
OPLaX: annotating ontology design patterns at
conceptual and instance level∗

Luigi Asprino1, Valentina Anita Carriero1,
Christian Colonna1, and Valentina Presutti1,2

1 University of Bologna, Bologna, Italy
2 ISTC-CNR, Rome, Italy

Abstract. In this paper, we present OPLaX, a language for annotating
ontology design patterns (ODPs) in ontologies and knowledge graphs,
which reuses and extends existing languages. This language allows an
ontology designer to annotate ODPs implemented in ontologies, to re-
late these ODPs to the abstract modelling problems they are addressing
(named conceptual components), and to link the ODPs with their instan-
tiations in a knowledge graph (pattern instances). Moreover, we showcase
its usefulness by means of 3 real-world use cases.

Keywords: ontology design patterns, patterns annotation, conceptual
components, pattern instances, linked data visualization

1 Introduction

Ontology Design Patterns are increasingly widespread among ontologies and
knowledge graphs. Pattern-based design has become a consolidated practice for
guaranteeing good quality ontology engineering (see [3, 4]): it enables the mod-
ular design of ontologies, it favors the reuse of ontology design patterns and it
streamlines the ontology building process. Ontologies are often used as moulds
for constructing knowledge graphs (e.g. [7]), therefore ontology design patterns
(ODPs) can provide meaningful views over the data of such knowledge graphs.
The need of a shared language for annotating ontology design patterns used in
ontologies and knowledge graphs has been recognized [6, 13], leading to some
useful proposals, such as OPLa and the CP annotation schema [13, 11], and
some tool support [15].

Our experience in ontology pattern discovery [1], pattern-based visualization
of knowledge graphs [2] and the ArCo project [7] showed that at least two require-
ments are not yet addressed by the existing pattern annotation languages: (i) to
indicate, at a more abstract level, a reference frame (i.e. a conceptual component)
addressed by an annotated ODP (see the paragraph Conceptual component in
Section 2); (ii) to annotate the data that instantiate an ODP. To address these
requirements, we developed an extension of OPLa [13], called OPLaX (Ontology

∗Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



2 Luigi Asprino et al.

Pattern Language eXtended). OPLaX provides ontology designers with a lan-
guage for annotating ontology design patterns at both pattern, conceptual com-
ponent, and instance level. OPLaX includes, extends and is aligned with OPLa
and CP annotation schema, thus providing a novel and integrated model for
annotating ontology design patterns in ontologies and knowledge graphs (KGs).

The rest of the paper is organised as follows. Section 2 motivates why such
an extension is needed. Section 3 gives an overview over the related work. The
proposed annotation schema is presented in Section 4. Section 5 describes three
use cases demonstrating the usage of the proposed annotation model. Section 6
concludes the paper and outlines the future work.

2 Motivation

The annotation language presented in this paper can provide a basis for sup-
porting different ontology engineering tasks: (i) an ontology designer may need
to annotate ontology design patterns implemented in her ontology, or existing
ontologies, in order to support ontology understanding, reuse and interoperabil-
ity; (ii) an ontology designer may need to annotate an ontology (design pattern)
with respect to all the facts that ontology (design pattern) addresses, regardless
of specific OWL implementations as ODPs, enabling ontology understanding
and comparison at a more abstract level; (iii) a knowledge graph engineer may
need to annotate a knowledge graph, containing triples generated according to
an ontology, with respect to the patterns implemented within the ontology, in
order to e.g. visualize the KG with a modular and pattern-based view for easing
its inspection (linked data visualization).

