
Difference of Fuzzy Homogeneous Classes of Objects
Dmytro O. Terletskyi1, Sergey V. Yershov2

1V. M. Glushkov Institute of Cybernetics of NAS of Ukraine, Academician Glushkov Avenue, 40, Kyiv, 03187, Ukraine
2V. M. Glushkov Institute of Cybernetics of NAS of Ukraine, Academician Glushkov Avenue, 40, Kyiv, 03187, Ukraine

Abstract
Analysis of relevance, similarity, and the difference between extracted or acquired new knowledge items
and previously obtained ones are important stages of the knowledge integration process for modern
knowledge-based systems. These stages can be performed via the application of special operations de-
fined over the knowledge representation structures provided by chosen representation model. Within
the object-oriented approach, classes are one of the main knowledge representation structures, conse-
quently, the analysis of the relevance, similarity, and difference between them requires the development
of corresponding operations over classes. Therefore the concept of universal difference exploiter of
fuzzy homogeneous classes of objects, within such a knowledge representation model as fuzzy object-
oriented dynamic networks, was introduced in the paper. To implement the proposed exploiter, which
allows computing of the difference of one fuzzy homogeneous class of objects from another one, we
developed the corresponding algorithm and provided an example of its application. The proposed ap-
proach provides an opportunity to evaluate the relevance and novelty level for extracted or acquired
fuzzy knowledge items, compared with previously obtained ones, by computing the difference between
them.
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1. Introduction

The analysis of knowledge structures for their proper integration into the knowledge base and
organizing future reasoning processes is a crucial and important task for modern knowledge-
based systems (KBSs). To manage such a challenge, a KBS should be able to perform the
comparative analysis of extracted or acquired new knowledge items with previously obtained
ones. It allows a system to estimate the level of novelty for extracted knowledge items as well
as to conclude about their similarity and differences with other knowledge items, which are
already integrated within a knowledge base. Taking into account such parameters, it is possible
to integrate new extracted or acquired knowledge items into the knowledge base avoiding their
representation redundancy.

According to the concept of knowledge integration proposed by Murray and Porter in [1, 2, 3,
4, 5], it can be defined as a task of incorporating new information into a knowledge base, which
requires elaborating new information and resolving inconsistencies with existing knowledge.
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The corresponding computational model of knowledge integration incorporates the following
main stages:

1. Recognition: Identification of relevance between new and previously obtained knowledge.
2. Elaboration: Determination of interactions of obtained new knowledge items on previ-

ously obtained ones, and how they can affect them.
3. Adaptation: Resolving of previously detected abnormalities within the knowledge base.

The model was implemented within the knowledge acquisition tool KI for management of a
large Botany Knowledge Base, which incorporates knowledge about plant anatomy, physiology,
and development.

The recognition stage of the knowledge integration process requires performing the verifica-
tion of such relations between new and previously obtained knowledge items as equivalence,
inclusion, similarity, difference, etc. However, each knowledge representation model provides
a suite of particular representation structures and corresponding tools for their management.
Therefore knowledge analysis approaches are oriented toward certain knowledge representation
paradigms or models. Within the object-oriented knowledge representation approach such
structures as objects, classes, metaclasses, and relations among them, form a basic representation
suite. Consequently, knowledge analysis within such an approach can be interpreted as a
comparison of corresponding representation structures. Since a class is a widely-used represen-
tation structure, thus the comparative analysis of classes is one of the important and priority
knowledge analysis tasks within the object-oriented approach. One of the known approaches
to solving this task is to define the special operations over classes, in particular set-theoretical
ones. According to the approach, a class is considered as a collection of properties and methods,
consequently, the application of basic set-theoretical operations such as union, intersection,
difference, and symmetric difference, provides a corresponding framework for the analysis of
knowledge items, which are represented in terms of classes.

However, different object-oriented knowledge representation models use distinct concepts of
a class, consequently, all mentioned set-theoretical operations should be adapted for a particular
knowledge representation model and appropriate interpretation of a class. In addition, the
classical (crisp) object-oriented paradigm has some representation restrictions, which limit its
application for modeling vague, imprecise as well as uncertain entities and domains. Therefore
in this paper, we adapted the set-theoretical difference for such knowledge representation model
as fuzzy object-oriented dynamic networks in the form of the corresponding universal exploiter
of fuzzy homogeneous classes of objects. To implement the proposed universal difference
exploiter, we developed an appropriate algorithm and provided a representative example of its
application for the knowledge analysis within fuzzy object-oriented dynamic networks.

2. Fuzzy Classes and Types

A class is one of the main representation structures in class-based object-oriented programming,
in a variety of object-oriented knowledge representation models as well as in object-oriented
databases. According to the classical (crisp) definition, a class can be interpreted as the collection
of properties (specification) and collection of methods (signature), which define a common
structure and typical behavior for all instances of the class, respectively.



However, as it was noted in [6, 7], despite all benefits of crisp classes and objects, they
can be inefficient for the construction of realistic representation models of vague, imprecise,
or uncertain entities or domains, because of their descriptive restrictions. Therefore a crisp
class-based object-oriented model was extended using notions of fuzzy sets and linguistic
variables, which were introduced by Zade in [8, 9, 10, 11]. The main idea of such extension is to
define values of class properties as fuzzy sets or as linguistic variables, which are more complex
structures defined as the term-set interpreted using appropriate fuzzy variables defined by fuzzy
sets. It led to the appearance of concepts of fuzzy attributes and fuzzy objects, described in [6].
The next step in fuzzification of the object-oriented paradigm was to introduce a measure of
truth for each property of the class, which is defined on the interval of real numbers [0, 1]. Then,
concepts of fuzzy methods and fuzzy types were introduced in [12, 13, 14, 15], as well as the
concept of fuzzy classes and fuzzy class hierarchies were proposed in [7]. One more step was to
define a membership degree for objects of a class as well as membership degree for subclasses
of a class, which led to the appearance of classification of fuzziness levels, introduced in [16],
and the notion of fuzzy classes of fuzzy objects, which were introduced in [17, 18, 19, 20].

Many of the introduced interpretations of fuzzy types and fuzzy classes were proposed as
fuzzy extensions of the object-oriented entity-relationship model, used in databases, where
attributes of a class are considered separately from each other. However, such interpretation
of a class or a type is distinguished from corresponding interpretation within the class-based
object-oriented programming and many object-oriented knowledge representation models,
where properties and methods of a class can have internal dependencies from each other. As it
was shown in [21], the internal structure of a class consists of structural and functional atoms
as well as structural and functional molecules, created by properties and methods of a class. It
specifies the main difference between the concept of a class within object-oriented programming
as well as knowledge representation and similar concept within object-oriented databases.

