
Weight-based Load Balancing in Raspberry Pi MPICH
Heterogeneous Cluster with Fuzzy Estimation of Node
Computational Performance

Dmytro Zubov
1 and Andrey Kupin

2

1 University of Central Asia, 138 Toktogul St., Bishkek, 720001, Kyrgyzstan
2 Kryvyi Rih National University, 11 Matusevycha St., Kryvyi Rih, 50027, Ukraine

Abstract
Dynamic load balancing is a key methodology that is used to speed up computing clusters

nowadays. The work sharing and the work stealing are two opposite algorithms with various

implementations based on predefined metrics like performance, response time, fault tolerance,

resource utilization, and scalability. For the heterogeneous soft-/hardware in the Raspberry Pi

MPICH cluster, weight-based load balancing is the most efficient approach since different

parameters such as the type of CPU and OS, RAM, workload, microSD card capacity, power

consumption, and OS release date can be taken into consideration. These parameters are

described numerically and linguistically, and hence the fuzzy logic is employed to estimate the

performance weights of the cluster nodes. Then, this information is used to distribute the

workload among the cluster nodes to minimize the execution time. In this project, fuzzification,

formation of fuzzy rules, fuzzy inference, and defuzzification are applied to find the

performance weights. The defuzzification is based on the multiplication operation. In the

cluster with two Raspberry Pi 4B boards with 2 GB RAM and Raspberry Pi 64-bit OS with

desktop and one Raspberry Pi 3B board with 1 GB RAM and Raspberry Pi 32-bit OS Lite,

recommended performance weights are (5, 5, 1), respectively. The Python program for the

prime numbers finding algorithm implements the proposed weight-based load balancing

approach that is approximately five times faster than the basic algorithm with equal loading for

the maximum integer number 300000.

Keywords 1
Weight-based load balancing, MPICH cluster, fuzzy logic, Raspberry Pi

1. Introduction

MPICH is a free high-performance implementation of the Message Passing Interface (MPI) standard

[1]. It has been tested on several platforms such as Linux, Mac OS, Solaris, and Windows. As of June

2016, this technology was exclusively used on nine of the top ten supercomputers, including Sunway

TaihuLight which is ranked third in the TOP500 list as of November 2018. Concerning power

consumption and performance, the Raspberry Pi MPICH cluster [2-4] is one of the most efficient

approaches nowadays. Because of the heterogeneous soft-/hardware, e.g., Raspberry Pi 32/64-bit and

Ubuntu operating systems (OSs) and Raspberry Pi 3B/3B+/4B boards with 1/2/4/8 GB RAM, the

dynamic load balancing is one of the main challenges that require to distribute the workload across all

the nodes to minimize the execution time.

The work sharing and the work stealing are two opposite algorithms in dynamic load balancing [5]

that can be split up into various implementations based on predefined metrics such as throughput,

response time, overhead, performance, fault tolerance, migration time, resource utilization, and

ICTERI-2021, Vol I: Main Conference, PhD Symposium, Posters and Demonstrations, September 28 – October 2, 2021, Kherson, Ukraine

EMAIL: dzubov@ieee.org (A. 1); kupin@knu.edu.ua (A. 2)
ORCID: 0000-0002-6807-0924 (A. 1); 0000-0001-7569-1721 (A. 2)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

scalability [6]. Biased random sampling, active clustering, honeybee foraging, join idle queue, load

balance min-min, and ant colony optimization are examples of these implementations [6]. Since the

soft-/hardware configuration of the MPICH cluster is not fixed, active clustering is the most suitable

approach, where the master node analyzes the performance of existing nodes and then distributes the

workload in accordance with that. This approach is implemented in Oracle clusters as the weight-based

load balancing [7]. For the initial phase, when existing nodes start communicating with each other, the

Python software development is a trivial task: two blocking, send and recv, and two non-blocking, isend

and irecv, communication methods send and receive data, respectively [8]. Hence, the key problem is

the calculation of the performance weights associated with the cluster nodes. Concerning the processor

performance, this problem is solved by the Exploitation of the Fastest Processor method which is a

centralized algorithm for dynamic load distribution of parallel applications based on the Single Program

Multiple Data paradigm [9]. However, other parameters, e.g., OS and RAM, are not taken into

consideration in [9].

