
Upcycling Formal Specifications for Similar Implementa-
tions with Arís

Kuruvilla George Aiyankovil1, Rosemary Monahan1[0000-0003-3886-4675],
Diarmuid P. O’Donoghue1 [0000-0002-3680-4217]
1 Maynooth University, Co. Kildare, Ireland

{Rosemary.Monahan; Diarmuid.ODonoghue}@mu.ie

Abstract. We describe the Arís system for creating new formal specifications for
source code by transferring existing specifications to similar implementations.
We show the code graphs underlying its operation, graph matching supports re-
trieval, and pattern completion enables transfer of specifications to new imple-
mentations. A theorem prover formally verifies the new specifications.

Keywords: formal specifications, source code, graph representation

1 Writing Formal Specifications

While formal verification of source code has become more popular in many real-world
applications, successfully verifying the code requires three critical activities: writing
formal specifications describing the task to be achieved; writing the source code for
that task; and proving the correctness of the source code against this specification
(Greengard, 2021). Many verification tools use the design-by-contract approach to an-
notate implementations with formal specifications and axioms so that they can generate
the proof obligations required to verify that the implementation satisfies its specifica-
tion (Dross et al., 2021). Specifications are written as a formal contract which defines
the preconditions (requires clauses) that must hold, for the implementation to establish
the postconditions (ensures clauses). An automated theorem prover verifies correctness
of the implementation wrt its specification, requiring axioms to assist the prover written
as assertions, invariants, and variants clauses.

Writing specifications and supporting axioms for the proofs require expert training
and experience, contributing to poor uptake of verification by industry, unless required
to meet safety standards (Huisman, Gurov, & Malkis, 2020). Our work eases the burden
of these two activities by retrieving a similar verified implementation from an existing
repository of verified source code and reusing it to creating formal specifications and
proof support for a target implementation.
1.1 Related Work

Our work differs from related work on code completion, automatic code generation etc.
Some of its operation is more akin to code clone detection using conceptual graphs. An
image below highlights one specification for a simple C# implementation, using CBR
to transfer this specification to functionally similar code. We can describe Arís as: op-
erating on executable source code, working at the statement level of granularity,

Copyright © 2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

2

performing static code analysis with extractive dependency graphs. Similar graphs are
used to infer similar specifications.

2 Arís

In the Arís system (Pitu et al, 2013) source code is parsed and the resulting Abstract
Syntax Tree is analysed to generate a code graph. Arís represents all problems and so-
lution cases as distinct graphs, utilizing 18 categories of nodes and 6 types of relations.
Nodes can contain information obtained directly from the source code, such as identi-
fier names, the beginning of a block of code, assignment statements etc.

Retrieval finds the largest common subgraph between a code graph containing speci-
fications and one without. Graph Matching (ISMAGS, VF3) combines the influences
of topological similarity with label categories for paired nodes and paired edges.
Reuse. Inter-graph mappings that include paired variable nodes are examined and com-
patible data-types identified, which involve identifying the original C# source code.
The locations of the specifications are identified in the problem cases.
Revise. Transferrable specifications are identified and are updated to match their new
problem context, including updating the variable names.
Retain. Source code with specifications is added to the project for compilation and
verification by the Z3 theorem prover. Successfully verified methods can support sub-
sequent inferences, potentially extending the reach of the initial specifications.

3 References

1. Pitu, M, Grijincu, D, Li, P, Saleem, A, Monahan, R, O'Donoghue, D.P. (2013) Arís: Ana-
logical Reasoning for reuse of Implementation & Specification. Proc. Artificial Intelligence
for Formal Methods (AI4FM), 2013.

2. Greengard, S, Formal software verification measures up, Communications of the ACM, Vol-
ume 64, Issue 7, June 2021, https://doi.org/10.1145/3464933.

3. Dross et al (2021). VerifyThis 2019: a program verification competition. International Jour-
nal on Software Tools for Technology Transfer, 1-11.

4. Huisman, M., Gurov, D., & Malkis, A. (2020). Formal Methods: From Academia to Indus-
trial Practice. A Travel Guide. arXiv preprint arXiv:2002.07279.

ICCBR CBR Demos & Showcases - Aris video at https://youtu.be/gbbw_LOxoDs

public ResizeDemo(int size0) {
 Contract.Requires(0 <= size0);
 this.elements = new int[size0];
 this.count = 0; }

 An important part of Arís concerns its rep-
resentation of cases, focused on semantic
graphs generated from examination of the Ab-
stract Syntax Tree of a program, which is in
turn generated using the ILSpy decompiler.

