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Abstract 
As the quantum software matures, the quantum codebases grow both in size and in complexity, 

and so does the task of testing them and verifying their correctness. 

In this paper we show how to test and validate several common types of quantum programs 

written in the quantum programming language Q# using the tools provided by the Microsoft 

Quantum Development Kit. Our approach uses multiple simulators and library tools for 

program testing and resource estimation, performing these steps before running the programs 

on quantum hardware. The demonstrated approach is illustrated with code examples from the 

Quantum Katas, a collection of quantum programming tutorials that provide immediate 

feedback for the learner’s solution. 
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1. Introduction

Quantum program validation is an important branch of quantum computing and quantum 

programming. As quantum software matures, quantum codebases grow both in size and in complexity, 

and so does the task of testing them and verifying their correctness. The quantum software industry 

should take advantage of the lessons given by classical software engineering and incorporate program 

testing early in the quantum software development process. Ideally development of unit tests and end-

to-end tests should happen in parallel with the development of the main quantum program, following a 

test-driven development process. 

Testing quantum programs presents a new challenge compared to testing classical software, which 

arises from the fundamental differences between quantum and classical computing. A variety of 

approaches have been proposed, from full-state simulation of the programs [1] to formal verification 

[2] and interactive theorem provers [3].

In this paper we show how to test and validate several common types of quantum programs written

in the quantum programming language Q# [4] using the tools provided by the Microsoft Quantum 

Development Kit [5]. Our approach uses multiple simulators and library tools to perform testing and 

resource estimation before running the programs on quantum hardware. 

This paper is structured as follows: Section 2 offers an overview of the general quantum software 

development workflow. Section 3 introduces Microsoft Quantum Development Kit, which offers the 

tools for each step of quantum software development. Section 4 briefly covers the Quantum Katas [6], 

the collection of programming tutorials and exercises that use unit testing extensively to provide 

immediate feedback to the learner. Section 5 dives into several common types of quantum programs 

and the ways to implement unit tests for them using the QDK, using the code snippets from the Quantum 

Katas as an illustration. 
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2. General quantum software development workflow 

Quantum software development for a reasonably complex quantum application typically goes 

through the following stages: 

1. Identifying the algorithm to be applied and implementing its quantum portion. At this 

stage the developer should take advantage of high-level features of the chosen programming 

toolkit to focus on the high-level logic of the code, rather than on low-level implementation 

details. 

2. Integrating it with the classical portion of the algorithm. Quantum algorithms are typically 

used as parts of hybrid workflows that combine them with classical libraries and tools, using 

each type of tools to solve the problems for which they are best suited. For example, quantum 

chemistry tools rely on classical chemistry simulation packages such as NWChem to formulate 

the inputs to the quantum portion of the algorithm [7]. 

3. Running quantum code in simulation. Quantum simulators – classical programs that simulate 

certain aspects of behavior of a quantum system – allow the developer to run their quantum 

programs to solve a small instance of the problem, and to test their correctness.  

4. Estimating the required resources. This stage allows to estimate the hardware resources (such 

as the number of qubits and the circuit depth) required to execute the quantum program for a 

larger instance of the problem to figure out whether hardware execution is possible, or to 

optimize the algorithm even if it does not fit within the specifications of the current hardware. 

5. Running the program on quantum hardware. 

Ideally the programming toolkit used for quantum software development should provide tools for 

all stages of this workflow to enable smooth transitions and to reduce the number of errors introduced 

between stages. 

 

3. Microsoft Quantum Development Kit overview 

Microsoft’s Quantum Development Kit (QDK) is a set of open-source tools designed for quantum 

software development at scale. Let’s take a quick look at its components and their matching to the 

workflow we’ve seen in Section 2. 

 
Figure 1: Quantum software engineering workflow and QDK tools supporting each step 

 

The most recognizable element of the QDK is Q#, a high-level quantum programming language [4]. 