Performance weights are calculated based on heterogeneous parameters such as processor, OS,

RAM, capacity of MicroSD card, current workload on the node. These parameters can be described

numerically, e.g., 1 GB RAM, and linguistically, e.g., processor ARM Cortex-A53 1.2 GHz is

“significantly below norm”, and hence the fuzzy logic [10-19] is proposed to estimate the performance

weights associated with the cluster nodes.

This paper presents an approach of the performance weights assessment using fuzzy logic to

optimize the workload distribution on the nodes in the Raspberry Pi MPICH heterogeneous cluster. The

prime numbers funding algorithm is proposed to demonstrate a common technique used in parallel

programming – solving a smaller case to speed up the solution of the full problem [20]. The modified

version of the Python program to find prime numbers [4] was developed to speed up the Raspberry Pi

MPICH heterogeneous cluster.

The paper is organized as follows: In Section 2, a basic implementation of the prime numbers finding

algorithm with equal load balancing and its performance evaluation is presented, as well as Mamdani,

Sugeno, and Tsukamoto fuzzy inference systems are compared and analyzed for the performance

weights assessment. In Section 3, the fuzzy inference for the performance weights assessment of the

Raspberry Pi MPICH heterogeneous cluster nodes is implemented, as well as equal and weight-based

load balancing approaches are compared using the prime numbers finding algorithm. Conclusions are

summarized in Section 4.

2. Background
2.1. Prime Numbers Finding Algorithm: Basic Implementation with Equal Load Balancing
and Its Performance Evaluation

The basic implementation of the prime numbers finding algorithm with equal load balancing written in

Python for the Raspberry Pi MPICH cluster [4] can schematically be represented as the pseudocode in

Figure 1.

This algorithm equally loads all the working nodes in a cluster. If end_number equals 100, three

nodes analyze numbers as follows:

1. Master node, Raspberry Pi 4B board, my_rank=0: 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73,

79, 85, 91, 97.

2. Second node, Raspberry Pi 4B board, my_rank=1: 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69,

75, 81, 87, 93, 99.

3. Third node, Raspberry Pi 3B board, my_rank=2: 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77,

83, 89, 95.

Python program [4] was executed on the Raspberry Pi MPICH heterogeneous cluster with three

nodes:

1. Two Raspberry Pi 4B boards: 2 GB RAM; Raspberry Pi OS with desktop, 64-bit beta test version,

release date – August 24, 2020.

2. One Raspberry Pi 3B board: 1 GB RAM; Raspberry Pi OS Lite, 32-bit version, release date –

January 11, 2021.

(1) Start

(2) Find the cluster size cluster_size and the rank my_rank of the current cluster node

(3) Set integer variable candidate_number=(my_rank*2+1)

(4) Initialize integer variable end_number with the value provided by the user

(5) Create an empty list primes of the discovered primes in the current node

(6) Repeat the steps until candidate_number≤end_number

 (6.1) Set Boolean variable found_prime=True

 (6.2) Set integer variable div_number=2

 (6.3) Repeat the steps until div_number≤candidate_number

 (6.3.1) If the reminder of candidate_number divide div_number equals 0,

 Set found_prime=False

 Go to step (6.4)

 (6.3.2) Increment div_number

 (6.4) If found_prime=True,

 Append candidate_number to the list primes

 (6.5) Set candidate_number=candidate_number+cluster_size*2

(7) Gather the list primes from the current node with other nodes’ lists in the list results

 on the master node

(8) If my_rank=0

 Find the number of discovered primes in the list results and display it to the user

(9) Stop

Figure 1: Pseudocode of the prime numbers finding algorithm written in Python for the Raspberry Pi
MPICH cluster [4]

Python program [4] generates the first prime number 1, but it must be 2; other values are correct.

The Raspberry Pi rack mount and the router DIR-300A with a built-in 4-port switch are shown in

Figure 2. Master, second, and third nodes have IP addresses 192.168.0.92, 192.168.0.41, and

192.168.0.13, respectively. Boards are connected only by Ethernet cables via the router DIR-300A and

the power supply since they are remotely controlled by the Secure Shell (SSH) protocol, as well as the

standard VNC (Virtual Network Computing) server was installed on the master node to control the

Raspberry Pi 4B through the RealVNC remote access software [21]. The cluster has a two-dimensional

mesh topology [22].

