to do that, the rest of the paper is organized as follows. Section 2 present the

background of this work. Section 3 details the traveling salesman problem used as the case
study for this work, paying special attention to the quantum implementations of this well-known
problem. Section 4 presents how to offer a quantum algorithm as a microservice using the
Amazon Braket platform. Section 5 lists the main results obtained by executing the quantum
microservices in the different hardware and discusses the current limitations of quantum
microservices. And finally, Section 6 presents the paper conclusion and future works.

2. Background

Microservices in particular, or Service-Oriented Architecture in general, is a software engineer-
ing approach focused on the use of services as the fundamental element to develop software
solutions [9]. Although different definitions and proposals can be found in the literature, there
are some aspects of microservices that are mostly agreed upon.
First, a microservice can be defined as a single-responsibility entity that encapsulates data

and logic. They are exposed remotely and can be deployed, changed, substituted, and scaled
independently of each other [9].

When developingmicroservices solutions, different computing paradigms and storage paradigms
can be used [10]. Different programming languages are used, including a mix of functional and
imperative ones, and databases, including relational and NoSQL ones, to provide solutions to
complex problems.

There is no standard communication mechanism for microservices. Nevertheless, in practice,
REST HTTP and asynchronous message queues are the most commonly used ways to expose
microservices [11].

Similarly, although there is no constraint on where and howmicroservices should be deployed,
in practice most solutions are developed with a strong orientation towards the cloud [12]. The
elasticity and distribution provided by the cloud are features well aligned with the microservices
approach.

Finally, although they are completely independent paradigms that are not exclusively related
to microservices, continuous delivery and DevOps approaches are usually applied during the
development of microservices systems [13].

Having all this into account, we can assume that microservices will be a good fit for a hybrid
classical-quantum solution. In this regard, some of the most recent works on quantum software
development are helping to align both worlds. Especially, from a cloud computing perspective.
Currently, most commercial quantum computers are accessible through the cloud, similar

to the classical Infrastructure as a Service model. Some researchers have called this access
Quantum Computing as a Service (QCaaS) [14]. Through QCaas developers can use some of
the existing quantum computers to execute their own code. However, this access is still very

40

dependant of the specific hardware, requiring developers to have a deep understanding of it.
To address some of the QCaaS limitations and increase its abstraction level to create more

complex quantum software, multiple research and commercial efforts are underway. In the
academic world, quantum software engineering is starting to emerge, attracting the attention
of researchers [15, 16]. This discipline seeks to bring the knowledge and expertise of classical
software engineering to the domain of quantum software development. Specifically, some
works are starting to pay attention to aspects of quantum development more closely related
to microservices. For example, in [17] the authors propose the term Quantum application as a
Service (QaaS) to narrow the gap between classical service engineering and quantum software.
Also, [18] proposes an extension to TOSCA, a standard for software deployment on the cloud,
to allow the deployment of quantum services.

From a different point of view, , quantum computers with practical utility and hybrid classical-
quantum algorithms are emerging, such as Quantum Approximate Optimization Algorithm
(QAOA) |[19, 20] or Variational-Quantum-Eigensolver (VQE) [21, 22].

In addition, companies are also trying to create more complex quantum solutions. Amazon,
one of the global leaders in the cloud and computing services domains, has created the Amazon
Braket platform that provides a development environment for quantum software engineers. At
the moment of writing this article, Braket supports hardware from three different vendors (D-
Wave, IonQ, and Rigetti). D-Wave machines fall in the category of adiabatic quantum computers,
while IonQ and Rigetti machines can be classified as circuit-based quantum computing. Having
these two different computational models available increases the tools at the disposal of quantum
software developers, but also increase the complexity of programming quantum services. To
use adiabatic-based machines developers must reformulate the problem they want to solve as a
quantum annealing metaheuristic specification [23]. To use circuit-based machines developers
should know the details of quantum gates and how to adapt the problem they want to solve to
a quantum circuit [24]. This makes it more complicated for developers to create independent,
maintainable, agnostic quantum microservices.
Other companies are creating similar platforms, like the above-mentioned IBM Quantum

or like QPath3. However, as far as the authors know, there is no proposal that has addressed
the problems and limitations of creating quantum microservices for the development of hybrid
solutions.