Pattern. A pattern-based ontology design is focused on the reuse (or creation,
when needed) of ontology design patterns as small reusable components to in-
tegrate in an ontology, as e.g. in eXtreme Design methodology [5, 4]. Either an
ontology is modelled following this approach since the beginning of the devel-
opment, or an ontology designer may refactor her ontology by reusing existing
ODPs. An ontology can also implicitly reuse patterns, e.g. by defining two re-
lations isPartOf and hasPart, which are compatible with the Part of 3 ODP.
Annotating patterns (re)used within an ontology eases the process of understand-
ing and exploring an ontology e.g. for the purpose of ontology reuse: it makes
explicit which groups of ontology entities are members of an ODP addressing
a specific modelling issue, and it allows to represent relations (e.g. hierarchical)
between different implemented ODPs. Moreover, annotations support the iden-
tification of ontology alignments, thus improving the interoperability between
ontologies reusing the same patterns.

Conceptual component. An ontology design pattern provides an ontology
designer with a small OWL ontology to reuse and integrate in her ontology for

3http://ontologydesignpatterns.org/wiki/Submissions:PartOf

http://ontologydesignpatterns.org/wiki/Submissions:PartOf


OPLaX: annotating ODPs at conceptual and instance level 3

addressing a specific modelling problem. Therefore, an ODP is a particular im-
plementation of a modelling solution to a modelling problem. However, the same
modelling problem could be addressed by different ODPs4, i.e. different imple-
mentations. Let us consider the modelling problem “an object being located at
a place”: it can be implemented e.g. (i) as a binary relation hasLocation be-
tween an Object and a Place, or (ii) as an n-ary relation Location between the
arguments Time, Object and Place. Therefore, (i) and (ii) are two ODPs that
address, in different ways and with different levels of expressivity, the modelling
problem of an object that is located somewhere. Two ontologies may reuse (i)
and (ii), respectively: even if with different implementations, they address the
same modelling problem. As proposed in [1], we can call these abstract rela-
tional structures, implemented by means of ODPs, conceptual components. An
ontology can be seen as a composition of conceptual components. Annotating
ontologies with conceptual components, and relating an OWL implementation
to the conceptual component it implements, would ease the exploration of, and
the interoperability between, ontologies at a more abstract level.

Pattern instance. Ideally, to each existing ontology corresponds one (or more
than one) knowledge graph that contains triples that are modelled according to
that ontology – and possibly other ontologies. The ontology may also (re)use on-
tology design patterns, thus the KG modelled according to the ontology will pos-
sibly contain instances of that pattern. A pattern instance is a collection of ABox
triples, whose members are individuals and relations that comply with the on-
tology design pattern structure. For instance, given the pattern Part of 3, which
defines two inverse properties hasPart and isPartOf with Thing as both domain
and range, an instance of this pattern may be represented by the set of the 4 fol-
lowing triples: (i) :whole :hasPart :part 1, (ii) :whole :hasPart :part 2,
(iii) :part 1 :isPartOf :whole, and (iv) :part 2 :isPartOf :whole. Anno-
tating sets of instances with respect to the ODPs according to which they are
represented, allows us to create new interesting applications, such as supporting
a pattern-based exploration of KGs.

3 Related work

OPLa. In [13], the authors propose a simple and extendable language for rep-
resenting information about ontology design patterns (ODPs) and the corre-
sponding modelling process, through the use of OWL annotation properties.
Some relevant competency questions addressed by OPLa are: (i) which patterns
a module of an ontology is based on; (ii) which classes, properties, individuals
and axioms belong to a pattern (or module); (iii) which modules an ontology
consists of; (iv) is a pattern (or module) a specialization or generalization of a
pattern (or module). Specifically, an entity that is an Individual, a Property,

4A relation between two ODPs (e.g. an ODP that is a specialization of another
ODP) does not imply that the two ODPs implement the same conceptual component.



4 Luigi Asprino et al.

a Class or an Axiom is an OntologicalEntity. The property isNativeTo indi-
cates that an ontological entity is member of an OntologicalCollection (see
(ii)). This concept is further specified in Ontology, Module (intended as an on-
tology part capturing a conceptual area of the domain) and Pattern. A module
can be native to an ontology (see (iii)), and an ontological collection can be
annotated with reusesPatternAsTemplate for indicating the reused ODPs (see
(i)). Finally, relations between patterns and modules are expressed via proper-
ties such as hasRelatedPattern, generalizationOfPattern, or specializa-

tionOfModule (see (iv)).