Figure 2: MPICH heterogeneous cluster: The Raspberry Pi rack mount and the router DIR-300A with a
built-in 4-port switch

Execution times for one (data series 1, performance weights (1, 0, 0), Raspberry Pi 4B board), two

(data series 2, performance weights (1, 1, 0), two Raspberry Pi 4B boards), and three (data series 3,

performance weights (1, 1, 1), two 4B and one 3B Raspberry Pi boards) cluster nodes are presented in

Figure 3 at different values of the variable end_number. Here, the execution time for a specific point

is the average of three appropriate values. Maximum two MPICH commands mpiexec [4] and an

additional Python program were run in parallel in different terminals on Raspberry Pi 4B boards and

only one MPICH Python program was run on Raspberry Pi 3B board to avoid overloading and

overheating of the CPU and RAM. Analysis of the data series presented in Figure 3 shows that the basic

implementation of the prime numbers finding algorithm has the lowest performance with three nodes.

This result does not contradict Amdahl's law [22] since the third node with Raspberry Pi 3B board is

significantly slower than the first and the second ones. The fluctuations in data series can be explained

by the non-linear CPU speed-temperature dependencies of Raspberry Pi boards [23] and different

Ethernet connectivity (maximum throughput 300 Mbps for 3B and 1 Gbps for 4B), as well as the

unstable and low-speed network bandwidth leads to substantial performance degradation in the grid

environment [24, 25].

Figure 3: Execution times for one (data series 1), two (data series 2), and three (data series 3) cluster
nodes at different values of the variable end_number: Basic implementation of the prime numbers
finding algorithm [4]

Figure 4 represents the Raspberry Pi command top [26] showing the list of processes currently

running on the cluster nodes with equally distributed workload: the processor’s share of the CPU time

is close to 0 % for the second node (finished its part), it is usually around 10 % for the first node

(finished its part and waiting to gather data), and it is around 25 % for the third node, i.e., the first and

the second nodes finish their parts and then they wait for the third node to accomplish its work.

2.2. Comparative Analysis of Mamdani, Sugeno, and Tsukamoto Fuzzy Inference Systems
for the Performance Weights Assessment

The fuzzy logic theory was introduced by Dr. Lotfi Zadeh in 1965 and was advanced by many other

researchers since that time, e.g., [11-18]. In fuzzy logic, four main stages are fuzzification, formation

of fuzzy rules, fuzzy inference, and defuzzification. Fuzzy inference methods that are generally used

are Mamdani, Sugeno, and Tsukamoto. Concerning the defuzzification, they can be differentiated as

follows: fuzzy Tsukamoto uses the centralized mean algorithm, fuzzy Mamdani uses the centroid

method [17], fuzzy Sugeno generates fuzzy singleton values [19]. Many other defuzzification methods

have been proposed, but none of them generates the output for the common sense of knowledge

modeling [19]. The computational results of defuzzification often conflict [13-18], as well as they do

not have a uniform framework [19].

Figure 4: Raspberry Pi command top: An example of the processes currently running on the cluster
nodes with the equally distributed workload

In this project, the approach [10-12], where the defuzzification is based on the multiplication

operation, is proposed to estimate the performance weights of the cluster nodes. The cluster node j,

j[1,N] and N is the general number of cluster nodes, is described by the vector 𝑋𝑗 = {𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝐾},

K is the general number of soft-/hardware characteristics. Fuzzy set gi, i[1,M] and M is the general

number of the cluster parameters zi such as processor/OS/RAM, contains the requirements to the cluster

parameters zi. Components gi, G={g1,g2,…,gM}, are specified by the membership functions

i(zi)→[0,1]. Finding vector G is the solution represented by the fuzzy set V={vj} that is the intersection

of {Xj} and G. Estimation of the performance weights includes the following steps:

1. Determine set {Xj}, j[1,N].

2. Calculate membership functions i(zi) as follows (zij must be positive since the cluster soft-

/hardware are described by positive numbers in this project):

𝜇𝑖𝑗 =
𝑧𝑖𝑗

𝑚𝑎𝑥{𝑧𝑖𝑗}
, if the best characteristic equals max{zij}; (1)

𝜇𝑖𝑗 =
𝑚𝑖𝑛{𝑧𝑖𝑗}

𝑧𝑖𝑗
, if the best characteristic equals min{zij}. (2)

Linguistic variables in the membership functions i(zi) (1) and (2) are as follows:

- “significantly above norm” that is equal to 1,

- “above norm” that is equal to 3,

- “norm” that is equal to 5,

- “below norm” that is equal to 3,

- “significantly below norm” that is equal to 1.