3. Traveling Salesman Problem

To illustrate the technical limitations of current quantum platforms for the development of
quantum microservices we have chosen a very well-known and studied problem. The traveling
salesman problem is a famous example in the class of NP-Class problems [25]. It can be
categorized as an optimization problem, in which the traveling salesman must visit all cities
inside a route, minimizing the traveled distance. Thus, in the classical definition of the problem
there exist cities, usually described as nodes, roads connecting those cities, that can be considered
as links between these nodes each with a weight indicating the distance. The main drawback
of these kinds of problems lies in the increasing of possible solutions with the increase of the

3https://www.quantumpath.es/

41

problem size, i.e. with 5 cities there exist 12 possible routes whereas for 25 cities the number of
routes grows to 3.1 × 1023.

Solving this problem by classical computing methods it is not always optimal. These methods
have been developed for years as replacements to brute force solutions on these optimization
problems, but still have certain limitations. In recent years, due to the expansion of quantum
computing, researchers have begun to develop quantum algorithms that solve these problems:
both for the perspective of adiabatic quantum computing [26] and for the perspective of gate-
based quantum computing [27, 28].

3.1. Formulation of the TSP problem

To formulate the problem we have followed the previous works [29, 30]:
Definition 1. Let 𝐺 = (𝑁 , 𝐴) be a directed graph, where 𝑁 = {0, 1, ..., 𝑛} is the finite set of

nodes, also known as cities, and 𝐴 = 𝑁 × 𝑁 is the set of roads or arcs connecting the cities. For
every pair (𝑢, 𝑣) of cities there exists a road in 𝐴. A tour is defined by the order in which the cities
are visited.
Definition 2. Let city 0 denote the depot and assume that every tour begins and ends at the

depot. Each of the remaining n cities appears exactly once in the tour. We denote a tour as an
ordered list 𝑃 = (𝑝0, 𝑝1, ..., 𝑝𝑛, 𝑝𝑛+1), where 𝑝𝑖 is the index of the city in the i-th position of the tour.
According to our previous assumption 𝑝0 = 𝑝𝑛+1 = 0, which can also be indicated as 𝑝𝑖(𝑚𝑜𝑑(𝑛+1)).

Definition 3. For every pair (𝑢, 𝑣) of cities 𝑢, 𝑣 ∈ 𝑁, there is a cost 𝑐𝑢,𝑣, for traversing the road
(u, v). This cost of traversing the road from u to v generally consists of the travel time from city u
to city v.
Based on the previous definitions, the objective function is to minimize the sum of the arc

traversal costs along the tour, and can be summarized as:

𝑚𝑖𝑛
𝑛+1
∑
𝑖=1

𝑐𝑝−1,𝑝 (1)

In eq. (1), it is assumed that (𝑝0, 𝑝1, ..., 𝑝𝑛, 𝑝𝑛+1) is a feasible tour.

3.2. TSP on Quantum Computing Architectures

The classical formulation of the problem is proposed as an optimization, making it extremely
suitable and straightforward for adiabatic quantum computers. More challenging is the proposal
of solutions tailored for quantum computers based on quantum circuits and gates. In this
subsection, a solution for the TSP on each type of quantum computers is described.

3.2.1. TSP on Adiabatic Quantum Computing

For this type of quantum computer, Amazon Braket provides a proposal of a solution based on
quantum annealing. This proposal employs the Lagrange multipliers and Quadratic Uncon-
strained Binary Optimization (QUBO) problem matrix [31] where the graph of the problem is
encoded such that the evolution of the system through quantum annealing offers the minimum
energy cost, that is to say, the minimum travel cost.

42

To do this, the graph is internally converted to the form of an Ising model or Quadratic
Unconstrained Binary Optimization Problem (QUBO), and later on, quantum annealing is
applied.
As input for the algorithm, it is necessary to provide a matrix with the costs of traveling

between cities. An example of this matrix is showed in Figure 1-(a). From it, a graph like the
one on Figure 1-(b) can be generated.

(a) Input costs’ matrix. (b) Generated cities graph.

Figure 1: Input for the annealing-based solution of the TSP.

As output, the Hamiltonian cycle with the lowest cost is returned [32] with 2 considerations:
including revisiting the starting point or not revisiting it, i.e., in Figure 2 it is provided a graphic
representation of the path with less cost, without returning to initial point.

