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Abstract. We consider geometric graphs in terms of graph classes which
are axiomatically described by logical formulae. Our general method to
prove graph properties is to show that one graph class is contained in
another one, thus, the subclass inherits all properties already known
for the superclass. The methods we use for automatically proving such
subclass relations are based on second-order quantifier elimination and
hierarchical reasoning. As a proof of concept we apply our method to
show in how far given specific geometric graph classes with vertices on a
plane are planar drawings. Specifically the graph classes we consider here
have been used in the context of algorithmic wireless network research.

1 Introduction

Classes of geometric graphs occurring in algorithmic wireless network research
can be described using axioms over suitable theories. Such axioms typically refer
to points in R2 (and possibly also their coordinates) and often describe geomet-
rical conditions for the existence resp. non-existence of edges.

In this paper we devise methods for checking containedness between graph
classes (our focus here are graph classes that can be described with universally
quantified axioms). If containedness cannot be proved, the methods we use allow
us to generate counterexamples.

Checking containedness is in so far of interest, as it provides a general tool to
check graph properties resulting from distributed graph algorithms. For example,
showing containedness of the class of graphs resulting from such an algorithm
with respect to the class of planar graphs implies that the algorithm produces
planar graphs as well. Though in this paper we focus on containedness and
planarity as a proof of concept, by bridging two very different disciplines, this
work is intended to provide a general future pioneering direction for the design
of local distributed algorithms in the context of wireless networks and in graphs
in general (such algorithms are used, for example, to route messages [12] or
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control the network topology [13]). The approach we propose (and the tools we
use for this) can be a good instrument in theoretical graph and network theory,
which would allow the user to test whether certain generalizations of concept
are problematic and to locate possible problems with the general formalizations.
A typical example we consider is the formalization of a distance between two
points: We can assume that graphs have vertices which are points in R2 and
the distance between points is the Euclidean distance, but we might also use
abstract metric spaces or cost functions for the edges.

Testing containedness of graph classes has been studied by the authors of
this paper in recent work. In [5], formulae representing necessary and sufficient
conditions for containedness between certain types of graph classes were derived
by hand. In [11,10] possibilities for combining symbol elimination methods were
proposed and applied to (parametric) entailment problems, and used e.g. for
checking inclusion between graph classes. In this paper, we propose automated
methods for checking inclusion without the manual component in [5]; for this we
rely on methods introduced in [11]. We are not aware of other similar approaches
to the area of computational (geometric) graph theory. Existing approaches use a
logical representation of graphs based on monadic second order logic [3] or higher
order theorem provers like Isabelle/HOL [1]. Our approach is orthogonal: it relies
on methods for second-order quantifier elimination which allow a reduction of
many problems to satisfiability modulo a suitable theory for which state of the
art SMT solvers can be used; the procedure is sound and our approach allows
us to identify situations in which completeness can be guaranteed.

Structure of the paper. In Sect. 2, we introduce concepts from geometric graph
theory. In Sect. 3 we introduce the theoretical tools for our work. In Sect. 4, using
concrete examples, we demonstrate the feasibility and strength of our approach
for showing containedness and planarity of geometrically described graphs. In
Sect. 5 we present conclusions and plans for future work.

2 Graph Classes Related to Planarity Conditions

In the following we consider graphs with vertices in a set X, which can be the
set of points in the Euclidean space R2 (or, in some cases, the set of points in an
abstract metric space (X, d)). We present a type of graph classes which can be
proved to be plane drawings (i.e. planar graphs which are drawn on the plane in
such a way that edges do not intersect). We model such graph classes by using a
unary predicate V and a binary predicate E, such that for every element x ∈ X,
V (x) is true if x is a vertex of the graph and E(x, y) is true if x, y are vertices
and there is an edge between x and y. We consider undirected graphs without
self-loops. Such properties can be described by the axioms K0:

K0 = {∀x(¬E(x, x)), ∀x, y E(x, y)→ E(y, x), ∀x, y E(x, y)→ V (x)∧ V (y)}.
We consider the following classes of graphs.