Membership functions (1) and (2) calculate ij, 0ij1, and hence the following rule must be taken

into consideration: if 12, then 𝜇𝑖𝑗
𝛼1 ≤ 𝜇𝑖𝑗

𝛼2.

3. Convert the vector {Xj} to the vector {zi} of the cluster characteristics, and then to the fuzzy

intervals i(zi)→[0,1].

4. Find vector V as follows:

𝑣𝑗 = ∏ 𝜇𝑖𝑗
𝛼𝑖𝑀

𝑖=1 , (3)

where i – weights that represent the ranks of requirements {zi}.

5. Calculate the performance weights of the cluster nodes using vector V.

3. Weight-Based Load Balancing in Raspberry Pi MPICH Heterogeneous
Cluster with Fuzzy Estimating of the Nodes Computational Performance
3.1. Fuzzy Inference for the Performance Weights Assessment of the Raspberry Pi MPICH
Heterogeneous Cluster Nodes

Linguistic and numeric variables zij and weights i are shown in Table 1 for the Raspberry Pi MPICH

heterogeneous cluster soft-/hardware. Data presented in Table 1 is the authors' subjective view based

on the practical experience with respect to the performance.

Performance weights of the cluster nodes are calculated in Table 2. Analysis of the fuzzy set V shows

that the calculated output variable for the third node is approximately five times less compared with the

first and the second nodes: 0.975/0.2294.258 and 0.985/0.2294.301, i.e., the closest larger integer

number is 5. Hence, recommended performance weights are (5, 5, 1) for the first, the second, and the

third nodes, respectively.

3.2. Prime Numbers Finding Algorithm: Weight-Based Load Balancing Implementation
and Its Performance Evaluation

The prime numbers finding algorithm with the weight-based load balancing using recommended

performance weights for the Raspberry Pi MPICH cluster nodes can schematically be represented as

the pseudocode in Figure 5. This algorithm loads all the working cluster nodes in accordance with their

performance weights. If end_number equals 100 and the performance weights are (5, 5, 1), three

nodes analyze numbers as follows:

1. Master node, Raspberry Pi 4B board, my_rank_new={6, 7, 8, 9, 10}: 13, 35, 57, 79, 15, 37, 59,

81, 17, 39, 61, 83, 19, 41, 63, 85, 21, 43, 65, 87. The master node is loaded less than the second node

that compensates the additional workload related to acquiring and gathering data from other nodes.

2. Second node, Raspberry Pi 4B board, my_rank_new={0, 1, 2, 3, 4}: 1, 23, 45, 67, 89, 3, 25, 47,

69, 91, 5, 27, 49, 71, 93, 7, 29, 51, 73, 95, 9, 31, 53, 75, 97.

3. Third node, Raspberry Pi 3B board, my_rank_new={5}: 11, 33, 55, 77, 99.

The developed Python program was executed on the Raspberry Pi MPICH cluster with the above-

mentioned three nodes. The execution times for performance weights (4, 4, 1), (5, 5, 1), and (6, 6, 1)

are presented in Figure 6 at different values of the variable end_number: dash, grey, and black lines,

respectively. Here, the execution time for a specific point is the average of three appropriate values as

well. Also, maximum two MPICH commands mpiexec and an additional Python program were run

in parallel in different terminals on Raspberry Pi 4B boards, and only one MPICH Python program was

run on Raspberry Pi 3B board to avoid overloading and overheating of the CPU and RAM. Analysis of

the data series presented in Figure 6 shows that the mean signed deviation for data series with

performance weights (5, 5, 1)-(6, 6, 1) is -3.01 sec and (5, 5, 1)-(4, 4, 1) is -155.74 sec, i.e., data series

with recommended performance weights (5, 5, 1) has less average execution time across the entire set

of all observations. Also, a three-tuple (5, 5, 1) is preferable compared with (6, 6, 1) since it has less

workload for the first and the second nodes along with a greater workload for the third node that

corresponds with Table 2. This result can be explained by the minimum time-out of the third node with

a low-performance Raspberry Pi 3B board. The fluctuations in data series appear because of unstable

network bandwidth and non-linear CPU speed-temperature dependencies of Raspberry Pi boards too.