Figure 2: Output of the annealing-based solution of the TSP

3.2.2. TSP on Gate-based Quantum Computing

Solving the TSP in quantum machines programmed via quantum gate-based circuits is much
more complicated. Optimization problems, such as TSP, can be addressed simply in adiabatic
quantum computers by their nature, but to work on gate-based quantummachines a workaround
is needed. This is related to the complexity of defining a circuit that allows finding the solution
to the problem in any situation, obtaining in many cases circuits that only solve the problem
for a specific case.
There are different approaches in the literature to solve the TSP in gate-based quantum

computers, by means of the application of different quantum algorithms and solutions. In this

43

work, the circuit proposed by [28] will be used. It is based on the Quantum Phase Estimator (QPE)
algorithm, which calculates a phase for each of the eigenstates considered. These eigenstates
correspond to each of the possible Hamiltonian cycles solutions of the problem. Having obtained
the phase of each eigenstate, they are later checked to select the lowest using other quantum
algorithms such as the minimum finding [33]. Thus, the optimal path is the one for which the
QPE obtains a minimum phase. This quantum algorithm has been implemented in Amazon
Braket.

As opposed to the quantum annealing solution, the circuit obtained is not generic, one circuit
must be generated for each eigenstate and an implemented circuit is associated with a concrete
graph due to the nature of the controlled-U gates and the Unitary matrices obtained. The
included code fragment is tailored for the graph shown in Figure 1. This way, subsequent
experiments, and the obtained results will be easier to compare. Nonetheless, one must have in
mind that if any of the elements of the graph change, the circuit should be changed as well.

After obtaining the result of the quantum part of the algorithm, classical computations must
be applied to determine which eigenstate has as result the phase of smaller value and, knowing
which is that eigenstate, return the associated Hamiltonian cycle.

Analyzing both solutions to the TSP, it is clear that the main complication lies in the case of
quantum gate-based machines. Making generic circuits, which enable to take as input a series
of parameters that condition them —in this case, a circuit for the QPE algorithm that works
with any graph—, is something that has already been studied in proposals like [27, 34] that use
Parameterized Quantum Circuits. Specifically, Matsuo et al. [27] propose a circuit to solve the
TSP for any input graph in gate-based quantum machines, using the VQE algorithm. In this
work solutions of this type have not been used since it has not been considered essential for the
performed experiments. Being able to solve a given TSP is enough to build a microservice and
analyze it.

4. Quantum microservices

From the two solutions to the TSP discussed in the previous section, a microservice with two
endpoints has been implemented as shown in Figure 3. The implementation of this microservice
and the notebooks with the implementations of the TSP in adiabatic and gate-based quantum
computing are available in the following repository4.

The two endpoints allow other microservices of the system to invoke the solution of the TSP
problem, one using the gate-based solution and the other the adiabatic solution. Both endpoints
are implemented in Python, using Flask5. This endpoint is in charge of deploying and executing
the corresponding quantum algorithm.

These algorithms are executed onAmazon Braket and, therefore, different quantum computers
can be chosen. In the case of the algorithm for adiabatic quantum computing, Braket supports
the execution on the quantum computers D-Wave 2000Q and D-Wave Advantage_system. In the
case of gate-based quantum computing, it can be executed on the simulators LocalSimulator,
TN1, and SV1 or on the quantum computers IonQ, Rigetti Aspen-8, and Rigetti Aspen-9. In any

4https://github.com/frojomar/ICWS2021-quantum-classical-microservices
5https://flask.palletsprojects.com/en/1.1.x/

44

Figure 3: Deployment architecture of the TSP hybrid microservice

case, the result of the execution of the quantum algorithms is always stored in an Amazon S3
storage (except in the case of LocalSimulator).
In order to choose over which hardware the microservice’s quantum part is going to be

executed, both endpoints employ a parameter. This parameter is codified as a query param
called device. Taking into account the number of QPUs and simulators available, the query
param device must take one of the following values:

• Adiabatic quantum computing endpoint: dwave_dw2000, and dwave_advantage.
• Gate-based quantum computing endpoint: local, tn1, sv1, ionq, riggeti_aspen8, and
riggeti_aspen9.

Next, implementation details of both endpoints will be provided showing that, despite the
fact that each one of them belongs to a different type of quantum computing, the way of
enclosing the quantum code with a classical computing wrapper, that allows its execution as a
microservice, does not differ.

4.1. Adiabatic quantum computing endpoint

Figure 4 shows the code for the endpoint of the adiabatic solution.
As input, the endpoint needs a .txt file with the weights of the matrix, in addition to the

query param device. As a result, a JSON object is returned including the best route found for
the TSP problem and the distance to cover the route.

4.2. Gate-based quantum computing endpoint

As in the previous endpoint, Figure 5 shows the code for the endpoint of the circuit-based
solution.

45

Figure 4: Adiabatic quantum computing endpoint code

Figure 5: Gate-based quantum computing endpoint code.