CP annotation schema. The ODP Portal5 is a repository for collecting
Ontology Design Patterns. A Content Pattern, i.e. an ODP addressing content
modelling problems, needs to be annotated with the CP annotation schema6 in
order to be submitted to the Portal. This schema defines a set of OWL annotation
properties that feed the information fields of each catalogue entry and that can
be exploited by Semantic Web applications [10], and allow an ontology designer
to describe an ODP by specifying: (i) its intent, i.e. the generic scope addressed
by the pattern; (ii) the requirement(s) the pattern provides a solution for; (iii)
scenarios, as examples of instantiation of the pattern; (iv) its consequences, as
benefits or possible trade-offs when using the pattern; (v) relations between
patterns (specialization, generalization, componency); (vi) unit tests to evaluate
it against a requirement-based task; (vii) ontologies or concept schemas which
the pattern was extracted or reengineered from.

The current versions of OPLa and CP annotation schema are not able to rep-
resent the relations between a pattern and its abstract counterpart (conceptual
component), and between a pattern and its instances.

[12] proposes a reorganisation of OPLa and CP annotation schema, with some
changes and extensions, into 3 namespaces7: opla-core for storing the OPLa
original annotations; opla-cp, adapted from the CP annotation schema; opla-
sd, with new annotation properties possibly needed by tools supporting modular
graphical ontology modelling (coordinates of a node in a schema diagram).

GO-FOR. [14] introduces GO-FOR, a Goal-Oriented Framework for Ontol-
ogy Reuse, which aims at supporting a pattern-based and goal-oriented reuse of
ontologies. Its basic element is a goal-oriented ontology pattern (GOOP): an on-
tology fragment bound to a goal, intended as the scope addressed by the pattern.
Existing GOOPs are stored in a dedicated repository integrated in the GOOP-
HUB8. Based on their goals, GOOPs can be related by part-of relationships.
The GOOP OWL metamodel9, besides deriving from OWL the Class, Object-
Property and DatatypeProperty for representing the constructs that a GOOP
can consist of, defines the class Goal, which is further specified by AtomicGoal

5http://www.ontologydesignpatterns.org
6http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl
7https://github.com/cogan-shimizu/Extended-OPLa
8https://github.com/nemo-ufes/goophub
9https://github.com/nemo-ufes/goophub/blob/master/src/main/resources/

goop-meta-model.owl

http://www.ontologydesignpatterns.org
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl
https://github.com/cogan-shimizu/Extended-OPLa
https://github.com/nemo-ufes/goophub
https://github.com/nemo-ufes/goophub/blob/master/src/main/resources/goop-meta-model.owl
https://github.com/nemo-ufes/goophub/blob/master/src/main/resources/goop-meta-model.owl


OPLaX: annotating ODPs at conceptual and instance level 5

and ComplexGoal. A complex goal is composed of other goals by either OR de-

composition (at least one subgoal needs to be satisfied) or AND decomposition

(all subgoals are to be satisfied). Moreover, a goal is related to the Actor that
wants to achieve it.
The concept of goal of a pattern in GO-FOR is similar to the concept of intent
in the CP annotation schema. While GOOP metamodel allows the pattern de-
signer to specify subgoals of complex goals, thus determining part-of relations
between patterns, in OPLa and CP annotation schema the composition, special-
ization and generalization relations are expressed at the level of patterns. Search
for patterns in GOOPR can be based on goals and specific actors (e.g. doctor,
researcher), while the patterns of the ODP Portal are grouped based on their
domain (e.g. multimedia, time). Like the previous ones, this metamodel focuses
only on the pattern level.

