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Abstract  
 

The conditions for the existence of limit regimes for the Liénard equation, the solutions of 

which are subjected to instantaneous forces of impulse nature at unfixed moments in time, are 

investigated. For this system, the constructive conditions for the existence of periodic solutions 

(limit cycles) are obtained such that the phase point of the system when moving along the 

corresponding trajectory is subjected to 𝑛 ∈ ℕ impulse effects for the period. It is shown that 

the points that define cycles corresponding to periodic solutions satisfy the Sharkovsky order. 

The conditions for the existence of at least one impulsive periodic solution and a single 

discontinuous limit cycle are found. The existence of a single stable limit cycle is proved, the 

phase point of which will be affected by pulsed forces 𝑛 ∈ ℕ times. It is shown that a stable 

limit cycle under given conditions will exist despite the presence of the influence of 

destabilizing forces of impulsed nature. 
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1. Introduction 

The rapid development of modern science and technology requires constant attention to the study of 
nonlinear evolutionary dynamical systems in which there are short-term processes or which are under 
the action of external forces, the duration of which can be neglected in the preparation of appropriate 
mathematical models. 

Such evolutionary models can be found, for example, in mechanics, chemical technology, medicine 
and mathematical biology, aircraft dynamics, economics, adaptive control theory and other fields of 
science and technology, where we have to study systems under the influence of short-term (pulsed) 
external forces called systems with pulsed action. 

In fact, it has been found that the presence of impulse action can significantly complicate the 
behavior of the trajectories of such systems, even for cases of rather simple differential equations. In 
the general case, in the presence of impulse action, the qualitative behavior of solutions of differential 
equations (including linear problems with constant coefficients) can be significantly nonlinear and 
significantly different from the behavior of such systems in the absence of impulse action. 

Studying the nonlinear damping of oscillations in electric circuits, Liénard obtained a natural 
generalization of the famous van der Paul equation. At the same time, the problem of the existence of 
periodic regimes is important for oscillating systems in the region. Note that the limit cycle is an isolated 
closed trajectory of the vector field (in other words, it is a periodic solution in some neighborhood 
which has no other periodic solutions, respectively, all other trajectories from this region tend to the 
limit cycle in positive or negative time). Therefore, when modeling many systems of oscillating systems 
that are affected by destabilizing factors of instantaneous (impulse) nature, it is important to understand 
the conditions for the existence of stable periodic regimes in them. Obtaining appropriate design 
conditions allows to develop methods for supporting decision-making on the management of such 
systems. Special attention should be paid to models that describe the most natural objects - dissipative 
dynamical systems. A dissipative system (or dissipative structure, from the Latin dissipatio - "disperse, 

                                                   
II International Scientific Symposium «Intelligent Solutions» IntSol-2021, September 28–30, 2021, Kyiv-Uzhhorod, Ukraine 

EMAIL: v.v.sobchuk@gmail.com (A. 1); kapustyanav@mail.com (A. 2); vpichkur@mail.com (A. 3); olena.kap@mail.com (A. 4)  

ORCID: 0000-0002-4002-8206 (A. 1); 0000-0002-9373-6812 (A. 2); 0000-0002-5641-8145 (A. 3); 0000-0002-2629-0750 (A. 4) 

 
©️  2021 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 

mailto:kapustyanav@gmail.com


112 

 

destroy") - is an open system that operates in the neighbourhood of equilibrium position. In other words, 
it characterizes the state that occurs in an nonequilibrium environment under the condition of energy 
dissipation. A  dissipative system is sometimes called a stationary open system or a nonequilibrium 
open system. The dissipative system is characterized by the spontaneous appearance of a complex, often 
chaotic structures. Recent studies in the field of dissipative structures allow conclude that self-
organization occurs much faster in the presence of external and internal influences in the system. Thus, 
such effects accelerate the process of self-organization. 

In the phase plane, the trajectory corresponding to such a solution is represented by the so-called 
limit cycle. The limit cycle is an isolated closed curve on the phase plane, to which all integral 
curves are approached in the limit case at t– "". The limit cycle is a stationary mode with a certain 
amplitude, which does not depend on the initial conditions, but is determined only by the structure of 
the system. 

In general, if there is some closed domain on the phase plane such that all phase trajectories crossing 
the boundary of this region enter it and there is an unstable singular point within this domain, then the 
latter necessarily has at least one limit cycle. 

At the same time, when there is a domain on the phase plane from which the phase trajectories do 
not  come out and in which there are no equilibrium positions (special points), then the 
limit cycle exists in this domain, and the rest of all trajectories are wound on it. 