The class P of plane drawings can be described using the axiom:

(P) ∀u, v, w, x : E(w, x) ∧ πP (u, v, w, x)→ ¬E(u, v)
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where πP (u, v, w, x) is a predicate which is true iff w and x are in different half
planes defined by the line uv passing through u and v, and u and v are in different
half planes defined by the line wx passing through w and x.1 We can express
this either using analytic geometry or (if d is a metric) by the following formula:

πP(u, v, w, x) := V (u) ∧ V (v) ∧ V (x) ∧ V (w) ∧ u 6= v ∧ w 6= x∧
∃m(d(u,m) + d(m, v) = d(u, v) ∧ d(w,m) + d(m,x) = d(w, x))

The class G of Gabriel graphs [2] is axiomatized by K0 together with:

(G) ∀u, v E(u, v)↔ πG(u, v)

where πG(u, v) expresses the fact that u and v are vertices and every vertex
different from u and v lies outside of the minimal circle passing through u and
v. If m(u, v) is the middle of the segment uv, we can express this by:

πG(u, v) := V (u) ∧ V (v) ∧ u 6= v ∧
∀w
(
w 6= u ∧ w 6= v ∧ V (w)→ d(m(u, v), w) > d(m(u, v), u)

)
.

We define superclasses G→ and G← of G: G→ is defined by only keeping the ”→”
implication in (G), and G← by only keeping the ”←” implication.

The class R of relative neighborhood graphs [9] is described by K0 and:

(R) ∀u, v E(u, v)↔ πR(u, v)

where πR is defined by:

πR(u, v) := V (u)∧V (v)∧u 6= v∧∀w (V (w)→ d(u,w) ≥ d(u, v)∨d(w, v) ≥ d(u, v)).

We can define superclasses R→ and R← of R: R→ is defined by only keeping the
”→” implication in (R), and R← by only keeping the ”←” implication.

We model such graph classes using a logical language and consider extensions of
the theory of real numbers and of theories modeling the points with additional
functions symbols (V , E, distances, etc.). In [11] we proved that the properties
of theory extensions occurring in this context allow us to define sound, complete
and terminating proof procedures. We present a summary of the theoretical
results and then several examples.

3 Theories and Theory Extensions

We assume that basic notions in (many-sorted) first-order logic such as signature
Π, Π-structure, theory, satisfiability, unsatisfiability and entailment, possibly
w.r.t. a theory are known.
Let Π0=(Σ0,Pred) be a signature, and T0 be a “base” theory with signature Π0.
We consider extensions T := T0∪K of T0 with new function symbols Σ (extension
functions) whose properties are axiomatized using a set K of (universally closed)
clauses in the extended signature Π = (Σ0∪Σ,Pred), such that each clause in K
contains function symbols in Σ. Especially well-behaved are the Ψ -local theory

1 For the existence of these lines it is necessary that u 6= v and w 6= x. If, for instance,
the vertex w is located on the line through u and v, but not equal to u or v, it is
located in both half planes; hence, in this case the segments uv and wx intersect.
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extensions, i.e. theory extensions T0 ⊆ T0 ∪ K in which for every finite set G of
ground ΠC-clauses (containing an additional set C of constants) it holds that

T0 ∪ K ∪G |= ⊥ if and only if T0 ∪ K[ΨK(G)] ∪G is unsatisfiable,

where, for every set G of ground ΠC-clauses, K[ΨK(G)] is the set of instances
of K in which the terms starting with a function symbol in Σ are in ΨK(G) =
Ψ(est(K, G)), (where est(K, G) is the set of ground terms starting with a function
in Σ occurring in G or K). Ψ -local extensions can be recognized by showing that
certain partial models embed into total ones [14,8].

In local theory extensions hierarchical reasoning is possible: Assume that
T0 ⊆ T1 = T0 ∪ K is a Ψ -local theory extension. We can reduce the problem of
checking the satisfiability of any finite set G of ground clauses w.r.t. T0 ∪K to a
satisfiability test w.r.t. T0 as follows: For any finite set G of ΠC-ground clauses,
T0 ∪ K ∪ G is satisfiable iff T0 ∪ K[ΨK(G)] ∪ G is satisfiable. Let K0 ∪ G0 ∪ Def
be obtained from K[ΨK(G)] ∪ G by introducing, in a bottom-up manner, new
constants ct ∈ C for subterms t=f(c1, . . . , cn) where f∈Σ and ci are constants,
together with definitions ct=f(c1, . . . , cn) (included in Def) and replacing the
corresponding terms t with the constants ct in K and G.