OTTR. [16] presents the Reasonable Ontology Templates (OTTRs): OWL
ontology macros able to represent ontology design patterns. By defining OTTRs,
it is possible to formalize and instantiate ontology design patterns. An OTTR T
is a parametrised ontology that can be instantiated providing arguments that fit
the parameters of the template. T is formalised as a knowledge base OT together
with a list of parameters (p1, ..., pn) of concepts, roles or individuals from OT .
Given a list (q1, ..., qn) of constants, concepts or role expressions called argu-
ments, T (q1, ..., qn) represents a template instance, as a shorthand to represent
an occurrence of a pattern. Defined OTTRs can also be specialised for specific
domains. Moreover, specific templates can be defined for generating instances
of a modelled pattern. As OTTRs are expressed in a specific syntax (stOTTR),
the authors developed a tool10 that converts OTTR templates into regular OWL
ontologies. These templates aim at automatizing ODP-based ontology engineer-
ing and supporting interoperability between ontologies using the same or related
templates. Moreover, it uses the concept of pattern instance that we introduce
the extension of OPLa ontology. As a drawback, defining and maintaining tem-
plates may result to be expensive, and to hardly support changes in already
defined ODPs.

4 OPLaX

OPLaX11,12 (Ontology Pattern Language eXtended) aims at providing the on-
tology designers with a language for annotating ontology design patterns at
both pattern, conceptual component, and pattern instance level (see Figure 1).
OPLaX widely reuses (and is aligned with) OPLa (plain classes and properties
in the figure) and CP annotation schema (properties in italics). It introduces
some changes with respect to these two existing models, and integrates them
with specific classes and properties (bold classes and properties) addressing the
annotations related to conceptual components and pattern instances.

10https://gitlab.com/ottr/lutra/lutra
11https://w3id.org/OPLaX/
12https://github.com/stlab-istc-cnr/OPLaX

https://gitlab.com/ottr/lutra/lutra
https://w3id.org/OPLaX/
https://github.com/stlab-istc-cnr/OPLaX


6 Luigi Asprino et al.

Pattern level. Classes and properties reused from OPLa allow the ontol-
ogy designer to assign specific types to different :OntologicalCollections
(:Module, :Ontology, :Pattern), to relate them with the ontological entities
that are their members (:isNativeTo) and to specify componency (:component
OfPattern/Module), derivation (:derivedFromPattern/Module), specialization
(:specializationOfPattern/Module), and generalization (:generalizationOf
Pattern/Module) relations between ontological collections of the same or dif-
ferent types. Moreover, it can be annotated that an :Individual, a :Class

or a :Property is used within a pattern, even if it is out of the scope of
that particular pattern (:ofExternalType). :reusesAsTemplate annotates an
ontological collection with other ontological collections reused as templates,
e.g. an ontology reusing multiple patterns as templates. Additional properties
reengineered from CP annotation schema allows to better define the scenario
(:addressesScenario), the intent (:hasIntent), the requirement(s) (:covers
Requirement), the consequence (:hasConsequence) and the competency ques-
tion(s) (:hasCompetencyQuestion) of an ontological collection, and to annotate
it with possible unit tests (:hasUnitTest). Moreover, it is possible to make it
explicit that an ontological collection is :extractedFrom another ontological
collection, e.g. a pattern that has been deeply or partially cloned by a reference
ontology.

Fig. 1: OPLaX, the Ontology Pattern Language eXtended.



OPLaX: annotating ODPs at conceptual and instance level 7

Conceptual component level. In OPLaX, a :Pattern is related to the
:ConceptualComponent it implements by the annotation property :implements

ConceptualComponent. Different conceptual components can be related to each
other (:hasRelatedConceptualComponent): e.g. the conceptual component “a
cultural property being located at a cultural site” would be a specialization of
the more general conceptual component “an object being located at a place”
(:specializationOfConceptualComponent), and the other way around (:gen
eralizationOfConceptualComponent). A conceptual component can be anno-
tated with its :name (e.g. locating), and a more detailed :description. More-
over, a conceptual component answers to a number of competency questions
(:hasCompetencyQuestion), e.g. where is an object? for the component locat-
ing. Finally, a conceptual component has a :Domain (:hasDomain): for instance,
a conceptual component Paper award and a conceptual component Submitting
paper would be in the Conference domain.