Depending on whether the TSP is to be executed on a real quantum computer or on a
simulator, the way in which the quantum code is executed changes. Therefore the selected
machine is given as a parameter to the method that makes the quantum call. When the endpoint
is run outside of a local simulator the result is stored in s3 storage, from where it is retrieved.
In particular, if it is run on a quantum computer, the results are always stored in an s3 and, in
addition, they take some undefined time to be available.
When running the code on a quantum computer, a task with an identifier is created. With

this identifier, developers can check the status of the task, which will change from CREATED,

46

QUEUED, and RUNNING until it reaches COMPLETED; or CANCELLED or FAILED if something
goes wrong. At this point, the result can be recovered. In any case, it is necessary to define a
poll timeout to prevent the execution from being blocked.
All this is done transparently to the system since, when the microservice is invoked, it is

checked with which device the code is to be executed and, if it is a real quantum computer, the
wait is done internally in the call to the endpoint.

In order to execute this endpoint, it is necessary to send the query param device with the
device where the quantum algorithm is to be executed. In this case, the quantum circuit is not
parameterized, so it does not allow the execution on different networks. That same graph will
be always used as mentioned above. As output, this endpoint returns the optimal path but not
the path cost, as the algorithm does not know the weight of each path.

5. Quantum-Classical Hybrid Microservices System Trial
Evaluation

After developing the described microservice, different metrics were used to evaluate its perfor-
mance and the limitations of including a quantum microservice in a hybrid system.
To proceed with the evaluation, several HTTP requests were made from the API client tool

Postman6, which allows performing petitions to REST APIs and take metrics such as response
time, response size, etc.

The developed microservice was locally deployed during the evaluation. More specifically, it
was deployed on a laptop running Windows 10 with 16 GB of RAM and an Intel Core i7-8550U
processor at 1.8 GHz base frequency and 4.0 GHz turbo frequency, equipped with NVMe SSD
technology for storage.
Taking advantage of the fact that the adiabatic solution implemented for the TSP is generic

and the endpoint allows giving a graph as input, the evaluation for both adiabatic and gate-based
implementations has been carried out using the same graphs as input. Thus, the comparison
between the results obtained with both computation models is comparable.
Table 1 summarizes the launched executions and the corresponding results obtained. The

first 2 lines correspond to the Adiabatic Quantum Endpoint and the rest of the table is related
to the Gate-based Quantum Endpoint.
Number of qubits. One of the main limitations of current quantum computers lies in the

number of qubits available, especially in the case of gate-based systems, and this directly affects
the ability to run the microservice or limits its execution. Table 2 shows the results from
considering the TSP described in Figure 1. As one can see, in the case of Gate-based circuits the
number of qubits amounts to 14 (8 for eigenstates + 6 for phase). In the case of the quantum
annealing solution, the number of qubits necessary is unknown, since the Braket provided
implementation was used. Nevertheless, both D-wave machines available at Braket had enough
qbits to run the algorithm. In any case, even for such a simple problem (3 possible routes
considering the links between 2 nodes as symmetric non-directed), it exceeds the number of
qubits available (11 qubits) to be executed on the IonQ hardware and it is not possible to execute
on this architecture. In the case of the Rigetti hardware, it provides enough qubits.

6https://www.postman.com/product/api-client/

47

Architecture # of shots Result obtained

DWAVE 2000Q6 102, 103, 104 [0,3,1,2] (Consistent)
DWAVE ADVANTAGE 102, 103, 104 [0,3,1,2] (Consistent)

LocalSimulator 103, 104, , 105 [0,3,1,2], [0,1,2,3]
TN1 — Error
SV1 103, 104 [0,1,2,3] (Inconsistent)
IonQ — Error

Aspen 8 — Error
Aspen 9 103 Error

Table 1
Executions on each endpoint and shots conducted.

Version # of Qubits # of Classical bits

Gate-based TSP 14 (eigenstates+ phase) 6 (collapsing phase)
Dwave’s solution Unknown Unknown

Table 2
Executions conducted and number of qubits and classical bits

In the case of quantum services, this not only shows the limited power of the current hardware
but also the need that quantum service engineering will have for mechanisms to determine the
number of qubits the execution of service will need. Due to the nature of quantum algorithms
for the different architectures, there is no trivial way to obtain this number. This will be a key
question in developing quantum services execution planners with implications in several other
aspects of the service like if the cost of only the hardware with more qubits can be used or
response time if the waiting time for that hardware is longer.
Number of shots. Due to the problems that arise due to the characteristics of actual quantum

computers, mainly noise in the qubits state, the experiments must be conducted several times
or ”shots” to be statistically consistent.