Another extension of the class-based object-oriented model was implemented within such
knowledge representation model, as fuzzy object-oriented dynamic networks (FOODNs), which
was proposed in [22, 23] and later extended in [24, 25]. Similar to other object-oriented models,
such concepts as fuzzy objects, fuzzy classes, and fuzzy relations are also used within the FOODNs.
The structure of a fuzzy class also defined by a collection of crisp and (or) fuzzy properties,
while its behavior is determined by a collection of crisp and (or) fuzzy methods. However, in
contrast to other object-oriented models, the specification of a fuzzy class of objects consists of
quantitative and qualitative properties. Quantitative properties represent evident numerical or
symbolic single-valued or multi-valued characteristics, while qualitative properties represent
more complex, not obvious features defined based on other properties and methods of the class
[24, 25]. The signature of a fuzzy class of objects consists of methods, which define a common
behavior and opportunities to check and (or) to modify the structure of a particular instance of
the class. Similar to other object-oriented models, each fuzzy class within FOODNs defines the
particular fuzzy type, which identifies a common structure and behavior for all fuzzy objects of
the class. Therefore such classes can be called homogeneous ones. Let us consider the definition
of the fuzzy homogeneous class of objects within FOODNs introduced in [24, 25].

Definition 1. A fuzzy homogeneous class of objects is a collection

𝑇/𝑀(𝑇 ) = (𝑃 (𝑡), 𝐹 (𝑡))/𝑀(𝑇 ) = ((𝑝1(𝑡)/𝜇(𝑝1(𝑡)), . . . ,



𝑝𝑛(𝑡)/𝜇(𝑝𝑛(𝑡))), (𝑓1(𝑡)/𝜇(𝑓1(𝑡)), . . . , 𝑓𝑚(𝑡)/𝜇(𝑓𝑚(𝑡))))/𝑀(𝑇 ),

where 𝑡 is a fuzzy type which is defined by the class 𝑇 , 𝑝𝑖(𝑡)/𝜇(𝑝𝑖(𝑡)) ∈ 𝑃 (𝑡) is a crisp or fuzzy
property of the class 𝑇 , 𝑓𝑗(𝑡)/𝜇(𝑓𝑗(𝑡)) ∈ 𝐹 (𝑡) is its crisp or fuzzy method, 𝜇(𝑝𝑖(𝑡)) : 𝑝𝑖(𝑡) →
(0, 1] and 𝜇(𝑓𝑗(𝑡)) : 𝑓𝑗(𝑡) → (0, 1] are measures of fuzziness of a property 𝑝𝑖(𝑡) and a method
𝑓𝑗(𝑡), and 𝑀(𝑇 ) is a measure of fuzziness of the class 𝑇 , i.e.

𝑀(𝑇 ) = ((𝜇(𝑝1(𝑡)) + · · ·+ 𝜇(𝑝𝑛(𝑡))) + (𝜇(𝑓1(𝑡)) + · · ·+ 𝜇(𝑓𝑚(𝑡))))/(𝑛+𝑚).

Analyzing Definition 1, we can see that in the context of fuzziness of attributes and methods,
a concept of a fuzzy homogeneous class of objects is similar to the concept of the fuzzy type
described in [12, 13, 14, 15] as well as to the concept of the fuzzy class described in [17, 18, 19, 20],
while the measure of fuzziness of the class itself is defined as the arithmetic mean of measures of
the truth of all its properties and methods. Similar to homogeneous classes, fuzzy homogeneous
classes of objects define only a single fuzzy type of objects, therefore as in class-based object-
oriented programming, a fuzzy type of objects and a fuzzy homogeneous class of objects can be
considered as equivalent concepts.

3. Difference of Fuzzy Homogeneous Classes

As it was mentioned above, to perform knowledge integration in the proper way, a KBS should
be able to analyze the relevance, similarity, and differences between extracted or acquired new
knowledge items and previously obtained ones, which are represented in terms of fuzzy classes.
Therefore we propose to consider set-theoretical difference adapted for fuzzy classes as a tool
for dynamic creation of new fuzzy classes of objects which represent of difference of one fuzzy
class from another one. The idea to apply set-theoretical operations to fuzzy classes, fuzzy
objects as well as fuzzy relations is widely used in many interpretations. As the result, it was
used to implement algebraic operations for fuzzy object-oriented database language [26], query
processing within the fuzzy relational object-oriented databases [27, 28, 19, 29, 17, 30], relational
uncertain databases [31], the blurry classes within the fuzzy object-oriented databases [32],
supporting fuzzy XML queries [33, 19] and handling uncertain spatiotemporal data [34, 35],
biomedical fuzzy HBase databases [36], etc.

All mentioned algebras provide different signatures, however, all of them contain an adapted
operation of set-theoretical difference, defined over fuzzy objects, or fuzzy classes, or fuzzy
relations. However, in most cases, it is used for database querying on the level of objects,
classes, and relations, when the data or knowledge are already integrated within the database
or knowledge base. Therefore we propose to consider the application of difference operation,
defined over the fuzzy homogeneous classes of objects, in the context of knowledge analysis as
a part of the knowledge integration process.

The concept of difference of classes of objects was introduced in [22, 23] in a form of a
corresponding universal exploiter for classes of fuzzy objects. Later the concept of a fuzzy class
of objects was proposed in [24, 25]. Let us define the notion of difference exploiter for fuzzy
homogeneous classes of objects via generalizing its versions for the classes of fuzzy objects.



Definition 2. Difference 𝑇1 ∖ 𝑇2 of two fuzzy homogeneous classes of objects 𝑇1/𝑀(𝑇1) and
𝑇2/𝑀(𝑇2), which define fuzzy types of objects 𝑡1 and 𝑡2 correspondingly, is a fuzzy homogeneous
class of objects 𝑇1∖2/𝑀(𝑇1∖2), which define fuzzy type of objects 𝑡1∖2, such that

𝑡1∖2 ⊆ 𝑡1 | ∄
(︀
𝑡1∖2 ∩ 𝑡2

)︀
∧
(︁
∄𝑡*1∖2 |

(︁
𝑡1∖2 ⊆ 𝑡*1∖2

)︁
∧
(︁
𝑡*1∖2 ⊆ 𝑡1

)︁
∧ ∄

(︁
𝑡*1∖2 ∩ 𝑡2

)︁)︁
.

The fuzzy class 𝑇1∖2/𝑀(𝑇1∖2) exists if and only if ∃𝑝𝑖1(𝑡1), ∃𝑝𝑖2(𝑡2), such that 𝑝𝑖1(𝑡1) ̸≡ 𝑝𝑖2(𝑡2),
or ∃𝑓𝑗1(𝑡1), ∃𝑓𝑗2(𝑡2), such that 𝑓𝑗1(𝑡1) ̸≡ 𝑓𝑗2(𝑡2), where 𝑝𝑖1(𝑡1) is an 𝑖1-th property of the fuzzy
type 𝑡1, 𝑖1 = 1, |𝑃 (𝑡1)|, 𝑝𝑖2(𝑡2) is an 𝑖2-th property of the fuzzy type 𝑡2, 𝑖2 = 1, |𝑃 (𝑡2)|, 𝑓𝑗1(𝑡1)
is an 𝑗1-th method of the fuzzy type 𝑡1, 𝑗1 = 1, |𝐹 (𝑡1)|, 𝑓𝑗2(𝑡2) is an 𝑗2-th method of the fuzzy
type 𝑡2, 𝑗2 = 1, |𝐹 (𝑡2)|.