Theorem 1 ([14]) Let K be a set of clauses. Assume that T0 ⊆ T1 = T0 ∪ K
is a Ψ -local theory extension and let G be a finite set of ΠC-ground clauses. Let
K0∪G0∪Def be obtained from K[ΨK(G)]∪G as explained before. Then T1∪G |=⊥

iff T0∪K0∪G0∪Con0 |=⊥, where Con0={
n∧

i=1

ci≈di → c≈d | f(c1, . . . , cn)≈c∈Def
f(d1, . . . , dn)≈d∈Def }.

Chains of extensions. We can also consider chains of theory extensions:

T0 ⊆ T1 = T0 ∪ K1 ⊆ T2 = T0 ∪ K1 ∪ K2 ⊆ · · · ⊆ Tn = T0 ∪ K1 ∪ ... ∪ Kn

in which each theory is a local extension of the preceding one. For a chain of n
local extensions a satisfiability check w.r.t. the last extension can be reduced (in
n steps) to a satisfiability check w.r.t. T0. This iterated instantiation procedure
has been implemented in H-PILoT [7] – the only restriction needed in this case
is that at each step the clauses reduced so far need to be ground.

4 Examples

In this section, we demonstrate the power of hierarchical reasoning and quantifier
elimination for automatically proving graph properties. We show here as a proof-
of-concept that the methods described in Section 3 can be used to prove the
planarity of specific Euclidean graph classes.2 For determining the concrete proof
tasks for testing containment of graph classes we used a form of abstraction that
allowed us to use SCAN [6] for second-order quantifier elimination (Section 4.1).
The proof tasks are then solved (Section 4.2) using the hierarchical reduction

2 Informations on the tests we made are available under
https://userpages.uni-koblenz.de/∼sofronie/tests-graphs-2021.
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method described in Theorem 1. This method is implemented in H-PILoT [7]
for the case when Ψ is the identity. For a proof task of the form T0 ∪ K ∪ G,
H-PILoT computes T0∪K[G]∪G, performs the hierarchical reduction described
in Theorem 1 constructing the formula T0 ∪ K0 ∪G0 ∪ Con0, and calls a prover
for the base theory (for instance Z3 or Redlog) and outputs the answer of the
selected prover3. (In general, chains of theory extensions are considered and the
instantiation procedure is iterated.)

4.1 Second-order Quantifier Elimination for Class Inclusion

We present some simple examples in which second-order quantifier elimination
allows us to determine constraints on abstract predicates used in the descrip-
tion of the classes under which inclusions hold. We analyze the type of axioms
considered in Sect. 2 using a binary predicate E for the edges and (abstract)
predicates representing additional conditions.

Example 1. Consider the classes C1 and C2, described by axioms of the form

AxCi : ∀u, v E(u, v)↔ πi(u, v) i = 1, 2

We know that C1 ⊆ C2 iff AxC1 ∧ ¬AxC2 is unsatisfiable. We have:

AxC1 ∧ ¬AxC2 ≡ ∀u, v (E(u, v)↔ π1(u, v)) ∧ ∃u, v(E(u, v) ∧ ¬π2(u, v)) ∨
∀u, v (E(u, v)↔ π1(u, v)) ∧ ∃u, v(¬E(u, v) ∧ π2(u, v))

We used SCAN to eliminate the predicate symbol E and obtained:

∃E(∀u, v E(u, v)↔ π1(u, v) ∧ ∃u, v (E(u, v) ∧ ¬π2(u, v))) ≡ ∃u, v(π1(u, v) ∧ ¬π2(u, v))
∃E(∀u, v E(u, v)↔ π1(u, v) ∧ ∃u, v (¬E(u, v) ∧ π2(u, v))) ≡ ∃u, v(¬π1(u, v) ∧ π2(u, v)).