For a real quantum service technology, the responsibility of performing the different execu-
tions to get a consistent result cannot be delegated to the client nor the customer who only
wants to use technology to get a correct result, at least within a given margin of error, and with
an economic cost known in advance. How the number of shots required is estimated will have
a direct impact on the cost of the service executions. This reveals some issues, related to service
quality and costs, that still have to be addressed by quantum services engineering.
Precision of results. Table 1 shows the discrepancies in the results achieved. In the first

rows, the results obtained by DWave’s machines are shown. Both show consistent results given
the number of shots considered. For the rest of the platforms, different problems have arisen.
First, in some of the architectures, it has been impossible to execute the code, more specifically it
happened in TN1, IonQ, and Rigetti 8. On IonQ the number of qubits available was insufficient to
run the service. On Apen 8, the service was unavailable at the time of running the experiments.
Finally, in Aspen 9, although the code was sent for execution, it was in the state QUEUED
for more than 3 hours, not having executed any of the 1000 shots. In contrast, in the case of
SV1, the code was sent and executed. However, the results obtained were different in different

48

executions. Most of the time the result was [0,1,2,3] which does not correspond to the optimal
solution. Similar results were observed when working with the simulated architecture, where
the number of shots must be higher than 100 to obtain the correct solution with acceptable
statistical certainty.
Again, in a real scenario, the responsibility of determining the number of shots and the

precision of the results cannot be delegated to the client service nor the customer. The customer
pays for a service that is expected to provide correct results, within an agreed level. This points
out the need for some kind of logic in service execution planners to determine the number of
shots needed to provide a correct solution. It should also be noted that predictions can affect
the planning, availability, and accuracy of the platforms’ results and all of this will impact
the service qualities that will have been previously negotiated with the customers. These are
therefore issues that, while affecting the technical aspects of future quantum services platforms,
will also affect their financial profitability.

Response times. Other evaluated parameter was response time. The measure corresponds
to the time elapsed between sending the request and receiving the result. This time has
been measured for all the machines where the code has been correctly executed. Specifically,
the SV1 and LocalSimulator gate-based simulators, and the D-wave 2000_Q6 and D-wave
Advantage adiabatic quantum machines. For the first ones, the difference is significant. In the
LocalSimulator, the execution took about 3 seconds with 1000 and 10000 shots, and about 7
seconds with 100000 shots. However, in SV1 it took an average of 27 seconds, with a margin of
up to 10 seconds between the fastest and slowest runs. In the case of adiabatic machines, the
result is similar for both. In the case of D-wave 2000_Q6, the runs exceed 20 seconds, and in the
case of D-wave Advantage 25 seconds.

From this, it can be concluded that the highest cost in terms of time is incurred when sending
the quantum code to execution. Possibly, due to the waiting times in the queue. Nevertheless,
these results give the user a feeling of unreliability when using the platforms which, in real
service engineering, must be avoided. Dealing with this will again require quantum service
platform planners to count on reliable resources and estimates. This highlights how far current
quantum service platforms are from reaching to be acceptable to potential customers of a
quantum services platform.
Economic cost. Lastly, the economic cost of invoking each solution has been considered.

At the moment, Amazon Braket establishes a fixed price per quantum task executed, which is
the same for all the supported hardware. Moreover, an additional cost is paid for each shot and
this cost is different for the different hardware. These costs, while predictable if the hardware
to be used and the number of shots to be executed are known, are far from what is needed to
agnostically implement microservices on hybrid quantum-classic systems. Especially due to
the uncertainty that arises from the unavailability of services, response time, uptime, state of
the quantum system, and so on, parameters are extremely important to be able to assure the
quality and SLAs inherent in services.
Furthermore, from the evaluation performed, some other more abstract questions arise as

well. First and foremost, there is a need for abstractions to define quantum problems in a more
general way. This abstraction could be used as a starting point that can be specialized in terms
of quantum annealing, gate-based circuits, or whatever future technology or new programming
paradigm appears for quantum computing. An initial solution, for the specific case presented in

49

this paper, could be to develop a single generic endpoint in charge of unifying the adiabatic
and gate-based solutions. Such an endpoint will have the responsibility of adopting an abstract
representation of the TSP problem to the needs of the specific quantum hardware in which it
will be executed. Even then, the solution will still depend on the service platform, Braket in this
case. This remarks one unresolved question in quantum service engineering. When a service
is invoked, the invoker only cares for the response. The service platform should address the
execution of different architectures and the problem formulation for each of them if there is a
benefit in doing so. Delegating these responsibilities to the client makes it more tightly coupled
with the microservice and reduces the benefits provided by service engineering.