Q# is a domain-specific programming language, meaning that it designed specifically for expressing 

quantum programs: it lacks a lot of functionality of general-purpose programming languages, such as 

file system access or database access, but it natively implements a lot of quantum programming patterns, 

such as qubit management, automatic generation of adjoint and controlled variants of quantum 

operations, repeat-until-success loops, conjugations, and others. A lot of other tasks common in 
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quantum programming languages, such as gate synthesis, auxiliary qubit management, and quantum-

specific optimizations, are performed by the compiler automatically without the developer’s 

involvement. 

The Q# programming language is augmented with the QDK libraries, which include the standard 

libraries, implementing patterns that are common for quantum programs, and the domain-specific 

libraries, offering higher level algorithms such as chemistry and numerics. The standard libraries offer 

a variety of tools, from small convenience routines such as ControlledOnInt function to larger building 

blocks such as state preparation, quantum Fourier transform, and phase estimation. They also include 

tools for developing unit tests, which we’ll discuss in more detail in Section 5. 

Q# programs can be easily integrated with Python and .NET host programs, which allows developers 

to take advantage of all classical libraries and tools developed in these ecosystems in the past. 

The QDK includes a variety of simulators, from the full-state simulator that imitates a quantum 

system perfectly to the Toffoli simulator convenient for working with reversible computations and the 

recently introduced experimental simulators designed to simulate noisy systems. 

Two of the simulators shipped as part of the QDK, resources estimator and trace simulator, perform 

the task of resources estimation and, for the latter, several program validation tasks which can be 

performed without full program simulation, such as checks for the program applying operations to 

qubits that have already been released. 

Finally, the QDK can be used to submit jobs to quantum hardware via Azure Quantum. 

All tools in the Microsoft Quantum Development Kit use the same Q# code for all steps of the 

workflow. 

4. The Quantum Katas: programming tutorials with feedback 

The Quantum Katas [6] are an open-source project which aims to aid learning quantum computing 

and Q# programming. Each kata is a sequence of programming tasks which cover one topic (e.g., 

quantum measurements) or several related topics (e.g., quantum oracles and Grover’s search algorithm). 

The tasks in the katas are purely practical; each task describes a problem and asks the learner to write a 

fragment of Q# code that would implement the solution. 

 

 
Figure 2: An example of state preparation task from the Quantum Katas 

 

The key element of the Quantum Katas is immediate automated feedback that they provide, enabling 

effective self-paced learning even without access to other sources of feedback (such as an instructor). 

Each kata includes a testing framework which validates the tasks’ solutions as soon as they are written. 

The testing framework is implemented as a series of unit tests, one per task. Each unit test uses the full-

state quantum simulator included in the QDK and the techniques described in Section 5 to simulate a 

quantum program that sets up the inputs required by the task, runs the solution, and processes the results. 

This enables the learner to solve the katas on a classical computer without access to quantum hardware 

and to get fast and reliable feedback on their solutions. 
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5. Testing quantum programs with the QDK 

Our approach to testing is based on several assumptions and requirements defined by the nature of 

the Quantum Katas project:  

1. Each code fragment that needs to be tested (“solution”) performs a task for which we have a 

“reference solution” – the known correct implementation of this task. The unit tests don’t always 

rely on it, but often comparing the solution with the reference solution is the easiest way to 

implement a test. 

2. The solution should be evaluated based on whether what it does matches the task description, 

rather than on the exact path it takes to accomplish the task. Consider, for example, the following 

task: given a pair of qubits in the |00⟩ state, prepare one of the Bell states |Φ−⟩ = 1

√2
(|00⟩ − |11⟩). 

There are multiple sequences of gates that will do this, but all of them are acceptable, as long the 

learner’s solution ended up with the qubits in the right state. 

3. The tests need to be written completely in Q#. Q# code can be easily integrated with .NET or 

Python, allowing for unit tests that combine quantum code with arbitrary classical processing, but 

the testing framework used by the Quantum Katas requires the tests to be written in Q# alone. 