Thus, if we find on the phase plane such a two-connected domain that the directions of the phase 
trajectories are inverted inside this region on the whole boundary, then we can say that the limit 
cycle exists inside this domain. 

In fact, this work is devoted to the study of the limit cycles existence conditions for a generalized 
second-order differential equation of the Lénard type under the influence of destabilizing 
external impulse perturbations. 

2. Analysis of literature sources 

Classical statements of impulsive-perturbed problems, as well as basic notions concerning 
qualitative behavior of solutions for such systems in the case of impulsive effect at fixed moments of 
time, were developed in [1-3] as an adequate mathematical tool for describing physical and mechanical 
phenomena where instantaneous changes of the phase state are present.  Global attracting sets for 
impulsive evolutionary systems, including random noise, with impulses at fixed moments of time, were 
studied in [4,5]. Robust stability properties for such systems in terms of Input-to-State Stability theory 
were considered in [6-8]. Limit cycles for finite-dimensional impulsive dynamical systems, that is, 
systems described by ordinary differential equations whose trajectories undergo instantaneous changes 
after reaching a certain surface of the phase space, were investigated in [10]. Systematic studying of the 
qualitative behavior of impulsive dynamical systems infinite-dimensional spaces was carried out in [11-
15]. Global attracting sets for abstract infinite-dimensional impulsive dynamical systems were 
investigated in [16-18]. A modern point of view on systems with mixed types of dynamics, i.e., systems 
where there exist both continuous dynamics described by systems of differential equations and discrete, 
described by difference equations, was reflected in [19], where such systems were called hybrid 
systems. 

In [20] the review of the most modern research methods for impulse differential equations solutions 
stability and their application to problems of impulse adaptive control is carried out. In [21] the problem 
of design the approximate adaptive control, including the case of impulse control functions, is 
considered for some classes of infinite-dimensional problems. The well-known method of averaging 
for obtaining approximate adaptive control is substantiated. The concept of an impulsive non-
autonomous evolutionary system is introduced. Questions concerning existence and properties of  
impulsive attracting sets are investigated. The obtained results are applied to the study of the qualitative 
behavior of the two-dimensional impulsive-perturbed Navier-Stokes system.  

In [22] the recursive properties of almost periodic motions of impulsive-perturbed evolutionary  
systems are studied. The obtained results are effectively applied to the study of discrete systems 
qualitative behavior. In [23] the qualitative properties of stability with respect to the external (control) 
perturbations for differential equations systems with impulse effects at fixed moments of time are 
studied. The transparent criteria of stability conditions for classes of impulsive systems having a 
Lyapunov type function are obtained. In [24], non-autonomous evolutionary problems with multi-
valued right-hand parts and with impulse influences at fixed moments of time are considered.  The 
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corresponding non-autonomous multivalued evolutionary systems are designed, for which the existence 
of a compact global attractor in phase space is proved.  

The problems of control and decision-making in the presence of impulse perturbations were 
investigated in [25], for periodic solutions were studied in [27]. In [28], the existence of global attracting 
sets in multi-valued discontinuous infinite-dimensional evolutionary systems, which can have 
trajectories with an infinite number of impulsive perturbations, was proved. The obtained abstract 
schemes are applied to the asymptotic behavior study of the weakly nonlinear impulsive-perturbed 
parabolic equations and inclusions.  

In all the above works the basement of the qualitative theory of differential systems with impulsive  
perturbations (jumps) are designed. In essence, the main issues of the qualitative theory of impulsive  
systems were investigated with the help of  the classical qualitative theory of ordinary differential 
equations, methods of asymptotic integration for such equations, the theory of difference equations and 
generalized functions. However, the question of the solutions existence for weakly nonlinear impulse 
systems has not yet been investigated appropriately. 

At the same time, the works in which important results in the field of information technologies and 
social communications were obtained deserve attention. In particular, in works [29] studied applied 
control algorithm functionally sustainable production processes industry. 

3. Conditions for the existence of a limit cycle for the general Liénard equation 
with impulse action 

Let us investigate the problem of the existence of harmonic cycles for the Liénard equation, the 
solutions of which are subjected to instantaneous forces of impulse nature at unfixed moments in time. 

Consider a dynamical system in which motion is described by a generalized Liénard differential 
equation of the form: 

 �̈� + 𝑓(𝑥, �̇�)�̇� + 𝑔(𝑥) = 0,    (1) 

(𝑥 ∈ 𝒟 ⊂ ℝ3 ,  𝒟 − phase space of the system (1), 𝑡 ∈ ℝ − time) and which is affected by instantaneous 
perturbations determined by some operator 𝒜𝑡, that at the moment of reaching a moving point of some 
fixed position𝑥 = 𝑥∗ acts according to the rule (𝑥,  𝑡) → (𝑡,  𝒜𝑡𝑥). Impulse action in such a system 
occurs at non-fixed moments of time and increases the amount of motion in the system by a certain 
amount  𝐼(�̇�), which depends on the speed of the moving point at the time of its passage 𝑥 = 𝑥∗. Next 
we will consider that 𝐼(𝑦), де 𝑦 = �̇�, as a function of its argument is continuous. 

