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We consider the problem of solving a formula equation, i.e., given a formula
∃X ϕ where ϕ is first-order and X is a tuple of predicate variables, to find
a substitution [X\ψ] s.t. ϕ[X\ψ] is a valid first-order formula. This problem is
also known as Boolean solution problem in the literature [9] and is closely related
to second-order quantifier elimination.

More specifically, we focus on the class of Horn formula equations, which is
defined by restricting ϕ to be a Horn clause set w.r.t. the predicate variables.
We state and prove a fixed-point theorem for Horn formula equations based on
expressing the fixed-point computation of a minimal model (in the sense of logic
programming) of a set of Horn clauses on the object level as a formula in first-
order logic with a least fixed-point operator. This result is shown by an extension
of the fixed-point approach of Nonnengart and Sza las to second-order quantifier
elimination [7]. Our fixed-point theorem applies not only to the usual semantics
of second-order logic and first-order logic with a least fixed-point operator but
also to model abstractions, a semantics for logical formulas that corresponds to
abstract interpretation of programs using Galois connections [2].

Our fixed-point theorem allows both new results and simpler proofs of exist-
ing results as applications and corollaries.

1. It entails expressibility of the weakest precondition and the strongest post-
condition, and thus the partial correctness of an imperative program, in
first-order logic with a least fixed-point operator.

2. It allows a generalisation of a result by Ackermann [1] on approximating a
second-order formula by first-order formulas in a direction different from the
recent generalisation [8].

3. It allows to obtain a result from a recently introduced approach to automated
inductive theorem proving with tree grammars [3] as another straightforward
corollary.

4. Since it incorporates abstract interpretation, it permits to considerably sim-
plify the proof of the decidability of affine formula equations originally pre-
sented in [5].

This work is rooted in the second author’s master’s thesis [6]. Some of these
results have been presented at the 8th Workshop on Horn Clauses for Verification
and Synthesis [4].
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