To summarizing, given the above-mentioned problems, current quantum services platforms
pose the following inconveniences for the development of quantummicroservices. First, services
are tightly coupled with the quantum code to be executed. Moreover, services are also tightly
coupled with the hardware in which the quantum code will be executed. Additionally, platforms
do not allow a service implementation to be transparently replaced by another, as can happen
in traditional services as long as the API is maintained. Also, quantum platforms are not able to
decide, on execution time, where and how a service will be executed to optimize answering
petitions based on performance aspects of the different supported hardware. Finally, all the
experiments developed in this paper involve only a single service which is completely unreal.
The most simple example of a real microservices-based system would involve several ones.
However, there is also an absolute lack of mechanisms for quantum services orchestration. All
of these limitations have a significant impact on some of the most relevant aspects of quality
services, like composability, maintainability, reusability, or modularity of quantum services
limiting the current potential of these services. These limitations affect not only researchers or
developers but also the platforms that provide access to quantum hardware. The commercial
success of cloud computing and services is supported by the elasticity provided to developers
and the optimization of hardware usage provided to the hardware owners. Similar levels of
flexibility and optimization should be possible in the quantum domain but additional research
efforts are needed in quantum service engineering.

6. Conclusion and future works

In this paper, we have presented an implementation of a quantum microservice and the problem
that arises from trying to integrate it in a hybrid microservices architecture. We have used
Amazon Braket to test the implemented microservice on quantum hardware from three dif-
ferent vendors and to detect current limitations in the domain of hybrid classical-quantum
microservices.
The performed experiments have allows us to clearly show the limitations of the current

quantum computers platform for the development and exploitation of quantum microservices.
Intense research efforts are still needed to bring the benefits of service-oriented computing and
microservices to the quantum computing domain.
Since quantum software engineering is still a very young discipline, most of the areas that

compose it are just starting to attract the interest of researchers, including hybrid microservices
architectures. However, the change in the computing paradigm that implies quantum computing

50

means that we cannot directly translate the techniques and tools of classical microservices and
expect them to work flawlessly in the new environment. Putting a quantum algorithm inside
a microservice is not enough to create a quantum microservices, there needs to be an effort
to generate new knowledge, techniques, methodologies,... that helps bridge the gap between
classical microservices and the advantages of quantum computers.

Acknowledgments

This work has been partially funded by the project RTI2018-094591-B-I00 (MCI/AEI/FEDER,UE),
the 4IE+ Project (0499-4IE-PLUS-4-E) funded by the Interreg V-A España-Portugal (POCTEP)
2014-2020 program, by the Department of Economy, Science and Digital Agenda of the Gov-
ernment of Extremadura (GR18112, IB18030), and by the European Regional Development
Fund.

References

[1] A. Steane, Quantum computing, Reports on Progress in Physics 61 (1998) 117.
[2] J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2 (2018) 79.
[3] E. R. MacQuarrie, C. Simon, S. Simmons, E. Maine, The emerging commercial landscape

of quantum computing, Nature Reviews Physics 2 (2020) 596–598.
[4] B. Sodhi, Quality attributes on quantum computing platforms, arXiv preprint

arXiv:1803.07407 (2018).
[5] A. McCaskey, E. Dumitrescu, D. Liakh, T. Humble, Hybrid programming for near-term

quantum computing systems, in: 2018 IEEE International Conference on Rebooting
Computing (ICRC), IEEE, 2018, pp. 1–12.

[6] A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, T. S. Humble, Xacc: a system-
level software infrastructure for heterogeneous quantum–classical computing, Quantum
Science and Technology 5 (2020) 024002.

[7] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,
Microservices: yesterday, today, and tomorrow, Present and ulterior software engineering
(2017) 195–216.

[8] M. Piattini, G. Peterssen, R. Pérez-Castillo, J. L. Hevia, M. A. Serrano, G. Hernández, I. G. R.
de Guzmán, C. A. Paradela, M. Polo, E. Murina, L. Jiménez, J. C. Marqueño, R. Gallego,
J. Tura, F. Phillipson, J. M. Murillo, A. Niño, M. Rodríguez, The talavera manifesto for
quantum software engineering and programming, in: Short Papers Proceedings of the 1st
InternationalWorkshop on the QuANtum SoftWare Engineering & pRogramming, Talavera
de la Reina, Spain, February 11-12, 2020, volume 2561 of CEUR Workshop Proceedings, 2020,
pp. 1–5.

[9] O. Zimmermann, Microservices tenets, Computer Science-Research and Development 32
(2017) 301–310.