The universal difference exploiter creates a fuzzy homogeneous class of objects 𝑇1∖2/𝑀(𝑇1∖2),
which represents the difference of the fuzzy class of objects 𝑇1/𝑀(𝑇1) from the fuzzy class
of objects 𝑇2/𝑀(𝑇2) if such difference exists. The class 𝑇1∖2/𝑀(𝑇1∖2) defines a fuzzy type of
objects 𝑡1∖2 ⊆ 𝑡1, which consists of crisp and (or) fuzzy properties and (or) methods, which are
typical only for the fuzzy type of objects 𝑡1.

To implement a universal exploiter of fuzzy homogeneous classes of objects, the corresponding
algorithm should analyze specifications and signatures of fuzzy homogeneous classes of objects
𝑇1/𝑀(𝑇1), 𝑇2/𝑀(𝑇2) and find properties and methods of the fuzzy class 𝑇1/𝑀(𝑇1), which
are not typical for the fuzzy class of objects 𝑇2/𝑀(𝑇2). For this purpose, we used the [25,
Algorithm 1] for checking the equivalence of fuzzy quantitative properties, [25, Algorithm 2]
for checking the equivalence of fuzzy qualitative properties, and [25, Algorithm 3] for checking
the equivalence of fuzzy methods. As the result, we developed Algorithm 1, which implements
the idea of universal difference exploiter for fuzzy homogeneous classes of objects.

Analyzing Algorithm 1, we can see that it uses fuzzy homogeneous classes of objects
𝑇1/𝑀(𝑇1), 𝑇2/𝑀(𝑇2) as the input data and computes the difference of the class 𝑇1/𝑀(𝑇1) from
the class 𝑇2/𝑀(𝑇2) in a form of a new fuzzy homogeneous class of objects 𝑇1∖2/𝑀(𝑇1∖2) =
𝑇1/𝑀(𝑇1) ∖ 𝑇2/𝑀(𝑇2) if such difference exists. The algorithm successively constructs the
specification and signature of class 𝑇1∖2/𝑀(𝑇1∖2) and these stages are independent ones,
consequently, such computations also can be performed in parallel mode. The polymorphic
function is_equivalent checks the equivalence of two fuzzy properties 𝑝𝑖(𝑇1)/𝜇(𝑝𝑖(𝑇1)),
𝑝𝑗(𝑇2)/𝜇(𝑝𝑗(𝑇2)) or methods 𝑓𝑖(𝑇1)/𝜇(𝑓𝑖(𝑇1)), 𝑓𝑗(𝑇2)/𝜇(𝑓𝑗(𝑇2)) and if they are equivalent
ones it returns 1, otherwise it returns 0. It can be implemented in various ways using corre-
sponding algorithms for checking the equivalence of fuzzy properties and methods, which were
proposed in [25].

Let us estimate the time and space complexity of Algorithm 1. As we can see, during the
analysis of specifications and signatures of classes 𝑇1/𝑀(𝑇1) and 𝑇2/𝑀(𝑇2) the algorithm
checks the equivalence of |𝑃 (𝑇1)|×|𝑃 (𝑇2)| = 𝑛×𝑚 properties and |𝐹 (𝑇1)|×|𝐹 (𝑇2)| = 𝑘×𝑞
methods. In addition, to construct the specification 𝑃 (𝑇1∖2) and signature 𝐹 (𝑇1∖2) of the fuzzy
class 𝑇1∖2/𝑀(𝑇1∖2), it performs copying of 𝑤1 properties and 𝑤2 methods of the fuzzy class
𝑇1/𝑀(𝑇1), which are not typical for the fuzzy class 𝑇2/𝑀(𝑇2), where 0 ≤ 𝑤1 ≤ |𝑃 (𝑇1)| and
0 ≤ 𝑤2 ≤ |𝐹 (𝑇1)|. Therefore, the time complexity of Algorithm 1 is equal to

𝑂(𝑛×𝑚) +𝑂(𝑘 × 𝑞) +𝑂(𝑤1) +𝑂(𝑤2) ≈ 𝑂(𝑛2 + 𝑘2 + 𝑤1 + 𝑤2),



Algorithm 1 Difference of fuzzy homogeneous classes.
Require: 𝑇1/𝑀(𝑇1), 𝑇2/𝑀(𝑇2) – fuzzy homogeneous classes
Ensure: 𝑇/𝑀(𝑇 ) = 𝑇1/𝑀(𝑇1) ∖ 𝑇2/𝑀(𝑇2)

1: 𝑇 := {};
2: 𝑢𝑛𝑖𝑞𝑢𝑒 := true;
3: for all 𝑝𝑖/𝜇(𝑝𝑖) ∈ 𝑃 (𝑇1) do
4: for all 𝑝𝑗/𝜇(𝑝𝑗) ∈ 𝑃 (𝑇2) do
5: if is_equivalent(𝑝𝑖/𝜇(𝑝𝑖), 𝑝𝑗/𝜇(𝑝𝑗)) then
6: 𝑢𝑛𝑖𝑞𝑢𝑒 := false;
7: break;
8: if 𝑢𝑛𝑖𝑞𝑢𝑒 then
9: if 𝑃 (𝑇 ) ̸∈ 𝑇 then

10: 𝑃 := {};
11: 𝑇.add(𝑃 );
12: 𝑃 (𝑇 ).add(𝑝𝑖/𝜇(𝑝𝑖))
13: else
14: 𝑢𝑛𝑖𝑞𝑢𝑒 := true;
15: 𝑢𝑛𝑖𝑞𝑢𝑒 := true;
16: for all 𝑓𝑖/𝜇(𝑓𝑖) ∈ 𝐹 (𝑇1) do
17: for all 𝑓𝑗/𝜇(𝑓𝑗) ∈ 𝐹 (𝑇2) do
18: if is_equivalent(𝑓𝑖/𝜇(𝑓𝑖), 𝑓𝑗/𝜇(𝑓𝑗)) then
19: 𝑢𝑛𝑖𝑞𝑢𝑒 := false;
20: break;
21: if 𝑢𝑛𝑖𝑞𝑢𝑒 then
22: if 𝐹 (𝑇 ) ̸∈ 𝑇 then
23: 𝐹 := {};
24: 𝑇.add(𝐹 );
25: 𝐹 (𝑇 ).add(𝑓𝑖/𝜇(𝑓𝑖))
26: else
27: 𝑢𝑛𝑖𝑞𝑢𝑒 := true;
28: return 𝑇 .

where 𝑛2 is a number of properties equivalence checks, 𝑘2 is a number of methods equivalence
checks, 𝑤1 and 𝑤2 is a number of copying operations of properties and methods of fuzzy class
𝑇1/𝑀(𝑇1). To perform main computations Algorithm 1 uses 𝑠 units of memory for storing fuzzy
type 𝑡1∖2, therefore its space complexity is equal to 𝑂(𝑠), where 0 ≤ 𝑠 ≤ |𝑃 (𝑇1)|+ |𝐹 (𝑇1)|.