If 𝑡∗ is a certain moment of time at which the moving point reaches position   𝑥 = 𝑥∗, when an 
impulsive action occurs, the impulsive perturbations of the moving point can be written as [27]: 

𝛥
𝑑 𝑥

𝑑 𝑡
|

𝑥=𝑥∗

=
𝑑 𝑥

𝑑 𝑡
|

𝑡=𝑡∗+0
−

𝑑 𝑥

𝑑 𝑡
|

𝑡=𝑡∗−0
= 𝒜𝑡𝑥 − 𝑥 = 𝐼(�̇�).          (2) 

The description of the physical interpretation of the generalized Liénard equation and the 
characteristics of its phase limit behavior  are studied in detail in [30]. 

Equation (1) is written in an equivalent way as a system 

 {
�̇� = 𝑦,                             

�̇� = −𝑔(𝑥) − 𝑓(𝑥, 𝑦)𝑦.
 (3) 

In the sequel,  we will use the notation 

𝐹(𝑥) = ∫ 𝑓(𝑠) 𝑑𝑠

𝑥

0

,           𝐺(𝑥) = ∫ 𝑔(𝑠) 𝑑𝑠

𝑥

0

. 

We will consider further that functions 𝑔(𝑥) and 𝑓(𝑥, 𝑦) provide the condition for the existence and 
uniqueness of the solution of the system (3). In addition, we will assume that 

  
 𝑥 𝑔(𝑥) > 0    при    𝑥 ≠ 0 (4) 

and 

𝐺(±∞) = ∫ 𝑔(𝑥) 𝑑𝑥
±∞

0
.              (5) 

In this case, the origin of the phase plane is the only stationary point. It is covered by a family of so-
called energy curves 
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 𝓌(𝑥, 𝑦) ≡ 𝐺(𝑥) +
1

2
𝑦2 = 𝐶. (6) 

 
They are all closed. Under assumption 
 𝑔(−𝑥) = −𝑔(𝑥) (7) 

 
these curves are symmetrical about both coordinate axes. 

Let's denote  𝑦∗ = √2𝐺(𝑥∗). 

3.1. There are periodic solutions that satisfy Sharkovsky's order 

Suppose that 
10. The generalized Liénard differential equation (1) is assumed to be satisfied the conditions for 

the existence and uniqueness of the solution. 
20.  The line  𝑥 = 𝑥∗ is transversal to flow (1) everywhere except the trajectory for which the line 

𝑥 = 𝑥∗ is tangent. In this case, we assume that 𝐼(0) = 0. 
30.  Impulsive operator 𝒜𝑡 is assumed to be continuous with respect to its variables. 
Calculate the complete derivative of the derivative with respect to the system (3) 

(
𝑑𝓌(𝑥, 𝑦)

𝑑𝑡
)

(3)

= 𝑔(𝑥)�̇� + 𝑦�̇� = −𝑓(𝑥, 𝑦)𝑦2.          (8) 

It follows that 
 𝑓(𝑥, 𝑦) ≥ 0    для  всіх   𝑥, 𝑦,    (9) 

 
then the energy curves can be intersected by phase trajectories only from the outside to the middle. So 

 |𝑥(𝑡)| ≤ 𝑎,       |𝑦(𝑡)| ≤ 𝑏  для   𝑡 ≥ 0,  (10) 

and with the help of a phase picture it is possible to be convinced that functions 𝑥(𝑡) and 𝑦(𝑡) or both 
oscillating (have the property: for either 𝑡1 >  𝑡0 there will be a point 𝑡2 > 𝑡1, when going through 
which function 𝑥(𝑡) or 𝑦(𝑡) change the sign), or both tend to zero at 𝑡 → ∞, with 𝑥(𝑡) it must eventually 
become monotonous. In the first case, due to condition (7), the amplitudes of the function 𝑥(𝑡) decrease 
monotonically.  