Table 1

Linguistic and numeric variables zij and weights i for the Raspberry Pi MPICH heterogeneous cluster
soft-/hardware

The soft-/hardware
characteristic

(designation; i)

The cluster nodes – Xj, N=3

Node 1 (master) Node 2 Node 3

Processor

(z1; 1=0.8)

ARM Cortex-A72
1.5 GHz (“norm”;

z11=5)

ARM Cortex-A72
1.5 GHz (“norm”; z12=5)

ARM Cortex-A53
1.2 GHz (“significantly
below norm”; z13=1)

Type of OS

(z2; 2=0.1)

Raspberry Pi 64-bit
(“norm”; z21=5)

Raspberry Pi 64-bit
(“norm”; z22=5)

Raspberry Pi 32-bit
(“significantly below

norm”; z23=1)

RAM (z3; 3=0.02) 2 GB LPDDR4 SDRAM
(“norm”; z31=5)

2 GB LPDDR4 SDRAM
(“norm”; z32=5)

1 GB LPDDR2 SDRAM
(“below norm”; z33=3)

Additional workload such
as the data gathering

(z4; 4=0.02)

Master node with
worker load (“above

norm”; z41=3)

Worker node (“norm”;
z42=5)

Worker node (“norm”;
z43=5)

MicroSD card capacity

(z5; 5=0.02)

8 GB (z51=8) 8 GB (z52=8) 4 GB (z53=4)

Power consumption,
400 % processor load [27]

(z6; 6=0.02)

6.4 W (z61=6.4) 6.4 W (z62=6.4) 5.1 W (z63=5.1)

OS release date

(z7; 7=0.02)

August 24, 2020
(“below norm”; z71=3)

August 24, 2020
(“below norm”; z72=3)

January 11, 2021
(“norm”; z73=5)

Table 2
Assessment of the performance weights for the cluster nodes

zi Formula (1) or (2);
max{zij} or min{zij}

i1 i2 i3

z1 (1); max{z1j}=5 11=5/5=1 12=5/5=1 13=1/5=0.2

z2 (1); max{z2j}=5 21=5/5=1 22=5/5=1 23=1/5=0.2

z3 (1); max{z3j}=5 31=5/5=1 32=5/5=1 33=3/5=0.6

z4 (1); max{z4j}=5 41=3/5=0.6 42=5/5=1 43=5/5=1

z5 (1); max{z5j}=8 51=8/8=1 52=8/8=1 53=4/8=0.5

z6 (2); min{z6j}=5.1 61=5.1/6.4=0.8 62=5.1/6.4=0.8 63=5.1/5.1=1

z7 (1); max{z7j}=3 71=3/5=0.6 72=3/5=0.6 73=5/5=1

vj

10.8×10.1×10.02×
×0.60.02×10.02×

×0.80.02×0.60.02=
=0.975=v1

10.8×10.1×10.02×
×10.02×10.02×0.80.02×
×0.670.02=0.985=v2

0.20.8×0.20.1×
×0.60.02×10.02×
×0.50.02×10.02×

×10.02=0.229=v3

Recommended
performance weight

0.975/0.2294.2585 0.985/0.2294.3015 1

Figure 7 represents the Raspberry Pi command top showing the list of processes currently running

on the cluster nodes with weight-based load balancing: the processor’s share of the CPU time is close

to 0 % for the third node (finished its part), it is usually around 25 % for the first and the second nodes,

i.e., the third node finishes its part, and then it waits for the first and the second nodes to accomplish

their work.