Pattern instance level. An instance of a :Pattern, i.e. an entity of type
:PatternInstance, is related to the pattern it instantiates by the annotation
property :isPatternInstanceOf. All the individuals that are members of a pat-
tern instance are annotated with the property :isMemberOfPatternInstance,
so that, by retrieving all individuals related to a pattern instance by means of
this property, it is possible to have the boundary of the pattern instance itself.

5 Use cases

In this section, we discuss three real-world use cases in which OPLaX has been
used in practice and has proved useful.

5.1 ArCo ontology network

ArCo13 (Architecture of Knowledge) is the Italian cultural heritage (CH) knowl-
edge graph (KG), consisting of a network of ontologies and facts on Italian cul-
tural properties, based on the official General Catalogue of the Italian Ministry
of Culture (MiC) [7, 9]. ArCo knowledge graph has been developed by using the
pattern-based eXtreme Design (XD) ontology engineering methodology [5, 4].
After the requirements collection in the form of user stories – that are sets of
sentences describing by example the facts that the resulting KG should encode –
the ontology design team derives one or more competency questions (CQs) from
a generalisation of each user story. CQs are the natural language counterpart of
the queries that we want to answer against the KG, and guide the selection of
the ODPs to reuse: the ontology designer tries to match one, or a set of, CQ(s)
to existing ODPs.

ArCo version 1.0 is composed of 7 ontology modules, which reuse and special-
ize 12 different ODPs. ArCo directly reuses, i.e. it directly embeds ontology enti-

13https://w3id.org/arco

https://w3id.org/arco


8 Luigi Asprino et al.

ties in the local ontology, only two ontologies that are considered reference stan-
dards by the Italian Government and the development of which involves ArCo’s
team. Instead, it indirectly reuses other ontologies and ontology design patterns:
these are used as templates, i.e. they are reproduced (and possibly extended)
in the local ontology, and aligned with rdfs:subClassOf/subPropertyOf and
owl:equivalentClass/equivalentProperty axioms [8]. However, alignment
axioms allow to support interoperability by making it explicit a correspondence
between single ontology entities.

(a) The property :reusesAsTemplate relates the arco module to the Componency ODP
reused over the module. The property :specializationOfPattern expresses the spe-
cialization relation between the pattern Cultural Property Component of implemented
in the module and the ODP Componency.

(b) The annotation property :isNativeTo relates the object properties and the classes
of the Cultural Property Component of ODP to the ODP itself.

Fig. 2: An example of a specialized ODP annotated with OPLaX.

OPLaX allows an ontology designer to annotate all the ontology entities that are
members of an ODP, and to generate correspondences between different ontolo-
gies at a pattern level. An example of ODP specialization and annotation through
OPLaX in ArCo is shown in Figure 2. Over the arco ontology module, the ODP
Componency14 is indirectly reused from the ODP Portal5: the module is there-

14http://ontologydesignpatterns.org/wiki/Submissions:Componency

http://ontologydesignpatterns.org/wiki/Submissions:Componency


OPLaX: annotating ODPs at conceptual and instance level 9

fore annotated with the property :reusesAsTemplate for representing the reuse
of the pattern. Specifically, the ArCo’s pattern Cultural Property Component
of 15 is a specialization of the pattern Componency, since it represents the compo-
nency relation between a complex cultural property and its components, hence it
is annotated with the property :specializationOfPattern (see Figure 2a). For
expressing that specific properties (e.g. arco:hasCulturalPropertyComponent)
and classes (e.g. arco:ComplexCulturalProperty) implemented in the module
belong to this specialized ODP, the annotation property :isNativeTo is used
(as in Figure 2b).