If we additionall assume that the equality 𝑓(𝑥, 𝑦) = 0 does not hold on any curve 𝓌(𝑥, 𝑦) = 𝐶 (that 
is, such curves should not be on the phase plane), it can be  stated that 

lim
𝑡→∞

𝑥(𝑡) = lim
𝑡→∞

𝑦(𝑡) = 0.        (11) 

Note that condition (4) is sufficient for all bounded solutions of system (3) to have either oscillating 
coordinates 𝑥(𝑡) and 𝑦(𝑡), or coordinates that satisfy (11), and the function 𝑥(𝑡) monotonic (for large 
values 𝑡). This conclusion can be extended to systems 

�̇� = 𝑦, �̇� = −𝑔(𝑥) − 𝑓(𝑥)𝑦,                        

�̇� = 𝑦, �̇� = −𝑔(𝑥) − 𝐹(𝑦) (𝐹(0) = 0).
 

It is important that the origin of the phase plane is the only stationary point. 
The periodic solutions of system (3) correspond to the cycles surrounding the origin. 
A continuum of closed trajectories appears, apparently, when a function 𝑓(𝑥, 𝑦) identically equal to 

zero in the annular region 𝐶1 ≤ 𝓌(𝑥, 𝑦) ≤ 𝐶2, 0 ≤ 𝐶1 < 𝐶2 . Here the cycles coincide with the energy 
curves. 

Under such conditions, describing the motion of the phase point of the system (1), (2), we construct 
a Poincare map for the line 𝑥 = 𝑥∗, which is used to study the question of the existence of periodic 
regimes of problem (1), (2). It is obvious that in this case the problem of the existence of periodic 
solutions of system (1), (2) is reduced to the problem of the existence of periodic and fixed points of 
some mapping of a segment into the same segment, which is determined by the formula 

 𝑓(𝑦) = −𝑦 + 𝐼(−𝑦),  (12) 

where 𝐼(−𝑦) < 𝑦,        𝑦 ≠ 0,        𝑦 = �̇�. 
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Consider the problem of the existence of periodic solutions of problem (1), (2), when the impulsive 
function has the form: 

 𝐼(𝑦) = {
    (𝜆    − 1)𝑦 − 𝜆  𝑦∗,        𝑦 ≥ 0,

−(𝜆    + 1)𝑦 − 𝜆  𝑦∗,        𝑦 < 0,
 (13) 

where 𝑦 = �̇�,      𝜆 — some parameter and 0 < 𝜆 ≤ |min𝐺(𝑥)|. 
The mapping  

 𝑓(𝑦) = −𝑦 + 𝐼(−𝑦) = {
𝜆  (𝑦∗ − 𝑦),        𝑦 ≥ 0,

𝜆  (𝑦∗ + 𝑦),        𝑦 < 0,
 (14) 

is continuous for all 𝑦 ∈ ℝ and has the following properties: when 0 < 𝜆 < 1 there is only one fixed 
point that is stable; if  1 < 𝜆 ≤ |min𝐺(𝑥)| then we have  two fixed points 

{
𝜆

1 − 𝜆
 𝑦∗}    and    {

𝜆 − 𝜆 2

1 − 𝜆 2
 𝑦∗}, 

and the periodic point of the period 2: 

{
𝜆 − 𝜆 2

1 + 𝜆 2
 𝑦∗;      

𝜆 + 𝜆 2

1 + 𝜆 2
 𝑦∗}. 

The points of period 3 for mapping (8) form two cycles  

{
𝜆 − 𝜆 2 − 𝜆 3

1 + 𝜆 3
 𝑦∗;      

𝜆 + 𝜆 2 − 𝜆 3

1 + 𝜆 3
 𝑦∗;      

𝜆 + 𝜆 2 + 𝜆 3

1 + 𝜆 3
 𝑦∗} ,

{
𝜆 − 𝜆 2 + 𝜆 3

1 − 𝜆 3
 𝑦∗;      

𝜆 + 𝜆 2 − 𝜆 3

1 − 𝜆 3
 𝑦∗;      

𝜆 − 𝜆 2 − 𝜆 3

1 − 𝜆 3
 𝑦∗} .

 

Thus, the theorem is valid. 
Theorem 1. Suppose that for differential equation (1) the function 𝑓(𝑥, 𝑦) identically equal to zero 

in the region 𝐶1 ≤ 𝓌(𝑥, 𝑦) ≤ 𝐶2 , 0 ≤ 𝐶1 < 𝐶2. Then equation (1) with impulse action (2), (14), where 
𝑦 = �̇�, at 1 < 𝜆 ≤ |min𝐺(𝑥)|, has 𝑇(𝑛)– periodic regimes  such that the phase point of this system 
when moving along the corresponding trajectory undergoes exactly 𝑛 impulse actions for the period 
where 𝑛 is an arbitrary natural number. The points defining the cycles corresponding to the periodic 
regimes  of the problem (1), (14) satisfy the Sharkovsky’s order. 