(1) Start

(2) Find the cluster size cluster_size and the rank my_rank of the current cluster node

(3) Initialize integer variable end_number with the value provided by the user

(4) Create an empty list primes of the discovered primes in the current node

(5) If my_rank<>0

 (5.1) Send data on the rank and the hostname to the master node with blocking

 (5.2) Receive data on the total number of threads total and new values for the node rank –

 start and end

 (5.3) Set my_rank_new=start, cluster_size=total

 (5.4) Repeat the steps until my_rank_new≤end

 (5.4.1) Set variable candidate_number=(my_rank_new*2+1)

 (5.4.2) Repeat the steps until candidate_number≤end_number

 (5.4.2.1) Set Boolean variable found_prime=True

 (5.4.2.2) Set integer variable div_number=2

 (5.4.2.3) Repeat the steps until div_number≤candidate_number

 (5.4.2.3.1) If the reminder of candidate_number divide div_number equals 0,

 Set found_prime=False

 Go to step (5.4.2.4)

 (5.4.2.3.2) Increment div_number

 (5.4.2.4) If found_prime=True,

 Append candidate_number to the list primes

 (5.4.2.5) Set candidate_number=candidate_number+cluster_size*2

 (5.5) Gather the list primes from the current node with other nodes’ lists in the list results

 on the master node

(6) If my_rank_new=0

 (6.1) Create a list NodesDict with info on the performance weights of all nodes in the cluster

 (6.2) Receive data from the working nodes in the cluster

 (6.3) Calculate the integer variable AllNodesLoad as the sum of the performance weights of

 working nodes

 (6.4) Set integer variable start=0

 (6.5) Repeat the steps for all working nodes except the master

 (6.5.1) Set variable end=start+NodesDict[working node]-1

 (6.5.2) Send the data with variables start, end, and AllNodesLoad to the working node

 without blocking

 (6.5.3) Set start=end+1

 (6.6) Set cluster_size=AllNodesLoad

 (6.7) Set end=start+NodesDict[master node]-1

 (6.8) Execute steps (5.4) and (5.5)

 (6.9) Find the number of discovered primes in the list results and display it to the user

(7) Stop

Figure 5: Pseudocode of the prime numbers finding algorithm with the weight-based load balancing
in the Raspberry Pi MPICH heterogeneous cluster

Figure 6: Weight-based load balancing implementation of the prime numbers finding algorithm:
Execution times for different values of the variable end_number and performance weights (4, 4, 1),
(5, 5, 1), and (6, 6, 1)

Figure 7: Raspberry Pi command top: An example of the processes currently running on the cluster
nodes with weight-based load balancing

3.3. Prime Numbers Finding Algorithm: Comparison of the Basic Equal Load and the
Weight-Based Load Balancing Implementations

Analysis of the execution times for equal and weight-based load balancing implementations of the

prime numbers finding algorithm, Figure 3 and Figure 6 respectively, shows the following outcomes:

1. The value of speedup for the weight-based load balancing implementation with performance

weights (5, 5, 1) and (6, 6, 1) compared with the equal load balancing with performance weights

(1, 1, 1) is continuously growing approximately from 1 at the end_number 1000 to 5 at the maximum

end_number that is equal 300000.

2. The weight-based load balancing implementation with performance weights (5, 5, 1) and (6, 6, 1)

is slightly faster, around 5 %, than the equal load balancing with performance weights (1, 1, 0) for the

end_number values greater than 25000 until maximum value 300000. The mean signed deviation for

data series with performance weights (5, 5, 1)-(1, 1, 0) is -10.42 sec. Larger execution times for prime

numbers less than 25000 represent the classical scalability problem [22] and its effect on the

performance in parallel computing: for some cases, the intelligent parallel algorithms work slower

compared with the methods without an intelligent component since they need additional time to analyze

existing nodes and distribute the workload in accordance with the input dataset(s).

4. Summary and Conclusion

Weight-based load balancing in the Raspberry Pi MPICH heterogeneous cluster was implemented using

the fuzzy estimating of performance weights. Fuzzy variables are the type of CPU and OS, RAM,

workload, microSD card capacity, power consumption, and OS release date. Four main stages of

fuzzification, formation of fuzzy rules, fuzzy inference, and defuzzification are applied to calculate the

performance weights of the cluster nodes. In this project, the defuzzification is based on the

multiplication operation.