Hence, C1 ⊆ C2 iff ∃u, v(π1(u, v) ∧ ¬π2(u, v)) ∨ (¬π1(u, v) ∧ π2(u, v)) is false
w.r.t. T . This is the case iff ∀u, v(π1(u, v)↔ π2(u, v)) is true w.r.t. T . It is easy
to see that these conditions are also equivalent to C2 ⊆ C1 and to C1 = C2. �

Example 2. Let C be a class of graphs described by axioms AxC and P the class
of plane drawings, described by the axiom AxP, where:

AxC : ∀u, v E(u, v)↔ πC(u, v)
AxP : ∀u, v, w, x E(w, x) ∧ πP(u, v, w, x)→ ¬E(u, v).

C ⊆ P iff AxC ∧ ¬AxP |=T ⊥. AxC ∧ ¬AxP is equivalent to:

∀u, v (E(u, v)↔ πC(u, v)) ∧ ∃u, v, w, x(E(w, x) ∧ πP(u, v, w, x) ∧ E(u, v)).

We used SCAN to eliminate the predicate symbol E, and obtained:

∃E(AxC ∧ ¬AxP) ≡ ∃u, v, w, x(πP(u, v, w, x) ∧ πC(w, x) ∧ πC(u, v)).

Thus, C ⊆ P iff πP(a, b, c, d) ∧ πC(c, d) ∧ πC(a, b) is unsatisfiable w.r.t. T . �
3 The answer can only be trusted if all theory extensions in the chain are local (or have

complete finite instantiation and we ensure, when preparing the input for H-PILoT,
that all necessary instances are considered).
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Remark 1 If we consider the class C→ (described by axiom AxC→ obtained by
only taking the direct implication in AxC) and use SCAN we obtain:

∃E(AxC→ ∧ ¬AxP) ≡ ∃u, v, w, x(πP(u, v, w, x) ∧ πC(w, x) ∧ πC(u, v)).

Therefore C ⊆ P iff C→ ⊆ P.

Example 3. C→ ⊆ D→ iff ∀u, v(E(u, v) → πC(u, v)) ∧ ∃a, b(E(a, b) ∧ ¬πD(a, b))
is unsatisfiable w.r.t. T . Using e.g. SCAN we prove that this is the case iff
πC(a, b) ∧ ¬πD(a, b) |=T ⊥ i.e. iff ∀x, y(πC(x, y)→ πD(x, y)) is valid w.r.t. T . �

For the type of axioms considered above, SCAN terminated and returned rela-
tively simple first-order formulae. In [4] a method for computing weakest suffi-
cient conditions for a formula F based on second-order elimination techniques is
presented; situations are identified under which conditions generated this way are
first-order formulae. These results might be useful when analyzing more general
graph classes.

4.2 Using Hierarchical Reasoning for Checking Class Inclusion

Let T be a theory used for formalizing points, distance and vertices, with two
sorts p (points, uninterpreted) and num (reals, interpreted). The concrete form
of this theory depends on the model for the set of points and distances we choose.
If we model the Euclidian plane with the Euclidean distance, T can be defined
starting from the combination of a theory of points P and the theory R of real
numbers, using a chain of theory extensions:

(E) P ∪ R ⊆ P ∪ R ∪ Freex,y ⊆ T = P ∪ R ∪ Freex,y ∪ T e
d

where x and y are the coordinate functions and T e
d is the axiom stating that the

Euclidean distance between points u, v is d(u, v) =
√

(x(u)−x(v))2+(y(u)−y(v))2.

If we model arbitrary metric spaces (X, d), T is the extension:

(M) P ∪ R ⊆ T = P ∪ R ∪ T m
d

where T m
d are the axioms of a metric. All these extensions are local: in (E) we

have extensions with free function symbols and definitional extensions [14]; in
[11] we proved that the axioms of a metric define a Ψ -local extension of P ∪R.

Example 4. We analyze the relation between the classes G→ and R→:

AxG→ : ∀u, v (E(u, v)→ πG(u, v)) AxR→ : ∀u, v (E(u, v)→ πR(u, v)).