4. Application Example

Let us consider a few fuzzy homogeneous classes of objects, represented in terms of fuzzy
object-oriented dynamic networks, which simultaneously have equivalent and nonequivalent
subclasses. Let us suppose that the first fuzzy homogeneous class of objects 𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒
defines the fuzzy type 𝑡ℎ𝑓1, which describes a fuzzy concept of a home fridge, which has the



following representation:

𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒(

𝑝1 = (𝑟𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟_𝑣𝑜𝑙𝑢𝑚𝑒, (𝑣 ∈ 𝑇 (𝑟_𝑣𝑜𝑙𝑢𝑚𝑒), 𝑠𝑡𝑟))/1,

𝑝2 = (𝑓𝑟𝑒𝑒𝑧𝑒𝑟_𝑣𝑜𝑙𝑢𝑚𝑒, (𝑣 ∈ 𝑇 (𝑓_𝑣𝑜𝑙𝑢𝑚𝑒), 𝑠𝑡𝑟))/1,

𝑝3 = (𝑐𝑒𝑒, (𝑣 ∈ 𝑉𝑐𝑒𝑒, 𝑠𝑡𝑟))/1,

𝑝4 = (𝑎𝑒𝑐, (𝑣 ∈ 𝑉𝑎𝑒𝑐, 𝑘𝑊ℎ))/1,

𝑝5 = (𝑠𝑖𝑧𝑒𝑠, ((𝑣1 ∈ 𝑉ℎ𝑒𝑖𝑔ℎ𝑡, 𝑐𝑚), (𝑣2 ∈ 𝑉𝑤𝑖𝑑𝑡ℎ, 𝑐𝑚), (𝑣3 ∈ 𝑉𝑑𝑒𝑝𝑡ℎ, 𝑐𝑚))/1,

𝑝6 = (𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠, (𝑣𝑓6(𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒.𝑠𝑖𝑧𝑒𝑠), 𝑣 ∈ [0, 1]))/0.93,

𝑝7 = (𝑐𝑜𝑙𝑜𝑟, (𝑣 ∈ 𝑉𝑐𝑜𝑙𝑜𝑟, 𝑠𝑡𝑟))/1,

𝑝8 = (𝑤𝑒𝑖𝑔ℎ𝑡, (𝑣 ∈ 𝑇 (𝑤𝑒𝑖𝑔ℎ𝑡), 𝑠𝑡𝑟))/1,

𝑝9 = (𝑛𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠, (𝑣 ∈ 𝑇 (𝑛𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠), 𝑠𝑡𝑟))/0.75,

𝑝10 = (𝑝𝑟𝑖𝑐𝑒, (𝑣 ∈ 𝑉𝑝𝑟𝑖𝑐𝑒,N+))/1,

𝑓1 = 𝑔𝑒𝑡_𝑐𝑟𝑖𝑠𝑝_𝑤𝑒𝑖𝑔ℎ𝑡()/0.93,

𝑓2 = 𝑔𝑒𝑡_𝑓𝑢𝑧𝑧𝑦_𝑝𝑟𝑖𝑐𝑒(𝑎, 𝑏, 𝑘)/0.87

)/0.96,

refrigerator volume is a fuzzy quantitative property defined as a linguistic variable, which has
the following term-set

𝑇 (𝑟_𝑣𝑜𝑙𝑢𝑚𝑒) = {𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙, 𝑠𝑚𝑎𝑙𝑙,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑏𝑖𝑔, 𝑣𝑒𝑟𝑦 𝑏𝑖𝑔},

where fuzzy variables very small, small, medium, big, and very big are defined over the interval
of integer numbers 𝑈 = [40, 425], which means the volume of the refrigerator in 𝑐𝑚3, and
have the following interpretation:

𝑀(𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙) = {40/1 + 50/0.95 + 60/0.85 + 70/0.7 + 80/0.65} 𝑐𝑚3,

𝑀(𝑠𝑚𝑎𝑙𝑙) = {95/0.92 + 110/0.78 + 125/0.63 + 140/0.55 + 150/0.45} 𝑐𝑚3,

𝑀(𝑚𝑒𝑑𝑖𝑢𝑚) = {170/0.78 + 190/0.92 + 210/1 + 230/0.92 + 250/0.78} 𝑐𝑚3,

𝑀(𝑏𝑖𝑔) = {270/0.82 + 290/0.94 + 310/1 + 330/0.94 + 350/0.82} 𝑐𝑚3,

𝑀(𝑣𝑒𝑟𝑦 𝑏𝑖𝑔) = {365/0.65 + 380/0.72 + 395/0.86 + 410/0.93 + 425/1} 𝑐𝑚3;

freezer volume is a fuzzy quantitative property defined as a linguistic variable, which has the
following term-set

𝑇 (𝑓_𝑣𝑜𝑙𝑢𝑚𝑒) = {𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙, 𝑠𝑚𝑎𝑙𝑙,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑏𝑖𝑔, 𝑣𝑒𝑟𝑦 𝑏𝑖𝑔},

where fuzzy variables very small, small, medium, big, and very big are defined over the interval
of integer numbers 𝑈 = [10, 275], which means the volume of the freezer in 𝑐𝑚3, and have the
following interpretation:

𝑀(𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙) = {10/1 + 17/0.94 + 24/0.85 + 31/0.78 + 38/0.65} 𝑐𝑚3,



𝑀(𝑠𝑚𝑎𝑙𝑙) = {50/1 + 57/0.92 + 64/0.86 + 71/0.73 + 78/0.61} 𝑐𝑚3,

𝑀(𝑚𝑒𝑑𝑖𝑢𝑚) = {90/0.85 + 100/0.93 + 110/1 + 120/0.93 + 130/0.85} 𝑐𝑚3,

𝑀(𝑏𝑖𝑔) = {140/0.82 + 155/0.93 + 170/1 + 185/0.93 + 200/0.82} 𝑐𝑚3,

𝑀(𝑣𝑒𝑟𝑦 𝑏𝑖𝑔) = {215/0.67 + 230/0.79 + 245/0.88 + 260/0.95 + 275/1} 𝑐𝑚3;

cee is a crisp quantitative property, which means the class of energy efficiency to which the fridge
belongs, and is defined over the set of string values 𝑉𝑐𝑒𝑒 = {𝐴+++, 𝐴++, 𝐴+, 𝐴,𝐵,𝐶,𝐷, 𝐹};
aec is a crisp quantitative property, which means the annual energy consumption by the fridge
in 𝑘𝑊ℎ, and is defined over the following interval of integer numbers 𝑉𝑎𝑒𝑐 = [100, 360]; sizes
is a crisp multiple-valued quantitative property, which means dimensions of the fridge in 𝑐𝑚,
and is defined over the intervals of integer numbers 𝑉ℎ𝑒𝑖𝑔ℎ𝑡 = [45, 205], 𝑉𝑤𝑖𝑑𝑡ℎ = [35, 95],
𝑉𝑑𝑒𝑝𝑡ℎ = [55, 85]; compactness is a fuzzy qualitative property defined by verification function