[10] J. Bogner, A. Zimmermann, Towards integrating microservices with adaptable enterprise
architecture, in: 2016 IEEE 20th International Enterprise Distributed Object Computing
Workshop (EDOCW), IEEE, 2016, pp. 1–6.

51

[11] J. Bogner, J. Fritzsch, S. Wagner, A. Zimmermann, Microservices in industry: insights into
technologies, characteristics, and software quality, in: 2019 IEEE International Conference
on Software Architecture Companion (ICSA-C), IEEE, 2019, pp. 187–195.

[12] A. Sill, The design and architecture of microservices, IEEE Cloud Computing 3 (2016)
76–80.

[13] L. Chen, Microservices: architecting for continuous delivery and devops, in: 2018 IEEE
International conference on software architecture (ICSA), IEEE, 2018, pp. 39–397.

[14] M. Rahaman, M. M. Islam, A review on progress and problems of quantum computing
as a service (qcaas) in the perspective of cloud computing, Global Journal of Computer
Science and Technology (2015).

[15] J. Zhao, Quantum software engineering: Landscapes and horizons, CoRR abs/2007.07047
(2020). URL: https://arxiv.org/abs/2007.07047. arXiv:2007.07047 .

[16] M. Piattini, G. Peterssen, R. Pérez-Castillo, Quantum computing: A new software en-
gineering golden age, ACM SIGSOFT Softw. Eng. Notes 45 (2020) 12–14. URL: https:
//doi.org/10.1145/3402127.3402131. doi:10.1145/3402127.3402131 .

[17] J. Barzen, F. Leymann, M. Falkenthal, D. Vietz, B. Weder, K. Wild, Relevance of near-term
quantum computing in the cloud: A humanities perspective, in: D. Ferguson, C. Pahl,
M. Helfert (Eds.), Cloud Computing and Services Science - 10th International Conference,
CLOSER 2020, Prague, Czech Republic, May 7-9, 2020, Revised Selected Papers, volume
1399 of Communications in Computer and Information Science, Springer, 2020, pp. 25–58.
doi:10.1007/978- 3- 030- 72369- 9_2 .

[18] K. Wild, U. Breitenbücher, L. Harzenetter, F. Leymann, D. Vietz, M. Zimmermann,
TOSCA4QC: two modeling styles for TOSCA to automate the deployment and orchestra-
tion of quantum applications, in: 24th IEEE International Enterprise Distributed Object
Computing Conference, EDOC 2020, Eindhoven, The Netherlands, October 5-8, 2020, IEEE,
2020, pp. 125–134. doi:10.1109/EDOC49727.2020.00024 .

[19] G. G. Guerreschi, A. Y. Matsuura, QAOA for Max-Cut requires hundreds of qubits for
quantum speed-up, Scientific Reports 2019 9:1 9 (2019) 1–7. URL: https://www.nature.
com/articles/s41598-019-43176-9. doi:10.1038/s41598- 019- 43176- 9 .

[20] M. Streif, M. Leib, Comparison of QAOA with Quantum and Simulated Annealing (2019).
URL: https://arxiv.org/abs/1901.01903v1. arXiv:1901.01903 .

[21] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-
Guzik, J. L. O’Brien, A variational eigenvalue solver on a quantum processor, Nature
Communications 5 (2013). URL: https://arxiv.org/abs/1304.3061v1. doi:10.1038/ncomms5213 .
arXiv:1304.3061 .

[22] J. R. McClean, J. Romero, R. Babbush, A. Aspuru-Guzik, The theory of variational hybrid
quantum-classical algorithms, New Journal of Physics 18 (2015). URL: https://arxiv.org/
abs/1509.04279v1. doi:10.1088/1367- 2630/18/2/023023 . arXiv:1509.04279 .

[23] S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, D. A. Lidar, Experimental signature of
programmable quantum annealing, Nature communications 4 (2013) 1–8.

[24] R. Wille, R. Van Meter, Y. Naveh, Ibm’s qiskit tool chain: Working with and developing for
real quantum computers, in: 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), IEEE, 2019, pp. 1234–1240.