3.2. The case of isolated periodic solutions 

Further, let us investigate the case when in some domain there are limit cycles, i.e., there are isolated 
periodic solutions of the system, so in this domain 𝑓(𝑥, 𝑦) ≢ 0. The problem of the existence and 
uniqueness of limit cycles for system (2) is considered in the following theorems. 

Theorem 2. Assume  𝑓(0,0) < 0 and 

 𝑓(𝑥, 𝑦) ≥ 0    for     |𝑥| ≥ 𝑥0 > 0, 

moreover 
 𝑓(𝑥, 𝑦) ≥ −ℱ  for   |𝑥| ≤ 𝑥0. (15) 

Assume that there exist 𝑥1 > 𝑥0 such that 

∫ 𝑓(𝑥, 𝑦)

𝑥1

𝑥0

𝑑𝑥 ≥ 10ℱ𝑥0,       (16) 

where 𝑦 = 𝑦(𝑥) > 0 is an arbitrary continuously decreasing function. Under such conditions the 
system (3) has at least one periodic regime. 

Proof.  We construct a ring domain that satisfies the requirements of Bendixon's theorem [30]. To 
do this, we use inequality 

     √𝐺(𝑥1) − 𝐺(𝑥0) ≥ max
 

{20ℱ𝑥0,
𝐺(𝑥0)

ℱ𝑥0
},        (17) 

We assume that the function 𝑔(𝑥) satisfies the conditions 𝑥𝑔(𝑥) > 0 for 𝑥 ≠ 0 and therefore the 
phase picture on the plane 𝑥𝑦 has the only stationary point 𝑥 = 𝑦 = 0. 
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Since 𝑓(0,0) < 0 and function 𝑓(𝑥, 𝑦) continuous, then from (8) we obtain 𝓌 ≥ 0 in some 
neighborhood of the origin. Therefore, as the inner boundary of the annular region, you can choose a 

curve 𝓌(𝑥, 𝑦) = 𝐶 > 0 with a sufficiently small value of the parameter 𝐶. 

Because 𝓌 ≤ 0 для |𝑥| ≥ 𝑥0, then in this area to form the outer boundary the curves 𝓌(𝑥, 𝑦) =

const can be used. Let's put  𝑦0 = √𝐺(𝑥1) − 𝐺(𝑥0) and construct a closed curve 𝒲0: 𝓌(𝑥, 𝑦) = 𝓌0, 

where (see Fig.1 ) 

𝓌0 = 𝐺(𝑥0) +
1

2
𝑦0

2. 

Consider also the trajectory coming from the point 𝐴0(𝑥0, 𝑦0) (𝑦0 > 0) of this curve. For 𝑥 ≥ 𝑥0 

the trajectory passes inside 𝒲0, approaching the axis 𝑥 and crosses the vertical for the first time 𝑥 = 𝑥1 

at some point 𝐴1(𝑥1, 𝑦1). 

Let 𝓌1 = 𝓌(𝑥1, 𝑦1), then 

𝓌1 − 𝓌0 = ∫ 𝑓(𝑥, 𝑦)𝑦

𝑥1

𝑥0

𝑑𝑥. 

At 𝑦1 ≥ 𝑦0 2⁄  we will receive 

𝓌1 − 𝓌0 ≤ −
1

2
𝑦0 ∫ 𝑓(𝑥, 𝑦)

𝑥1

𝑥0

𝑑𝑥 ≤ −5ℱ𝑥0𝑦0. 

This inequality remains true even when 𝑦1 < 𝑦0 2⁄ . Indeed, we have 

𝓌1 =
1

2
𝑦1

2 + 𝐺(𝑥1) <
1

8
𝑦0

2 +
1

4
𝑦0

2 + 𝐺(𝑥0) = 

= 𝓌0 −
1

8
𝑦0

2 = 𝓌0 −
1

4
𝑥0√𝐺(𝑥1) − 𝐺(𝑥0). 

Hence, given inequality (16), we obtain 𝓌1 < 𝓌0 − 5ℱ𝑥0𝑦0. 

If the trajectory is at a point 𝐴2(𝑥2, 𝑦2) the lower half-plane returns to the vertical 𝑥0, then 𝓌2 ≤
𝓌1 and, accordingly, 𝓌2 < 𝓌0 − 5ℱ𝑥0𝑦0. 

Let the trajectory intersect the line 𝑥 = −𝑥0 on the arc 𝐴2𝐴3̂, then 

𝓌3 − 𝓌2 = ∫ 𝑓(𝑥, 𝑦)𝑦

−𝑥0

𝑥0

𝑑𝑥 = − ∫ 𝑓(𝑥, 𝑦)|𝑦|

𝑥0

−𝑥0

𝑑𝑥 ≤ 

≤ ℱ ∫ |𝑦|

𝑥0

−𝑥0

𝑑𝑥 ≤ 2ℱ𝑥0𝑦0. 