𝑣𝑓6(𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒) : 𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒.𝑠𝑖𝑧𝑒𝑠 → [0, 1],

where 𝑣𝑓6(𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒) is defined as follows

𝑣𝑓6(𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒) =
𝑉 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛
,

where

𝑉 = 𝑠𝑖𝑧𝑒𝑠.𝑣1 · 𝑠𝑖𝑧𝑒𝑠.𝑣2 · 𝑠𝑖𝑧𝑒𝑠.𝑣3,
𝑉𝑚𝑖𝑛 = min(𝑉ℎ𝑒𝑖𝑔ℎ𝑡) ·min(𝑉𝑤𝑖𝑑𝑡ℎ) ·min(𝑉𝑑𝑒𝑝𝑡ℎ),

𝑉𝑚𝑎𝑥 = max(𝑉ℎ𝑒𝑖𝑔ℎ𝑡) ·max(𝑉𝑤𝑖𝑑𝑡ℎ) ·max(𝑉𝑑𝑒𝑝𝑡ℎ);

color is a crisp quantitative property, which means the color of the fridge, and is defined over
the following set of string values

𝑉𝑐𝑜𝑙𝑜𝑟 = {𝑏𝑒𝑖𝑔𝑒, 𝑤ℎ𝑖𝑡𝑒, 𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒, 𝑔𝑜𝑙𝑑𝑒𝑛, 𝑏𝑟𝑜𝑤𝑛, 𝑟𝑒𝑑, 𝑠𝑡𝑎𝑖𝑛𝑙𝑒𝑠𝑠 𝑠𝑡𝑒𝑒𝑙,
𝑠𝑖𝑙𝑣𝑒𝑟, 𝑔𝑟𝑒𝑦, 𝑡𝑖𝑡𝑎𝑛𝑖𝑢𝑚, 𝑏𝑙𝑎𝑐𝑘, 𝑏𝑟𝑜𝑛𝑧𝑒, 𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛, 𝑜𝑟𝑎𝑛𝑔𝑒, 𝑝𝑖𝑛𝑘, 𝑖𝑣𝑜𝑟𝑦, 𝑝𝑢𝑟𝑝𝑙𝑒};

weight is a fuzzy quantitative property defined as a linguistic variable, which has the following
term-set

𝑇 (𝑤𝑒𝑖𝑔ℎ𝑡) = {𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑒𝑎𝑣𝑦, 𝑣𝑒𝑟𝑦 ℎ𝑒𝑎𝑣𝑦},

where fuzzy variables lightweight, medium, heavy, and very heavy are defined over the interval
of integer numbers 𝑈 = [10, 135], which means the weight of the fridge in 𝑘𝑔, and have the
following interpretation:

𝑀(𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡) = {10/1 + 20/0.95 + 30/0.88 + 40/0.79 + 50/0.68} 𝑘𝑔,

𝑀(𝑚𝑒𝑑𝑖𝑢𝑚) = {55/0.83 + 60/0.94 + 65/1 + 70/0.94 + 75/0.83} 𝑘𝑔,
𝑀(ℎ𝑒𝑎𝑣𝑦) = {80/0.86 + 85/0.95 + 90/1 + 95/0.95 + 100/0.86} 𝑘𝑔,

𝑀(𝑣𝑒𝑟𝑦 ℎ𝑒𝑎𝑣𝑦) = {115/0.71 + 120/0.79 + 125/0.88 + 130/0.96 + 135/1} 𝑘𝑔;



noisiness is a fuzzy quantitative property defined as a linguistic variable, which has the following
term-set

𝑇 (𝑛𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠) = {𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ},

where fuzzy variables low, medium, and high are defined over the interval of real numbers
𝑈 = [30, 45], which means the noisiness of the fridge in 𝑑𝐵, and have the following meaning:

𝑀(𝑙𝑜𝑤) = {30/1 + 31/0.97 + 32/0.93 + 33/0.89 + 34/0.82} 𝑑𝐵,

𝑀(𝑚𝑒𝑑𝑖𝑢𝑚) = {35/0.92 + 36/0.98 + 37/1 + 38/0.98 + 39/0.92} 𝑑𝐵,

𝑀(ℎ𝑖𝑔ℎ) = {40/0.83 + 41/0.88 + 42/0.92 + 43/0.97 + 44/1} 𝑑𝐵;

price is a crisp quantitative property, which means the price of the fridge in UAH, and is
defined over the interval of integer numbers 𝑉𝑝𝑟𝑖𝑐𝑒 = [2200, 255000]; get_crisp_weight is a
fuzzy method that computes defuzzification representation of the fuzzy quantitative property
weight and defined in the following way:

𝑔𝑒𝑡_𝑐𝑟𝑖𝑠𝑝_𝑤𝑒𝑖𝑔ℎ𝑡() =
∑︀|𝑤𝑒𝑖𝑔ℎ𝑡.𝑣|

𝑖=1 𝜇(𝑤𝑒𝑖𝑔ℎ𝑡.𝑣) · 𝑤𝑒𝑖𝑔ℎ𝑡.𝑣∑︀|𝑤𝑒𝑖𝑔ℎ𝑡.𝑣|
𝑖=1 𝜇(𝑤𝑒𝑖𝑔ℎ𝑡.𝑣)

;

get_fuzzy_price is a fuzzy method that computes fuzzification representation of the crisp quan-
titative property price and defined in the following way:

𝑔𝑒𝑡_𝑓𝑢𝑧𝑧𝑦_𝑝𝑟𝑖𝑐𝑒(𝑎, 𝑏, 𝑘) = {𝑥−𝑖 /𝜇(𝑥
−
𝑖 ), 𝑝𝑟𝑖𝑐𝑒.𝑣/1, 𝑥

+
𝑖 /𝜇(𝑥

+
𝑖 )},

where 𝑎 < 𝑝𝑟𝑖𝑐𝑒.𝑣 < 𝑏 and 𝑘 is the incremental for the generation of 𝑥−𝑖 and 𝑥+𝑖 , 𝑖 = 1, . . .

𝑥−𝑖 = 𝑝𝑟𝑖𝑐𝑒.𝑣 − 𝑘 * 𝑖, 𝑎 < 𝑝𝑟𝑖𝑐𝑒.𝑣 − 𝑘 * 𝑖 < 𝑝𝑟𝑖𝑐𝑒.𝑣,

𝑥+𝑖 = 𝑝𝑟𝑖𝑐𝑒.𝑣 + 𝑘 * 𝑖, 𝑝𝑟𝑖𝑐𝑒.𝑣 < 𝑝𝑟𝑖𝑐𝑒.𝑣 + 𝑘 * 𝑖 < 𝑏,

and where

𝜇(𝑥−𝑖 ) =
𝑥−𝑖 − 𝑎

𝑝𝑟𝑖𝑐𝑒.𝑣 − 𝑎
− 𝛿−𝑖 , 𝛿−𝑖 = 1− 𝜇(𝑥−𝑖 )− 𝜈(𝑥−𝑖 ), 𝜈(𝑥−𝑖 ) = 1− 𝜇(𝑥−𝑖 ),

𝜇(𝑥+𝑖 ) =
𝑏− 𝑥+𝑖

𝑏− 𝑝𝑟𝑖𝑐𝑒.𝑣
− 𝛿+𝑖 , 𝛿+𝑖 = 1− 𝜇(𝑥+𝑖 )− 𝜈(𝑥+𝑖 ), 𝜈(𝑥+𝑖 ) = 1− 𝜇(𝑥+𝑖 ).