By Example 3, G→ ⊆ R→ iff πG(u, v) ∧ ¬πR(u, v) is unsatisfiable w.r.t. T , and
R→ ⊆ G→ iff πR(u, v) ∧ ¬πG(u, v) is unsatisfiable w.r.t. T , where the predicates
πG and πR are described (for an arbitrary distance function d) by:

πG(u, v) := V (u) ∧ V (v) ∧ u 6= v∧
∀w

(
w 6= u ∧ w 6= v ∧ V (w)→ d(m(u, v), w) > d(m(u, v), u)

)
.

πR(u, v) := V (u) ∧ V (v) ∧ u 6= v ∧ ∀w (V (w)→ d(u,w) ≥ d(u, v) ∨ d(w, v) ≥ d(u, v))

where m(u, v) is the middle point of the segment uv. If u and v are considered to
be constants then both the extension of T with a function V satisfying condition
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πG(u, v), and the extension of T with a function V satisfying condition πR(u, v)
can be proved to be local. We therefore can use H-PILoT for the proof tasks.

We first consider the case where d is the Euclidean distance. Then we analyze
this problem for the more general case where d is an arbitrary metric.

Case 1: d is the Euclidean distance. We check both inclusions.
(i) To prove that R→ ⊆ G→ holds, it is sufficient to show that πR(u, v)∧¬πG(u, v)
is unsatisfiable. The formula obtained after Skolemization and simplification
from ¬πG(u, v) is a ground formula; the coordinates of the middle m of uv
can be computed as usual; we add conditions: x(p) 6= x(q) ∨ y(p) 6= y(q) for
p, q ∈ {u, v, w,m}. H-PILoT derives unsatisfiability, i.e. proves that R→ ⊆ G→.4

(ii) For proving that G→ 6⊆ R→ we show that πG(u, v) ∧ ¬πR(u, v) is satisfiable.
H-PILoT gives the answer satisfiable and produces the following model:

u = (1, 0), v = (7,−8), w = (−1,−5), m = (4,−4).

Case 2: d is an arbitrary metric. We again check for both directions of
containment whether the corresponding formula holds (assuming that we have
distinct vertices). For d we have the metric axioms, proved to be Ψ -local in [11].
For the direction πR(u, v) → πG(u, v) H-PILoT answers satisfiable and returns
the following model (impossible in the Euclidean space):

d(u, v) = 6, d(u,m) = 3, d(v,m) = 3, d(u,w) = 6, d(v, w) = 5, d(w,m) = 3.

Thus, the containment R→ ⊆ G→ is true in the Euclidean space, but not for
arbitrary metric spaces. For the direction πG(u, v) → πR(u, v) we also get a
model describing a situation which cannot occur in the Euclidean space. �

Example 5. We show that G→ ⊆ P. By Example 2, this holds iff πP(u, v, w, x)∧
πG(w, x) ∧ πG(u, v) is unsatisfiable. With the encoding with the Euclidean dis-
tance H-PILoT did not terminate after 3 minutes. If d is an arbitrary metric then
H-PILoT returns ”unsatisfiable” (after 102.62 s.), which shows that G→ ⊆ P. By
Example 4, R→ ⊆ G→ ⊆ P, hence, by Remark 1, G ⊆ P and R ⊆ P. �

We thus proved that the class G of Gabriel graphs and the class R of relative
neighborhood graphs are subclasses of the class P of plane drawings.

5 Conclusions and Future Work

We demonstrated by example that hierarchical reasoning and quantifier elimina-
tion is a powerful tool to analyze properties of graph classes defined by general
and Euclidean metrics. In subsequent work, we intend to investigate many more
graph properties, e.g., spanner properties (Euclidean, topological, energy), and
degree limitation. These concepts are of interest for algorithm design in wireless
graph models but also on graphs in general. Furthermore, we plan to significantly
expand the set of graph classes that can be analyzed with our tool set.

4 The full test where all instances are considered is available under
https://userpages.uni-koblenz.de/∼sofronie/tests-graphs-2021.
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