If on the set  𝐴2𝐴3̂ we have |𝑦| ≥ 𝑦0, and at the first time  𝑦2
′ = 𝑦0 at point 𝐴2

′ (𝑥2
′ , 𝑦2

′ ), −𝑥0 ≤ 𝑥2
′ <

𝑥0, then   

𝓌2
′ − 𝓌2 ≤ ℱ ∫ |𝑦|

𝑥0

𝑥2
′

𝑑𝑥 ≤ 2ℱ𝑥0𝑦0 

and  
1

2
(𝑦0

2 − 𝑦2
2) < 2ℱ𝑥0𝑦0 + [𝐺(𝑥0) − 𝐺(𝑥2

′ )] ≤ 2ℱ𝑥0𝑦0 + 𝐺(𝑥0). 

On the other hand 
1

2
(𝑦0

2 − 𝑦2
2) > 5ℱ𝑥0𝑦0 

and, accordingly, using inequality (17), we obtain 

𝐺(𝑥0) > 3ℱ𝑥0𝑦0 = 6ℱ𝑥0√𝐺(𝑥1) − 𝐺(𝑥0) ≥ 6𝐺(𝑥0), 

which is impossible. 

So the point 𝐴2
′  does not exist everywhere on the arc 𝐴2𝐴3̂ we have |𝑦| ≤ 𝑦0. From here we find 
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𝓌3 − 𝓌0 = (𝓌3 − 𝓌2) + (𝓌2 − 𝓌0) < 2ℱ𝑥0𝑦0 − 5ℱ𝑥0𝑦0 = −3ℱ𝑥0𝑦0. 

Since the function 𝓌(𝑥, 𝑦) falls along the arc 𝐴3𝐴4̂, where 𝐴4 — next for 𝐴3 the point of intersection 

of the trajectory of the line 𝑥 = −𝑥0, then fair inequality 𝓌4 − 𝓌0 < −3ℱ𝑥0𝑦0. 

Let the trajectory point 𝐴5 lies vertically 𝑥 = 𝑥0. Then for the arc 𝐴4𝐴5̂ we get the inequality 𝑦 ≤ 𝑦0, 

similar to how it was for the arc 𝐴2𝐴3̂. 

From here 𝓌5 − 𝓌4 ≤ 2ℱ𝑥0𝑦0 and, accordingly, 𝓌5 − 𝓌0 < −ℱ𝑥0𝑦0. So the point 𝐴5 should be 

below the point 𝐴0.  

If the phase trajectory does not reach the vertical 𝑥 = −𝑥0, then it crosses the axis 𝑥 at some point 

𝜉, where −𝑥0 < 𝜉 < 0. Then, accordingly, we get 

𝐺(𝜉) < 𝓌2 + 2ℱ𝑥0𝑦0 < 𝓌0 − 3ℱ𝑥0𝑦0 
and 

𝓌5 < 𝐺(𝜉) + 2ℱ𝑥0𝑦0 < 𝓌0 − ℱ𝑥0𝑦0. 

Complementing the arc 𝐴0𝐴5̂ segment 𝐴5𝐴0
̅̅ ̅̅ ̅̅ ̅ to a closed loop, construct the desired upper boundary 

of the annular region. 

If the phase trajectory we are studying ends at some point in the segment 0 < 𝑥 < 𝑥0 axis 𝑥, then 

you just need to increase 𝑦0, that such an end point was a point 𝑥 = 𝑥0. Placing 𝐴5 = (𝑥0, 0), we obtain, 

as before, the outer boundary of the annular region. The theorem is proved.  

Now let us consider the uniqueness result. We denote by  ℛ+ and  ℛ− domains in the phase plane 

𝑥𝑦, in which the function  𝑓(𝑥, 𝑦) is positive or negative. The part of the curve 𝓌(𝑥, 𝑦) = 𝓌, that 

belongs to  ℛ± we will denote by  ℛ±(𝓌).  

Теорема 3. Assume conditions of Theorem 2, and assume that the function 𝑓(𝑥, 𝑦) has continuous 

derivatives of the first order. Additionally, we assume that for every value of parameter 𝓌, for which 

the set  ℛ±(𝓌)exists, the infimum of the function   

𝐹(𝑥, 𝑦) =
1

𝑦2
+

1

𝑦𝑓(𝑥, 𝑦)

𝜕

𝜕𝑦
 𝑓(𝑥, 𝑦)       (18) 

on ℛ+(𝓌) is positive and no less than its supremum on ℛ−(𝓌). Then system  (3) has a unique limit 

regime. 