5.2 Conceptual Components and ODPs catalogue from a
corpus of ontologies

[1] presents a method able to extract conceptual components (CCs) from mul-
tiple ontologies and the observed ontology design patterns implementing them.
This method combines community detection, word sense disambiguation, frame
detection, and clustering techniques. After a preprocessing step on the ontology
corpus, community detection is run on each ontology, splitting it into dense com-
munities; then, virtual documents, as bag of words disambiguated and enriched
with frames, are generated from each community, and a clustering algorithm
clusters all communities of the corpus in similar clusters, where each cluster
represents a possible conceptual component, that is automatically given a repre-
sentative name. As a result, each ontology is split into possible ontology design
patterns16, and each ontology design pattern is related to a conceptual compo-
nent. Different ODPs extracted from the same or from different ontologies will
eventually be linked to the same conceptual component, meaning that they are
addressing the same modelling issue.

Relying on this method and starting from a corpus of ontologies, it is possible
to build a resource, a catalogue of conceptual components and observed ODPs,
that connects and organises ontologies, conceptual components and ODPs: each
conceptual component in the catalogue is linked to its associated ODPs within
the ontologies, thus the ontologies are classified based on the conceptual compo-
nents that they implement.
Let us take as an example the catalogue generated from a corpus of 43 on-
tologies on Cultural Heritage17,18. The conceptual component named (:name)
Event (Figure 3), which represents the general modelling issue of an event, is
implemented by 21 observed ontology design patterns, coming from 13 distinct
ontologies. Each ontology design pattern is thus related to the CC Event with
the property :implementsConceptualComponent. These patterns implement the
general component at different levels of specialization, thus addressing different

15https://w3id.org/arco/pattern/cultural-property-component-of
16In this context, the notion of ODP has been relaxed: adopted modelling solutions

that can be observed in existing ontologies, regardless their correctness or quality level.
17https://stlab-istc-cnr.github.io/cc-and-odps-catalogue/
18See [1] for more details on the corpus.

https://w3id.org/arco/pattern/cultural-property-component-of
https://stlab-istc-cnr.github.io/cc-and-odps-catalogue/


10 Luigi Asprino et al.

and specific intents: for instance, a pattern extracted from the Europeana Data
Model (see the ODP at the top of Figure 3) models the general concept of an
Event that happenedAt some Place, and occurredAt a certain TimeSpan, while
Cultural-ON (see the ODP at the bottom of Figure 3) focuses on a specific type
of event, that is CulturalEvents, which involve one or more cultural entities.
This conceptual component is also given a description (:description), that, in
this specific case, is generated by concatenating all terms representing its pat-
terns. Moreover, it is associated with a manually generated generic competency
question “What happened?” by means of the property :hasCompetencyQues-

tion. Different conceptual components are organised as a hierarchical network,
that is based on the inheritance relations between the frames detected from the
virtual documents of the patterns. For example, in Figure 3 the CC Event is
related with the property :generalizationOfConceptualComponent to the CC
Intentionally act.

Fig. 3: An example of a conceptual component annotated with OPLaX. The
property :implementsConceptualComponent relates two ODPs to the concep-
tual component Event they implement. Through :generalizationOfConcep

tualComponent Event is related to the more specific CC Intentionally act.

5.3 Pattern-based visualization of knowledge graphs

[2] describes a new approach to Knowledge Graph visualization based on on-
tology design patterns. This approach relies on ODPs as first-class citizens to
explore KGs, thus providing thematic paths that guide the exploration and in-
teraction with the KG. Moreover, the collection of the patterns instantiated in
a KG is useful to concisely summarize its content. A visual frame (an intuitive
standard visualization) is associated with an ODP, such that every time an ODP
is used in ontology modelling, data can be visualized by means of a reusable vi-
sual frame. The described approach is divided into three levels of exploration
and interaction. At the first level (ODP level), the user sees the ODPs the KG
is shaped by and the most important concepts, namely the key concepts. At



OPLaX: annotating ODPs at conceptual and instance level 11

the second level (exploration level), all the instances of a specific pattern are
displayed in the user interface and can be filtered. The third level (visualization
level) presents a single instance of an ODP.