As we can see, the fuzzy class of objects 𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒 has a measure of its fuzziness, which
is equal to 0.96 according to Definition 1.

Now let us suppose that the second fuzzy homogeneous class of objects 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒 defines
the fuzzy type 𝑡ℎ𝑓2, which describes a fuzzy concept of a hotel fridge, which has the following
representation:

𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒(

𝑝1 = (𝑟𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟_𝑣𝑜𝑙𝑢𝑚𝑒, (𝑣 ∈ 𝑇 (𝑟_𝑣𝑜𝑙𝑢𝑚𝑒), 𝑠𝑡𝑟))/1,

𝑝2 = (𝑓𝑟𝑒𝑒𝑧𝑒𝑟_𝑣𝑜𝑙𝑢𝑚𝑒, (𝑣 ∈ 𝑇 (𝑓_𝑣𝑜𝑙𝑢𝑚𝑒), 𝑠𝑡𝑟))/0.78,



𝑝3 = (𝑐𝑒𝑒, (𝑣 ∈ 𝑉𝑐𝑒𝑒, 𝑠𝑡𝑟))/1,

𝑝4 = (𝑎𝑒𝑐, (𝑣 ∈ 𝑉𝑎𝑒𝑐, 𝑘𝑊ℎ))/1,

𝑝5 = (𝑠𝑖𝑧𝑒𝑠, ((𝑣1 ∈ 𝑉ℎ𝑒𝑖𝑔ℎ𝑡, 𝑐𝑚), (𝑣2 ∈ 𝑉𝑤𝑖𝑑𝑡ℎ, 𝑐𝑚), (𝑣3 ∈ 𝑉𝑑𝑒𝑝𝑡ℎ, 𝑐𝑚))/1,

𝑝6 = (𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠, (𝑣𝑓6(𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒.𝑠𝑖𝑧𝑒𝑠), 𝑣 ∈ [0, 1]))/0.93,

𝑝7 = (𝑐𝑜𝑙𝑜𝑟, (𝑣 ∈ 𝑉𝑐𝑜𝑙𝑜𝑟, 𝑠𝑡𝑟))/1,

𝑝8 = (𝑤𝑒𝑖𝑔ℎ𝑡, (𝑣 ∈ 𝑇 (𝑤𝑒𝑖𝑔ℎ𝑡), 𝑠𝑡𝑟))/1,

𝑝9 = (𝑛𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠, (𝑣 ∈ 𝑇 (𝑛𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠), 𝑠𝑡𝑟))/0.82,

𝑝10 = (𝑝𝑟𝑖𝑐𝑒, (𝑣 ∈ 𝑉𝑝𝑟𝑖𝑐𝑒,N+))/1,

𝑓1 = 𝑔𝑒𝑡_𝑐𝑟𝑖𝑠𝑝_𝑤𝑒𝑖𝑔ℎ𝑡()/0.93,

𝑓2 = 𝑔𝑒𝑡_𝑓𝑢𝑧𝑧𝑦_𝑝𝑟𝑖𝑐𝑒(𝑎, 𝑏, 𝑘)/0.87

)/0.94,

refrigerator volume is a fuzzy quantitative property defined as a linguistic variable, which has
the following term-set

𝑇 (𝑟_𝑣𝑜𝑙𝑢𝑚𝑒) = {𝑠𝑚𝑎𝑙𝑙,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑏𝑖𝑔},

where fuzzy variables small, medium, and big are defined over the interval of integer numbers
𝑈 = [30, 45], which means the volume of the refrigerator in 𝑐𝑚3, and have the following
interpretation:

𝑀(𝑠𝑚𝑎𝑙𝑙) = {30/1 + 31/0.95 + 32/0.91 + 33/0.87 + 34/0.82} 𝑐𝑚3,

𝑀(𝑚𝑒𝑑𝑖𝑢𝑚) = {35/0.9 + 36/0.96 + 37/1 + 38/0.96 + 39/0.9} 𝑐𝑚3,

𝑀(𝑏𝑖𝑔) = {40/0.78 + 41/0.83 + 42/0.89 + 43/0.95 + 44/1} 𝑐𝑚3;

freezer volume is a fuzzy quantitative property defined as a linguistic variable, which has the
following term-set

𝑇 (𝑓_𝑣𝑜𝑙𝑢𝑚𝑒) = {𝑠𝑚𝑎𝑙𝑙,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑏𝑖𝑔},
where fuzzy variables small, medium, and big are defined over the interval of real numbers 𝑈 =
[5, 6.5], which means the volume of the freezer in 𝑐𝑚3, and have the following interpretation:

𝑀(𝑠𝑚𝑎𝑙𝑙) = {5.0/1 + 5.1/0.92 + 5.2/0.87 + 5.3/0.82 + 5.4/0.78} 𝑐𝑚3,

𝑀(𝑚𝑒𝑑𝑖𝑢𝑚) = {5.5/0.8 + 5.6/0.93 + 5.7/1 + 5.8/0.93 + 5.9/0.8} 𝑐𝑚3,

𝑀(𝑏𝑖𝑔) = {6.0/0.82 + 6.1/0.88 + 6.2/0.93 + 6.3/0.97 + 6.4/1} 𝑐𝑚3;

cee is a crisp quantitative property, which means the class of energy efficiency to which the fridge
belongs, and is defined over the set of string values 𝑉𝑐𝑒𝑒 = {𝐴+++, 𝐴++, 𝐴+, 𝐴,𝐵,𝐶,𝐷, 𝐹};
aec is a crisp quantitative property, which means the annual energy consumption by the fridge
in 𝑘𝑊ℎ, and is defined over the following interval of integer numbers 𝑉𝑎𝑒𝑐 = [95, 110]; sizes
is a crisp multiple-valued quantitative property, which means dimensions of the fridge in 𝑐𝑚,
and is defined over the intervals of integer numbers 𝑉ℎ𝑒𝑖𝑔ℎ𝑡 = [45, 55], 𝑉𝑤𝑖𝑑𝑡ℎ = [40, 60],
𝑉𝑑𝑒𝑝𝑡ℎ = [40, 50]; compactness is a fuzzy qualitative property defined by verification function

𝑣𝑓6(𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒) : 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒.𝑠𝑖𝑧𝑒𝑠 → [0, 1],



where 𝑣𝑓6(𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒) is defined as follows