 

5.1. Writing unit tests in Q# 

A Q# unit test is an arbitrary Q# operation or function that takes no arguments, returns Unit (i.e., 

has no return), and is marked with @Test attribute which defines the simulator used to run this unit test. 

Here is an example of a unit test which verifies that the function ClassicalIdentity implements the 

classical function 𝑓(𝑥)  =  𝑥 which takes an integer between 0 and 1 as an input. The Fact library 

function checks that the Boolean value passed as the first argument is true and throws an exception if 

it’s not. 
namespace Tests { 
    open Microsoft.Quantum.Diagnostics; 
 
    @Test("QuantumSimulator") 
    function TestClassicalIdentity() : Unit { 
        for i in 0 .. 1 { 
            Fact(ClassicalIdentity(i) == i,  
                $"Incorrect function return for input {i}"); 
        } 
    } 
} 

You can read more about creating Q# test projects in the Q# documentation[?]. 

5.2. Testing state preparation routines 

The task of preparing the Bell state |Φ−⟩ = 1

√2
(|00⟩ − |11⟩) is an example of a state preparation 

task, which is typically formulated as follows: given a qubit or several qubits in the |0⟩ state, prepare 

the specified state on them. 

Q# doesn’t allow the program to have direct access to the amplitudes of the quantum state vector, 

since that doesn’t match the physical reality of a quantum-mechanical system. Instead, to test this task, 

we can use the full state simulator provided by the QDK and the AssertAllZero library operation from 

the Microsoft.Quantum.Diagnostics namespace which does nothing if all qubits of the given array are 

in the |0⟩ state and fails otherwise. Since the task asks the learner to prepare a non-zero state |Φ−⟩, 
rather than the |00⟩ state, we’ll need to use one more tool: the “reference solution” – a unitary 

transformation 𝑅 which is known to transform the state |00⟩ into the state |Φ−⟩: 
𝑅|00⟩ = |Φ−⟩ 

We need to check whether the learner’s solution 𝑈 transforms the state |00⟩ into the state |Φ−⟩ too: 

𝑈|00⟩ = |Φ−⟩ 
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We can rewrite this check by applying adjoint of the reference solution 𝑅† to both sides: 

𝑅†𝑈|00⟩ = 𝑅†|Φ−⟩ = 𝑅†𝑅|00⟩ = |00⟩ 

We see that if we start with the |00⟩ state and apply first the learner’s solution and then the adjoint 

of the reference solution, we’ll end up with the |00⟩ state again if and only if the learner’s solution did 

indeed prepare the |Φ−⟩ state. Importantly, the results of this check don’t depend on the way the solution 

prepared the required state; it doesn’t even have to be a unitary transformation for the check to work. 

The code for this test will look as follows: 
@Test("QuantumSimulator") 
operation TestPrepareBellStatePhiMinus () : Unit { 
    use qs = Qubit[2]; 
    PrepareBellStatePhiMinus(qs); 
    Adjoint PrepareBellStatePhiMinus_Reference(qs); 
    AssertAllZero(qs); 
} 

The reference solution can be implemented specifically for the task, or it can use a library operation, 

such as PrepareArbitraryStateD operation from the Microsoft.Quantum.Preparation namespace. 

5.3. Testing implementation of a general unitary transformation 

Another common type of tasks are tasks which ask the learner to implement a unitary transformation. 

This can include unitary transformations of a special form, such as quantum oracles, but generally the 

unitary transformations can have arbitrary form. 

To test this type of tasks, we can compare it to the reference implementation using the Choi–

Jamiołkowski isomorphism [8] [9] to reduce the comparison of two unitaries to a comparison of a 

quantum state to the all-zeros state, which we’ve seen in the section 5.2. Let’s look at how it works for 

the case of single-qubit unitaries (multi-qubit unitaries follow the same principle). 