The cluster consists of two Raspberry Pi 4B boards with 2 GB RAM and Raspberry Pi 64-bit OS

with desktop and one Raspberry Pi 3B board with 1 GB RAM and Raspberry Pi 32-bit OS Lite. The

Python program for the prime numbers finding algorithm is a test example of the developed approach:

1. Recommended weight-based load balancing with performance weights (5, 5, 1) is preferable

compared with the next nearest (6, 6, 1) and (4, 4, 1) since three-tuple (5, 5, 1) has less average

execution time across the entire set of all observations. The mean signed deviation for data series with

performance weights (5, 5, 1)-(6, 6, 1) is -3.01 sec and (5, 5, 1)-(4, 4, 1) is -155.74 sec, i.e., data series

with recommended performance weights (5, 5, 1) has less average execution time across the entire set

of all observations.

2. The value of speedup for the weight-based load balancing implementation with performance

weights (5, 5, 1) and (6, 6, 1) compared with the equal loading on all nodes is continuously growing

approximately from 1 at the end_number 1000 to 5 at the maximum end_number 300000.

Since load balancing is an important task not only for the considered Raspberry Pi MPICH

heterogeneous cluster but also for distributed computing systems in general, obtained results may be

used in a wide spectrum of parallel programming applications.

The most likely prospect of the presented weight-based load balancing method is the development

of a multithread Python application.

5. Acknowledgements

This paper and the research behind it could be much complicated without the support of universities

where authors have been conducting the presented project. Authors sincerely appreciate the

management and colleagues of the University of Central Asia (Kyrgyzstan) and the Kryvyi Rih National

University (Ukraine) for all their patience and kind assistance in the completion of this work.

6. References

[1] High-Performance Portable MPI: MPICH Overview, n.d. URL:

https://www.mpich.org/about/overview/.

[2] A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming: MPI4PY, NumPy, and

SciPy for Enthusiasts, Apress, New York, NY, 2017. doi: 10.1007/978-1-4842-2878-4.

[3] S.J. Cox, J.T. Cox, R.P. Boardman, S.J. Johnston, M. Scott, N.S. O’Brien, Iridis-pi: A low-cost,

compact demonstration cluster, Cluster Computing 17 (2014), pp. 349-358. doi: 10.1007/s10586-

013-0282-7.

[4] P.J. Evans, Build a Raspberry Pi Cluster Computer, The MagPi magazine newsletter, 2020. URL:

https://magpi.raspberrypi.org/articles/build-a-raspberry-pi-cluster-computer.

[5] J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan, C. Tseng, Dynamic Load Balancing of

Unbalanced Computations Using Message Passing, in: Proceedings of the 21st IEEE International

Parallel and Distributed Processing Symposium, IEEE, Long Beach, CA, 2007, pp. 1-8. doi:

10.1109/IPDPS.2007.370581.

[6] S. Kumar, D.H. Rana, Various Dynamic Load-Balancing Algorithms in Cloud Environment: A

Survey, International J. of Computer Applications 6(129), 2015, pp. 15-19.

[7] Load Balancing in a Cluster: Oracle ® Fusion Middleware Administering Clusters for Oracle

WebLogic Server, 2015. URL:

https://docs.oracle.com/middleware/1212/wls/CLUST/load_balancing.htm#CLUST171.

[8] X. Li, Parallel Programming in Python: mpi4py (part 1): PDC Blog, 2019. URL:

https://www.kth.se/blogs/pdc/2019/08/parallel-programming-in-python-mpi4py-part-1/.

[9] M. Aldasht, J. Ortega, C.G. Puntonet, Dynamic Load Balancing in Heterogeneous Clusters.

PICCIT, 2007. URL:

https://www.researchgate.net/publication/237067125_Dynamic_Load_Balancing_in_Heterogene

ous_Clusters.

[10] V. Grujoski, V. Talevski, D. Zubov, Microsoft Private Cloud Virtual Machine Logical Processors

Settings’ Relative Weight Calculation Using Fuzzy Logic. In: Proceedings of Conf. “Computer

Intelligent Systems and Networks”, Kryvyi Rih National University, Ukraine, 2014, pp. 106-111.

doi: 10.13140/RG.2.1.1538.8002.

https://www.mpich.org/about/overview/

[11] M.M. Gupta, Soft Computing and Intelligent Systems: Theory and Applications, N.K. Sinha (Ed.),

Academic Press, San Diego, CA, USA, 2000. doi: 10.1016/B978-012646490-0/50011-1.

[12] N.L. Prokhorov, Supervisory Computer Control Systems, Finances & Statistics Press Inc.,

Moscow, 2003.