𝑣𝑓6(𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒) =
𝑉 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛
,

where

𝑉 = 𝑠𝑖𝑧𝑒𝑠.𝑣1 · 𝑠𝑖𝑧𝑒𝑠.𝑣2 · 𝑠𝑖𝑧𝑒𝑠.𝑣3,
𝑉𝑚𝑖𝑛 = min(𝑉ℎ𝑒𝑖𝑔ℎ𝑡) ·min(𝑉𝑤𝑖𝑑𝑡ℎ) ·min(𝑉𝑑𝑒𝑝𝑡ℎ),

𝑉𝑚𝑎𝑥 = max(𝑉ℎ𝑒𝑖𝑔ℎ𝑡) ·max(𝑉𝑤𝑖𝑑𝑡ℎ) ·max(𝑉𝑑𝑒𝑝𝑡ℎ);

color is a crisp quantitative property, which means the color of the fridge, and is defined over
the following set of string values

𝑉𝑐𝑜𝑙𝑜𝑟 = {𝑏𝑒𝑖𝑔𝑒, 𝑤ℎ𝑖𝑡𝑒, 𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒, 𝑔𝑜𝑙𝑑𝑒𝑛, 𝑏𝑟𝑜𝑤𝑛, 𝑟𝑒𝑑, 𝑠𝑡𝑎𝑖𝑛𝑙𝑒𝑠𝑠 𝑠𝑡𝑒𝑒𝑙,
𝑠𝑖𝑙𝑣𝑒𝑟, 𝑔𝑟𝑒𝑦, 𝑡𝑖𝑡𝑎𝑛𝑖𝑢𝑚, 𝑏𝑙𝑎𝑐𝑘, 𝑏𝑟𝑜𝑛𝑧𝑒, 𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛, 𝑜𝑟𝑎𝑛𝑔𝑒, 𝑝𝑖𝑛𝑘, 𝑖𝑣𝑜𝑟𝑦, 𝑝𝑢𝑟𝑝𝑙𝑒};

weight is a fuzzy quantitative property defined as a linguistic variable, which has the following
term-set

𝑇 (𝑤𝑒𝑖𝑔ℎ𝑡) = {𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡,𝑚𝑒𝑑𝑖𝑢𝑚},

where fuzzy variables lightweight, and medium are defined over the interval of integer numbers
𝑈 = [14, 23], which means the weight of the fridge in 𝑘𝑔, and have the following interpretation:

𝑀(𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡) = {14/1 + 15/0.95 + 16/0.91 + 17/0.87 + 18/0.81} 𝑘𝑔,

𝑀(𝑚𝑒𝑑𝑖𝑢𝑚) = {19/0.96 + 20/1 + 21/0.95 + 22/0.91 + 23/0.87} 𝑘𝑔;

noisiness is a fuzzy quantitative property defined as a linguistic variable, which has the following
term-set

𝑇 (𝑛𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠) = {𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚},

where fuzzy variables low, and medium are defined over the interval of real numbers 𝑈 =
[35, 42], which means the noisiness of the fridge in 𝑑𝐵, and have the following meaning:

𝑀(𝑙𝑜𝑤) = {35/1 + 36/0.94 + 37/0.89 + 38/0.83} 𝑑𝐵,

𝑀(𝑚𝑒𝑑𝑖𝑢𝑚) = {39/0.95 + 40/1 + 41/0.95 + 42/0.93} 𝑑𝐵;

price is a crisp quantitative property, which means the price of the fridge in UAH, and is defined
over the interval of integer numbers 𝑉𝑝𝑟𝑖𝑐𝑒 = [2800, 4700]; get_crisp_weight is a fuzzy method
that computes defuzzification representation of the fuzzy quantitative property weight and
defined in the following way:

𝑔𝑒𝑡_𝑐𝑟𝑖𝑠𝑝_𝑤𝑒𝑖𝑔ℎ𝑡() =
∑︀|𝑤𝑒𝑖𝑔ℎ𝑡.𝑣|

𝑖=1 𝜇(𝑤𝑒𝑖𝑔ℎ𝑡.𝑣) · 𝑤𝑒𝑖𝑔ℎ𝑡.𝑣∑︀|𝑤𝑒𝑖𝑔ℎ𝑡.𝑣|
𝑖=1 𝜇(𝑤𝑒𝑖𝑔ℎ𝑡.𝑣)

;

get_fuzzy_price is a fuzzy method that computes fuzzification representation of the crisp quan-
titative property price and defined in the following way:

𝑔𝑒𝑡_𝑓𝑢𝑧𝑧𝑦_𝑝𝑟𝑖𝑐𝑒(𝑎, 𝑏, 𝑘) = {𝑥−𝑖 /𝜇(𝑥
−
𝑖 ), 𝑝𝑟𝑖𝑐𝑒.𝑣/1, 𝑥

+
𝑖 /𝜇(𝑥

+
𝑖 )},



where 𝑎 < 𝑝𝑟𝑖𝑐𝑒.𝑣 < 𝑏 and 𝑘 is the incremental for the generation of 𝑥−𝑖 and 𝑥+𝑖 , 𝑖 = 1, . . .

𝑥−𝑖 = 𝑝𝑟𝑖𝑐𝑒.𝑣 − 𝑘 * 𝑖, 𝑎 < 𝑝𝑟𝑖𝑐𝑒.𝑣 − 𝑘 * 𝑖 < 𝑝𝑟𝑖𝑐𝑒.𝑣,

𝑥+𝑖 = 𝑝𝑟𝑖𝑐𝑒.𝑣 + 𝑘 * 𝑖, 𝑝𝑟𝑖𝑐𝑒.𝑣 < 𝑝𝑟𝑖𝑐𝑒.𝑣 + 𝑘 * 𝑖 < 𝑏,

and where

𝜇(𝑥−𝑖 ) =
𝑥−𝑖 − 𝑎

𝑝𝑟𝑖𝑐𝑒.𝑣 − 𝑎
− 𝛿−𝑖 , 𝛿−𝑖 = 1− 𝜇(𝑥−𝑖 )− 𝜈(𝑥−𝑖 ), 𝜈(𝑥−𝑖 ) = 1− 𝜇(𝑥−𝑖 ),

𝜇(𝑥+𝑖 ) =
𝑏− 𝑥+𝑖

𝑏− 𝑝𝑟𝑖𝑐𝑒.𝑣
− 𝛿+𝑖 , 𝛿+𝑖 = 1− 𝜇(𝑥+𝑖 )− 𝜈(𝑥+𝑖 ), 𝜈(𝑥+𝑖 ) = 1− 𝜇(𝑥+𝑖 ).

As we can see, the fuzzy class of objects 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒 has a measure of its fuzziness, which
is equal to 0.94 according to Definition 1.