1. We start by preparing a state |Φ+⟩ = 1

√2
(|00⟩ + |11⟩) 

2. Apply the learner’s solution that implements the unitary 𝑈 to the second qubit: 
1

√2
(|0⟩ ⊗ 𝑈|0⟩ + |1⟩ ⊗ 𝑈|1⟩) 

This state carries all information about the effects of the unitary on all basis states, and thus, all 

the information about the unitary itself (up to a global phase). 

3. Now apply the adjoint of the reference implementation 𝑅 to the second qubit: 
1

√2
(|0⟩ ⊗ 𝑅†𝑈|0⟩ + |1⟩ ⊗ 𝑅†𝑈|1⟩) 

If the unitaries 𝑅 and 𝑈 are the same, their effects on the state are going to cancel out for both 

basis states |0⟩ and |1⟩, and we’ll get the state |Φ+⟩ with which we started. If the unitaries are 

different, their effects either on the |0⟩ state or on the |1⟩ state will not cancel out, and we’ll end up 

with a different state. 

4. To check whether we ended up with the original state |Φ+⟩, we can use the trick from the 

previous section: apply the adjoint of the routine used to prepare it from the |0⟩ state and compare 

the result to the |0⟩ state. 

 

The AssertOperationsEqualReferenced library operation from the Microsoft.Quantum.Preparation 

namespace implements this logic for comparing unitaries acting on arbitrary number of qubits: 
@Test("QuantumSimulator") 
operation TestCompoundGate () : Unit { 
    AssertOperationsEqualReferenced(3, CompoundGate, CompoundGate_Reference); 
} 

5.4. Verifying the limits on the resources used by an operation 

Sometimes the unit tests need to validate not only what the code does, but also how it does that. This 

is particularly important for projects such as the Quantum Katas, which need to check that the learner’s 

solution not only arrives to the right answer, but also that it doesn’t use any unintended shortcuts in the 

process. Such checks can include restricting the number of qubits used by the solution, the number of 
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certain operations or measurements, or more complicated conditions such as the number of any 

operations acting on three or more qubits. 

For example, during the testing of the Deutsch-Jozsa algorithm kata prototype one of the testers 

implemented the classical solution to the problem solved by the Deutsch-Jozsa algorithm (figuring out 

whether the given function is constant or balanced), applying the given quantum oracle to each of the 

basis states in turn to evaluate the function in a classical manner, rather than the Deutsch-Jozsa 

algorithm itself. The learner can be confused by the testing harness accepting such a solution, so the 

test had to be augmented with the extra check that ensured that the given quantum oracle was used 

exactly once. 

As another example, learners who are getting started with reversible computation are often tempted 

to implement a quantum oracle for a classical function by measuring the input state, computing the 

value of the function for this input classically, and setting the state of the output qubit to this value. If 

the unit test for this kind of problems compares the effects of the quantum oracle on each basis state to 

the output of the classical function, it needs to additionally check that the implementation didn’t use 

any measurements. 

 

There are multiple approaches to verifying this kind of restrictions. For example, you could use the 

QDK resources estimator to create a separate test, written in C# or in Python, which would ignore all 

logical checks and focus on resource constraint verification alone. 

The Quantum Katas use two approaches that allow to incorporate the resource constraint verification 

into the test code which checks the logical correctness of the solution, so that all testing code for each 

task is contained in a single unit test. 

The first approach relies on two library operations from the Microsoft.Quantum.Diagnostics 

namespace, AllowAtMostNCallsCA and AllowAtMostNQubits. These operations assert that the Q# code 

between a call to this operation and a matching call to its adjoint uses at most the given number of calls 

to the given operation or allocates at most the given number of qubits, respectively. It is convenient to 

use them with the conjugation construct within … apply that is a part of Q# core language. 