The tool developed19 by [2] relies on OPLaX annotations. In particular, at the
ODP level, OPLaX annotations related to the pattern level are used to dis-
play the patterns in the graphical user interface. Relations between patterns
are also represented: specialization (:specializationOfPattern) and composi-
tion (:componentOfPattern). The relation between a pattern and the key con-
cept(s) belonging to that pattern is annotated through the :isNativeTo prop-
erty. At the exploration level, the tool relies on the annotation property :isPat

ternInstanceOf, between a pattern instance and a pattern, to retrieve all the
instances of a pattern. The user can then browse the list of instances and select
them using predefined filters. The visualization of a specific pattern instance
(visualization level) is made possible by using the property :isMemberOfPat

ternInstance, which allows to collect all the data instantiating a pattern and
to present them by means of a graphical component associated with the given
pattern.

ODP instances identify the meaningful neighborhood for each entity to be visu-
alized; in other words, a visualization tool can use the instance level annotations
to identify meaningful subsets of entities of a KG to be visualized together. Inter-
estingly, the meaningful neighborhood of each entity is delimited by the instance
level annotations, thus avoiding the use of query templates.

As in Figure 4, ex:cultural-property-component-of-instance-a is an in-
stance of the ArCo’s ODP Cultural Property Component of, thus it is annotated
with :isPatternInstanceOf. The entities that are members of this pattern in-
stance – all annotated by means of the property :isMemberOfPatternInstance

– are the complex cultural property (ex:cultural-property-b) and its two
components, i.e. ex:cultural-property-component-c and ex:cultural-prop

erty-component-d.

Fig. 4: An example of a Pattern Instance annotated with OPLaX. The prop-
erty :isPatternInstanceOf relates an instance of a pattern with the pattern
Componency itself. The property :isMemberOfPatternInstance relates the in-
dividuals to the pattern instance they are member of.

19https://github.com/ODPReactor

https://github.com/ODPReactor


12 Luigi Asprino et al.

6 Conclusion and future work

In this paper, we proposed a language for annotating ontology design patterns
(ODPs) at three levels: (i) the level of the pattern as it is implemented in an
ontology, (ii) the level of the abstract conceptual component that can be im-
plemented by different ODPs, (iii) the level of an instance of a pattern in a
knowledge graph. This language reuses (is aligned with) and extends the OPLa
annotation language and the CP annotation schema. We showcased the language
and demonstrated its usefulness by discussing three real-world use cases.

In our future work, we aim at formally evaluating the proposed annotation
language with respect to existing use cases, such as the ones presented in Section
5, in order to identify possible missing classes and properties to integrate (e.g.
verifying competency questions coverage and inferences correctness).
Moreover, the annotations provided by OPLaX can be used to refine existing
tools/plugins or to create new ones, aiming at supporting ontology developers in
their pattern-based ontology engineering activities. Indeed, we plan to develop a
tool for automatically annotating, based on OPLaX, ontology design patterns,
pattern instances and conceptual components implemented in ontologies and
knowledge graphs.

Acknowledgements. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement
No 101004746.

References

[1] Luigi Asprino et al. Extraction of common conceptual components from
multiple ontologies. 2021. arXiv: 2106.12831 [cs.AI].

[2] Luigi Asprino et al. Pattern-based Visualization of Knowledge Graphs.
2021. arXiv: 2106.12857 [cs.HC].

[3] Eva Blomqvist, Aldo Gangemi, and Valentina Presutti. “Experiments on
pattern-based ontology design”. In: Proceedings of the 5th International
Conference on Knowledge Capture (K-CAP 2009), September 1-4, 2009,
Redondo Beach, California, USA. Ed. by Yolanda Gil and Natasha Frid-
man Noy. ACM, 2009, pp. 41–48.

[4] Eva Blomqvist, Karl Hammar, and Valentina Presutti. “Engineering On-
tologies with Patterns - The eXtreme Design Methodology”. In: Ontology
Engineering with Ontology Design Patterns - Foundations and Applica-
tions. Vol. 25. Studies on the Semantic Web. Amsterdam: IOS Press, 2016.