[25] R. H. Warren, Adapting the traveling salesman problem to an adiabatic quantum computer,

52

https://arxiv.org/abs/2007.07047
http://arxiv.org/abs/2007.07047
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1145/3402127.3402131
http://dx.doi.org/10.1145/3402127.3402131
http://dx.doi.org/10.1007/978-3-030-72369-9_2
http://dx.doi.org/10.1109/EDOC49727.2020.00024
https://www.nature.com/articles/s41598-019-43176-9
https://www.nature.com/articles/s41598-019-43176-9
http://dx.doi.org/10.1038/s41598-019-43176-9
https://arxiv.org/abs/1901.01903v1
http://arxiv.org/abs/1901.01903
https://arxiv.org/abs/1304.3061v1
http://dx.doi.org/10.1038/ncomms5213
http://arxiv.org/abs/1304.3061
https://arxiv.org/abs/1509.04279v1
https://arxiv.org/abs/1509.04279v1
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://arxiv.org/abs/1509.04279

Quantum information processing 12 (2013) 1781–1785.
[26] R. H. Warren, Solving the traveling salesman problem on a quantum annealer, SN

Applied Sciences 2 (2020) 1–5. URL: https://doi.org/10.1007/s42452-019-1829-x. doi:10.
1007/s42452- 019- 1829- x .

[27] A. Matsuo, Y. Suzuki, S. Yamashita, Problem-specific Parameterized Quantum Circuits of
the VQE Algorithm for Optimization Problems, arXiv (2020). URL: http://arxiv.org/abs/
2006.05643. arXiv:2006.05643 .

[28] K. Srinivasan, S. Satyajit, B. K. Behera, P. K. Panigrahi, Efficient quantum algorithm for
solving travelling salesman problem: An IBM quantum experience, arXiv (2018). URL:
http://arxiv.org/abs/1805.10928. arXiv:1805.10928 .

[29] J. W. Ohlmann, B. W. Thomas, A compressed-annealing heuristic for the traveling salesman
problem with time windows, INFORMS Journal on Computing 19 (2007) 80–90.

[30] C. Papalitsas, T. Andronikos, K. Giannakis, G. Theocharopoulou, S. Fanarioti, A qubo
model for the traveling salesman problem with time windows, Algorithms 12 (2019) 224.

[31] P. Date, R. Patton, C. Schuman, T. Potok, Efficiently embedding QUBO problems on
adiabatic quantum computers, Quantum Information Processing 18 (2019) 117. URL:
https://doi.org/10.1007/s11128-019-2236-3. doi:10.1007/s11128- 019- 2236- 3 .

[32] A. Mahasinghe, R. Hua, M. J. Dinneen, R. Goyal, Solving the Hamiltonian Cycle Prob-
lem using a Quantum Computer, in: ACM International Conference Proceeding Se-
ries, Association for Computing Machinery, New York, NY, USA, 2019, pp. 1–9. URL:
https://dl.acm.org/doi/10.1145/3290688.3290703. doi:10.1145/3290688.3290703 .

[33] C. Durr, P. Hoyer, A Quantum Algorithm for Finding the Minimum (1996). URL: http:
//arxiv.org/abs/quant-ph/9607014. arXiv:9607014 .

[34] A. P. Adelomou, E. G. Ribe, X. V. Cardona, Using the Parameterized Quantum Circuit
combined with Variational-Quantum-Eigensolver (VQE) to create an Intelligent social
workers’ schedule problem solver, arXiv (2020). URL: http://arxiv.org/abs/2010.05863.
arXiv:2010.05863 .

53

https://doi.org/10.1007/s42452-019-1829-x
http://dx.doi.org/10.1007/s42452-019-1829-x
http://dx.doi.org/10.1007/s42452-019-1829-x
http://arxiv.org/abs/2006.05643
http://arxiv.org/abs/2006.05643
http://arxiv.org/abs/2006.05643
http://arxiv.org/abs/1805.10928
http://arxiv.org/abs/1805.10928
https://doi.org/10.1007/s11128-019-2236-3
http://dx.doi.org/10.1007/s11128-019-2236-3
https://dl.acm.org/doi/10.1145/3290688.3290703
http://dx.doi.org/10.1145/3290688.3290703
http://arxiv.org/abs/quant-ph/9607014
http://arxiv.org/abs/quant-ph/9607014
http://arxiv.org/abs/9607014
http://arxiv.org/abs/2010.05863
http://arxiv.org/abs/2010.05863

	1 Introduction
	2 Background
	3 Traveling Salesman Problem
	3.1 Formulation of the TSP problem
	3.2 TSP on Quantum Computing Architectures
	3.2.1 TSP on Adiabatic Quantum Computing
	3.2.2 TSP on Gate-based Quantum Computing

	4 Quantum microservices
	4.1 Adiabatic quantum computing endpoint
	4.2 Gate-based quantum computing endpoint

	5 Quantum-Classical Hybrid Microservices System Trial Evaluation
	6 Conclusion and future works