Now let us compute the difference between the fuzzy homogeneous classes of objects
𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒 and 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒 and then vice versa, i.e. 𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒 ∖𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒 and
𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒 ∖𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒, using Algorithm 1. Analyzing the specifications and signatures
of the fuzzy homogeneous classes of objects 𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒 and 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒, we can conclude
that

𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒.𝑐𝑒𝑒 ≡ 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒.𝑐𝑒𝑒,

𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒.𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 ≡ 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒.𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠,

𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒.𝑐𝑜𝑙𝑜𝑟 ≡ 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒.𝑐𝑜𝑙𝑜𝑟,

𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒.𝑔𝑒𝑡_𝑐𝑟𝑖𝑠𝑝_𝑤𝑒𝑖𝑔ℎ𝑡() ≡ 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒.𝑔𝑒𝑡_𝑐𝑟𝑖𝑠𝑝_𝑤𝑒𝑖𝑔ℎ𝑡(),

𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒.𝑔𝑒𝑡_𝑓𝑢𝑧𝑧𝑦_𝑝𝑟𝑖𝑐𝑒(𝑎, 𝑏, 𝑘) ≡ 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒.𝑔𝑒𝑡_𝑓𝑢𝑧𝑧𝑦_𝑝𝑟𝑖𝑐𝑒(𝑎, 𝑏, 𝑘).

Therefore, using Algorithm 1 we have constructed two fuzzy homogeneous classes of objects,
which have the following representations:

𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒 ∖𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒(

𝑝1 = (𝑟𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟_𝑣𝑜𝑙𝑢𝑚𝑒, (𝑣 ∈ 𝑇 (𝑟_𝑣𝑜𝑙𝑢𝑚𝑒), 𝑠𝑡𝑟))/1,

𝑝2 = (𝑓𝑟𝑒𝑒𝑧𝑒𝑟_𝑣𝑜𝑙𝑢𝑚𝑒, (𝑣 ∈ 𝑇 (𝑓_𝑣𝑜𝑙𝑢𝑚𝑒), 𝑠𝑡𝑟))/1,

𝑝3 = (𝑎𝑒𝑐, (𝑣 ∈ 𝑉𝑎𝑒𝑐, 𝑘𝑊ℎ))/1,

𝑝4 = (𝑠𝑖𝑧𝑒𝑠, ((𝑣1 ∈ 𝑉ℎ𝑒𝑖𝑔ℎ𝑡, 𝑐𝑚), (𝑣2 ∈ 𝑉𝑤𝑖𝑑𝑡ℎ, 𝑐𝑚), (𝑣3 ∈ 𝑉𝑑𝑒𝑝𝑡ℎ, 𝑐𝑚))/1,

𝑝5 = (𝑤𝑒𝑖𝑔ℎ𝑡, (𝑣 ∈ 𝑇 (𝑤𝑒𝑖𝑔ℎ𝑡), 𝑠𝑡𝑟))/1,

𝑝6 = (𝑛𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠, (𝑣 ∈ 𝑇 (𝑛𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠), 𝑠𝑡𝑟))/0.75,

𝑝7 = (𝑝𝑟𝑖𝑐𝑒, (𝑣 ∈ 𝑉𝑝𝑟𝑖𝑐𝑒,N+))/1,

)/0.96,

𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒 ∖𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒(

𝑝1 = (𝑟𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟_𝑣𝑜𝑙𝑢𝑚𝑒, (𝑣 ∈ 𝑇 (𝑟_𝑣𝑜𝑙𝑢𝑚𝑒), 𝑠𝑡𝑟))/1,

𝑝2 = (𝑓𝑟𝑒𝑒𝑧𝑒𝑟_𝑣𝑜𝑙𝑢𝑚𝑒, (𝑣 ∈ 𝑇 (𝑓_𝑣𝑜𝑙𝑢𝑚𝑒), 𝑠𝑡𝑟))/0.78,



𝑝3 = (𝑎𝑒𝑐, (𝑣 ∈ 𝑉𝑎𝑒𝑐, 𝑘𝑊ℎ))/1,

𝑝4 = (𝑠𝑖𝑧𝑒𝑠, ((𝑣1 ∈ 𝑉ℎ𝑒𝑖𝑔ℎ𝑡, 𝑐𝑚), (𝑣2 ∈ 𝑉𝑤𝑖𝑑𝑡ℎ, 𝑐𝑚), (𝑣3 ∈ 𝑉𝑑𝑒𝑝𝑡ℎ, 𝑐𝑚))/1,

𝑝5 = (𝑤𝑒𝑖𝑔ℎ𝑡, (𝑣 ∈ 𝑇 (𝑤𝑒𝑖𝑔ℎ𝑡), 𝑠𝑡𝑟))/1,

𝑝6 = (𝑛𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠, (𝑣 ∈ 𝑇 (𝑛𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠), 𝑠𝑡𝑟))/0.82,

𝑝7 = (𝑝𝑟𝑖𝑐𝑒, (𝑣 ∈ 𝑉𝑝𝑟𝑖𝑐𝑒,N+))/1,

)/0.94,

Created classes represent unique parts of fuzzy homogeneous classes of objects 𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒
and 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒. Class 𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒 ∖𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒 has a measure of fuzziness, which is
equal to 0.96 according to Definition 1, and defines the fuzzy type 𝑡ℎ𝑓1∖ℎ𝑓2 ⊆ 𝑡ℎ𝑓1, which
consists of properties and methods which are typical only for the fuzzy homogeneous class of
objects 𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒/0.96. Class 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒 ∖𝐻𝑜𝑚𝑒𝐹𝑟𝑖𝑑𝑔𝑒 has a measure of fuzziness,
which is equal to 0.94 according to Definition 1, and defines the fuzzy type 𝑡ℎ𝑓2∖ℎ𝑓1 ⊆ 𝑡ℎ𝑓2,
which consists of properties and methods which are typical only for the fuzzy homogeneous
class of objects 𝐻𝑜𝑡𝑒𝑙𝐹𝑟𝑖𝑑𝑔𝑒/0.94.

As the result, Algorithm 1 provides an opportunity to verify the difference of one fuzzy
homogeneous class of objects from another one, as well as to compute it in the form of a new
fuzzy homogeneous class of objects if such difference exists. Fuzzy homogeneous classes of
objects, which are dynamically created by the algorithm, allow a KBS to estimate both the
similarity and the difference between extracted or acquired new knowledge items and those
ones, which already integrated within the knowledge base since the difference and similarity
are inverse concepts. Results of such analysis can be used for the efficient integration of new
knowledge into the knowledge base.

5. Conclusions

To perform the integration of new knowledge into the knowledge base efficiently, a KBS should
be able to analyze and to compare extracted or acquired new knowledge items with those
ones, which were integrated previously. A system should verify the difference and similarity
between new knowledge items and previously obtained ones to perform the recognition stage
of the knowledge integration process. For this purpose, we defined the concept of the universal
difference exploiter for fuzzy homogeneous classes of objects and developed a corresponding
algorithm for its implementation. The developed algorithm provides an opportunity to verify
as well as to compute the difference and the similarity between extracted or acquired new
knowledge items and previously obtained ones, in terms of fuzzy homogeneous classes of objects,
within such knowledge representation model as fuzzy object-oriented dynamic networks.

Similar to other universal exploiters, difference exploiter can be adapted to compute the
difference of fuzzy inhomogeneous classes of objects as well as for the difference of fuzzy
homogeneous and inhomogeneous classes of objects. However, such extensions require the
development of the appropriate algorithms for their implementation.
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