3.3. Existence of limit cycle under impulsive perturbations 

Let us consider the behavior of system (3) under assumptions of theorem 2,3 in domain  

𝓌0 = 𝐺(𝑥0) +
1

2
𝑦0

2. 

Assume that  

10. Generalized Liénard differential equation (1) is assumed to be satisfied the conditions of 

existence and uniqueness of solution.  

20.  The line 𝑥 = 𝑥∗ is transversal to the flow (1) everywhere everywhere except the trajectory for 

which the line 𝑥 = 𝑥∗ is tangent. And in this case we assume that 𝐼(0) = 0. 

30.  The impulsive operator  𝒜𝑡 is assumed to be continuous with respect to veriables (𝑥, �̇�). 

Let for the initial data (𝑥0, �̇�0) of the problem  (3), (12) the following property holds: 

 𝕄: 𝑥0 < 𝑥∗ and �̇�0 > 𝑥∗, or 𝑥0 > 𝑥∗ and �̇�0 < 𝑥∗, or (𝑥0, �̇�0) ∈ 𝓌∗ і |𝑥0| > 𝑥∗  

and conditions of theorems 2,3 hold for all (𝑥, 𝑦).  Then the phase point (𝑥0, �̇�0) moves along trajectory 

𝑥(𝑡∗, 𝑥0, �̇�0, 𝑡0) = 𝑥∗, when it is affected by impulsive perturbation (12). Let  

𝑡1 = min
𝑡∗>𝑡0

{𝑡∗: 𝑥(𝑡∗, 𝑥0, �̇�0, 𝑡0) = 𝑥∗}. 

Let us consider coordinates of the phase point (𝑥(𝑡), �̇�(𝑡)) , where  𝑥(𝑡) = 𝑥(𝑡, 𝑥0, �̇�0, 𝑡0) for  𝑡 =

𝑡1 + 0, i.e., afterimpulsive perturbation. Then   
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𝑥(𝑡1 + 0) = 𝑥∗,                                                              

�̇�(𝑡1 + 0) = �̇�(𝑡1, 𝑥0, �̇�0, 𝑡0) + 𝐼(�̇�(𝑡1 , 𝑥0, �̇�0, 𝑡0)).
 (19) 

Then, if  (𝑥1, �̇�1), when  𝑥1 = 𝑥∗, and �̇�1 = �̇�(𝑡1 + 0) is defined by (19), as a new initial data for the 

problem (3), (12), the property  𝕄 holds, i.e., (𝑥∗, �̇�1) ∈ 𝓌∗, then there exists a moment of time 𝑡∗ such 

that 𝑥(𝑡∗, 𝑥∗, �̇�0, 𝑡0) = 𝑥∗, when the phase point of (3), (12) is again affected by impulsive perturbations 
(12). We denote     

𝑡2 = min
𝑡∗>𝑡1

{𝑡∗: 𝑥(𝑡∗, 𝑥∗, �̇�1, 𝑡1) = 𝑥∗}. 

Note, that if the property 𝕄 does not hold, i.e., (𝑥∗, �̇�1) ∉ 𝓌∗, then the phase point of the system 

(3), (12) for 𝑡 > 𝑡1 will not have impulsive perturbations. This situation is possible only if 𝑥∗ = 𝑥∗
′ , 

when the hyperplane does not intersect the limit cycle 𝒲0 at any point. In such a case the system (3), 
(12) has only one impulsive influences. After that we get a new initial data for (3) which has a limit 

cycle due to theorem 2,3, and the phase point in the sequel will move without any impulses. 

Assume that we have constructed  𝑛 members of the sequence  {𝑡𝑘 , (𝑥𝑘 , �̇�𝑘)}, 𝑘 = 1, 𝑛, where   

𝑡1 = min
𝑡∗>𝑡𝑘−1

{𝑡∗: 𝑥(𝑡∗, 𝑥𝑘−1, �̇�𝑘−1, 𝑡𝑘−1) = 𝑥∗}, (20) 

𝑥𝑘 = 𝑥(𝑡𝑘 , 𝑥𝑘−1, �̇�𝑘−1, 𝑡𝑘−1) = 𝑥∗,    𝑘 = 1, 𝑛,  (21) 

�̇�𝑘 = �̇�(𝑡𝑘 , 𝑥𝑘−1 , �̇�𝑘−1, 𝑡𝑘−1) + 𝐼(�̇�(𝑡𝑘 , 𝑥𝑘−1, �̇�𝑘−1 , 𝑡𝑘−1)). (22) 