For example, task 1.2 of the Oracles tutorial asks the learner to implement a phase oracle for the N-

bit function 𝑓(𝑥)  =  [𝑥 =  7] without using the phase kickback trick. The task is implemented as a 

unitary transformation, so the logical part of the test can be done using the approach described in section 

5.3. The easiest proxy for the check that the learner’s solution doesn’t use phase kickback trick is the 

check that there are no extra qubits allocated on top of the 2N qubits required to use the 

AssertOperationsEqualReferenced library operation. The code for the check will look like this: 
@Test("QuantumSimulator") 
operation TestIsSevenPhaseOracle() : Unit { 
    let N = 3; 
    within { 
        AllowAtMostNQubits(2*N, "You are not allowed to allocate extra qubits"); 
    } apply { 
        // Perform the logic correctness check for the solution 
        AssertOperationsEqualReferenced(N, Is7PhaseOracle, Is7PhaseOracle_Reference); 
    } 
} 

 

The second approach involves implementing a custom simulator that would count each operation 

used by the Q# code and produce those statistics on demand. The Microsoft Quantum Development Kit 

provides API to extend existing simulators or build custom simulators from scratch for various 

purposes.  

The custom simulator used in the Quantum Katas project CounterSimulator extend the standard full 

state simulator provided by the QDK with the resources-counting functionality. It tracks three kinds of 

resources: the maximum qubits allocated by the program, the number of times each individual operation 

has been called, and the total number of multi-qubit operations used by the program. Unlike the 

resources estimators included in the QDK, the operation counters allow to obtain the statistics for all 

operations, not just the primitive gates, which is very useful for higher-level logical checks, such as 

verifying the restrictions on the number of oracle calls. 
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This approach allows to implement more sophisticated checks. For example, task 6 of the 

JointMeasurements kata asks the learner to implement the CNOT gate using joint measurements for the 

input state of a special form (𝛼|0⟩ + 𝛽|1⟩) ⊗ |0⟩. The test for this task will use the approach described 

in section 5.2 (since the operation does not have to implement the CNOT gate for all input states, the 

approach that verifies that the correct state has been prepared is more appropriate than the approach that 

verifies that the correct unitary has been implemented), but additionally it has to make sure that the 

solution doesn’t use any multi-qubit operations other than the joint measurement operations (Measure 

or MeasureAllZ), since otherwise a solution consisting of the CNOT or Controlled X gates would 

achieve the formal goal without making the educational point. 

The unit test will use three of the functions implemented by CounterSimulator: 

ResetOracleCallsCount which resets all counters of the simulator, GetOracleCallsCount which returns 

the number of times the given operation was called since the last reset, and GetMultiQubitOpCount which 

returns the number of times any multi-qubit operation was called since the last reset. 
@Test("Microsoft.Quantum.Katas.CounterSimulator") 
operation TestControlledXViaMeasurements() : Unit { 
    // Allocate two qubits and prepare them in a state (α|0⟩ + β|1⟩) ⊗ |0⟩. 
    use qs = Qubit[2]; 
    Ry(2.0 * 0.123, qs[0]); 
    // Reset operation calls counters. 
    ResetOracleCallsCount(); 
    // Apply the operation that needs to be tested. 
    ControlledX(qs); 
    // Get the number of multi-qubit operations that are not measurements 
    // using CounterSimulator functionality. 
    let nMultiQubitNonMeasurementOpCount = GetMultiQubitOpCount() 
        - GetOracleCallsCount(Measure) - GetOracleCallsCount(MeasureAllZ); 
    Fact(nMultiQubitNonMeasurementOpCount <= 1,  
        "You are not allowed to use multi-qubit gates in this task."); 
    // Continue the logical testing following the approach from section 5.1. 
    // ... 
} 

You can find the complete CounterSimulator code in the Quantum Katas repository [10]. This 

approach can be customized to fit the exact needs of the unit test being implemented; for example, the 

functionality of counting the multi-qubit operations used by the program has been implemented to test 

the tasks of the JointMeasurements kata alone. 
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