[5] Eva Blomqvist et al. “Experimenting with eXtreme Design”. In: Knowl-
edge Engineering and Management by the Masses. EKAW 2010 (Lisbon,
Portugal). Vol. 6317. Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, 2010, pp. 120–134.

[6] Eva Blomqvist et al. “Considerations regarding Ontology Design Pat-
terns”. In: Semantic Web 7.1 (2016), pp. 1–7.

https://arxiv.org/abs/2106.12831
https://arxiv.org/abs/2106.12857


OPLaX: annotating ODPs at conceptual and instance level 13

[7] Valentina Anita Carriero et al. “ArCo: The Italian Cultural Heritage Knowl-
edge Graph”. In: The Semantic Web - ISWC 2019 - 18th International
Semantic Web Conference, Auckland, New Zealand, October 26-30, 2019,
Proceedings, Part II. Vol. 11779. Lecture Notes in Computer Science. Springer,
2019, pp. 36–52.

[8] Valentina Anita Carriero et al. “The Landscape of Ontology Reuse Ap-
proaches”. In: Applications and Practices in Ontology Design, Extraction,
and Reasoning. Vol. 49. Studies on the Semantic Web. Amsterdam: IOS
Press, 2020, pp. 21–38.

[9] Valentina Anita Carriero et al. “Pattern-based design applied to cultural
heritage knowledge graphs”. In: Semantic Web 12.2 (2021), pp. 313–357.

[10] Aldo Gangemi and Valentina Presutti. “Ontology Design Patterns”. In:
Handbook on Ontologies. International Handbooks on Information Sys-
tems. Springer, 2009, pp. 221–243.

[11] Quinn Hirt, Cogan Shimizu, and Pascal Hitzler. “Extensions to the On-
tology Design Pattern Representation Language”. In: Proceedings of the
10th Workshop on Ontology Design and Patterns (WOP 2019) co-located
with 18th International Semantic Web Conference (ISWC 2019), Auck-
land, New Zealand, October 27, 2019. Vol. 2459. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2019, pp. 76–75.

[12] Quinn Hirt, Cogan Shimizu, and Pascal Hitzler. “Extensions to the On-
tology Design Pattern Representation Language”. In: Proceedings of the
10th Workshop on Ontology Design and Patterns (WOP 2019) co-located
with 18th International Semantic Web Conference (ISWC 2019), Auck-
land, New Zealand, October 27, 2019. Vol. 2459. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2019, pp. 76–75.

[13] Pascal Hitzler et al. “Towards a Simple but Useful Ontology Design Pat-
tern Representation Language”. In: Proceedings of the 8th Workshop on
Ontology Design and Patterns (WOP 2017) co-located with the 16th Inter-
national Semantic Web Conference (ISWC 2017), Vienna, Austria, Oc-
tober 21, 2017. Vol. 2043. CEUR Workshop Proceedings. CEUR-WS.org,
2017.

[14] Cássio Reginato et al. “GO-FOR: A Goal-Oriented Framework for Ontol-
ogy Reuse”. In: 2019 IEEE 20th International Conference on Information
Reuse and Integration for Data Science (IRI). IEEE. 2019, pp. 99–106.

[15] Cogan Shimizu, Quinn Hirt, and Pascal Hitzler. “A Protégé Plug-In for
Annotating OWL Ontologies with OPLa”. In: The Semantic Web: ESWC
2018 Satellite Events - ESWC 2018 Satellite Events, Heraklion, Crete,
Greece, June 3-7, 2018, Revised Selected Papers. Ed. by Aldo Gangemi et
al. Vol. 11155. Lecture Notes in Computer Science. Springer, 2018, pp. 23–
27.

[16] Martin G Skjæveland et al. “Pattern-based ontology design and instan-
tiation with reasonable ontology templates”. In: A Higher-Level View of
Ontological Modeling (2019), p. 69.


	OPLaX: annotating ontology design patterns at conceptual and instance level