It is clear that (𝑥𝑘 , �̇�𝑘) = (𝑥∗, �̇�𝑘) ∈ 𝓌∗, where 𝑘 = 1, 𝑛 − 1. Under condition (𝑥𝑛, �̇�𝑛) = (𝑥∗, �̇�𝑛) ∈
𝓌∗, it is possible to construct (𝑛 + 1)-th member of this sequence. Otherwise, it consists of  only  𝑛  
members. P- In general case, for arbitrary values of initial data (𝑥0 , �̇�0) the sequence 𝑡1 , 𝑡2, …  can be 

infinite, or it  can be finite, in particular, it may consists of only one element, or it can be empty. 

If the sequence of moments of time consists of one point, which is possible, for example, for the 

case when for all 𝑥 ∉ 𝓌∗, then the system (4), (12) undergoes an impulse action only once and for it 

there is a limit cycle in the requirements of Theorems 2, 3. 

If the sequence has a finite (not empty) number of points containing, for example, exactly k≥1 

elements, then the condition |𝑥�̇� + 𝐼(𝑥�̇�)| ∉ 𝓌∗, 𝐼(𝓌∗) = 0, and the system has exactly k times the 
action of impulses, and there is a limit cycle in the requirements of Theorems 2,3. 

It easy to see that if for some 𝑛 and for all 𝑦 ∈ [−𝑦∗, 𝑦∗] ∪ (−∞, −𝑦∗) ∪ (𝑦∗, ∞) we have |𝑓𝑛(𝑦)| =
𝓌∗, where 𝑓𝑛(𝑦) is the 𝑛-th iteration of the function  𝑓(𝑦) = −𝑦 − 𝐼(−𝑦), 𝑦 = �̇�, then  the sequence  
{𝑡𝑛, (𝑥𝑛, �̇�𝑛)}, 𝑛 ∈ ℕ has an infinite number of points. Moreover, (𝑥𝑛, �̇�𝑛) = (𝑥∗ , �̇�𝑛) = 𝓌∗ for all 𝑘.  

It follows from the analysis that problem (3), (12) will have a single limit cycle under the conditions 

of Theorem 3, where the phase point will be affected by impulse perturbation when the sequence {𝑡𝑛}, 

𝑛 = 1,2, …  is infinite. The following theorem takes place 
Theorem 4. Assume that  

1) Function 𝑓(𝑥, 𝑦) has continuous derivatives of the first order, and, moreover, there 

exist positive 𝑥1, 𝑥2 such that   

𝑓(𝑥, 𝑦) < 0,    inf 𝑓(𝑥, 𝑦) = −ℱ  on   (𝑥1 , 𝑥2) 
and  

𝑓(𝑥, 𝑦) ≥ 0  otherwise; 

2) 𝑦
𝜕𝑦

𝜕𝑥
≥ 0     and  

  ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑥2

𝑥0
≥ 10ℱ𝑥0, 

where  𝑥0 = min(𝑥1, 𝑥2) is sufficiently large and 𝑦 = 𝑦(𝑥) is an arbitrary nonincreasing 

function; 

3) 𝐺(−𝑥1) = 𝐺(𝑥2). 

Then the impulsive system (3), (12) has a unique  limit cycle, and the phase point has 𝑛 ∈ ℕ 
impulsive perturbations 
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.  

Figure 1: limit cycle with the hyperplane of impulsive effect 

The detailed analysis of the qualitative behavior of the system (1), (2), (12) demonstrates the 
complex behavior of the generalized Lénard equation (1) with impulse action (2). The effective criteria 
for  the existence of a single stable limit impulsive regime for such an equation are investigated. 

4. Conclusions 

The paper investigates the conditions for the existence of boundary cycles for the Lienard equation, 
the solutions of which are affected by instantaneous forces of momentum nature at unfixed moments in 
time. 

For this system, the constructive conditions for the existence of 𝑇(𝑛)-periodic regimes are proved  
such that the phase point of the system when moving along the corresponding trajectory undergoes 
exactly 𝑛 impulsive disturbances for the period where 𝑛 is an arbitrary positive integer. The points that 
define cycles that correspond to periodic regimes satisfy the Sharkovsky’s order. 

The conditions for the existence of at least one periodic regime and a single limit cycle are found — 
the only one with precision to shift in time of the periodic regime. 

For system (3) with impulsive action (12), the existence of a single stable limit regime is proved, the 
phase point of which will be affected by pulsed forces 𝑛 ∈ ℕ times. It is shown that a stable limit regime 
under given conditions will exist despite the influence of impulse forces according to the law (12). 
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