[13] A. Saepullah, R.S. Wahono, Comparative Analysis of Mamdani, Sugeno And Tsukamoto Method

of Fuzzy Inference System for Air Conditioner Energy Saving, J. of Intelligent Systems 2(1), 2015,

pp. 143-147.

[14] T. Yulianto, S. Komariyah, N. Ulfaniyah, Application of Fuzzy Inference System by Sugeno

Method on Estimating of Salt Production, in: Proceedings of AIP conference 1867, AIP

Publishing, Melville, NY, 2017, pp. 020039-1 – 020039-7. doi: 10.1063/1.4994442.

[15] A. Yunan, M. Ali, Study and Implementation of the Fuzzy Mamdani and Sugeno Methods in

Decision Making on Selection of Outstanding Students at the South Aceh Polytechnic, J. Inovasi

Teknologi dan Rekayasa 2(5), 2020, pp. 152-164.

[16] F. Cavallaro, A Takagi-Sugeno Fuzzy Inference System for Developing a Sustainability Index of

Biomass, J. Sustainability 7, 2015, pp. 12359-12371. doi: 10.3390/su70912359.

[17] E. Sonalitha, B. Nurdewanto, S. Ratih, N.R. Sari, A.B. Setiawan, P. Tutuko, Comparative

Analysis of Tsukamoto and Mamdani Fuzzy Inference System on Market Matching to Determine

the Number of Exports for MSMEs. In: Proceedings of the 9th EECCIS Electrical Power,

Electronics, Communications, Controls, and Informatics Seminar, IEEE, Batu, East Java,

Indonesia, 2018, pp. 440-445. doi: 10.1109/EECCIS.2018.8692989.

[18] Adriyendi, Fuzzy Logic using Tsukamoto Model and Sugeno Model on Prediction Cost,

International J. of Intelligent Systems and Applications 6(10), 2018, pp. 13-21. doi:

10.5815/ijisa.2018.06.02.

[19] D.S.K. Mendis, H.U.W. Ratnayake, A.S. Karunananda, U. Samarathunga, A Statistical Fuzzy

Inference System by PCA Based Defuzzification for the Improvement of Sugeno Defuzzification

Method, J. of Engineering and Technology of The Open University of Sri Lanka (JET-OUSL)

1(7), 2019, pp. 38-52.

[20] G.E. Blelloch, Programming Parallel Algorithms, Communications of the ACM 39(3), 1996,

pp. 85-97. doi: 10.1145/227234.227246.

[21] Raspberry Pi Foundation: VNC (Virtual Network Computing), n.d. URL:

https://www.raspberrypi.org/documentation/remote-access/vnc/.

[22] M.A. Fienup, Scalability Study in Parallel Computing, Retrospective Theses and Dissertations,

10900, 1995. URL: https://lib.dr.iastate.edu/rtd/10900.

[23] A. Bate, Thermal Testing Raspberry Pi 4: Raspberry Pi Foundation, 2019. URL:

https://www.raspberrypi.org/blog/thermal-testing-raspberry-pi-4/.

[24] Y. Cheng, D. Xu, G. Chen, L. Wang, W. Wu, Performance Analysis of Cluster File System on

Linux. In: Proceedings of Computing in High Energy and Nuclear Physics Conference, CERN,

Switzerland 2005. URL:

https://indico.cern.ch/event/0/contributions/1294347/attachments/602/1146/chengyaodong-

id72.pdf. doi: 10.5170/CERN-2005-002.1176.

[25] C. Yu, Scheduling and Resource Management for Complex Systems: From Large-Scale

Distributed Systems to Very Large Sensor Networks (Publication No. CFE0002907) [Doctoral

dissertation, University of Central Florida], Electronic Theses and Dissertations, 2004-2019, 2010.

URL: https://stars.library.ucf.edu/etd/4005.

[26] Geek University: List Processes in Real-time, n.d. URL: https://geek-university.com/raspberry-

pi/list-processes-in-real-time/.

[27] Power Consumption Benchmarks: Drupal 9 on a cluster of Raspberry Pis, n.d. URL:

https://www.pidramble.com/wiki/benchmarks/power-consumption.

https://lib.dr.iastate.edu/rtd/10900

