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Abstract  
The problem of modeling dynamics of complex networks is considered. The network model 

with non-unit elasticity controlled by mediation-driven attachment rule is studied. According 

to that rule, new nodes do not need a direct access to node statistics of the network: this data 

affects the links of new nodes, but is used implicitly. The assortative property of the 

considered model of complex networks is studied. It was shown that the proposed model 

generates networks with non-zero assortativity coefficient that is an important feature of this 

model. The dependence of the assortativity coefficient on the network size and copy-factor is 

obtained by numerical simulation. 
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1. Introduction 

The theory of complex networks is a modern science area. As is known, the most of such networks 

demonstrate the power law distribution of nodes by degree [1-4]. Networks with the above property 

are called "scale-free". For instance, most of social networks, collaboration networks, communication 
networks, and citations of scientific papers, neural and protein networks [5] (but not all of them [6]) 

are scale-free. 

At the heart of most of today's scale-free network models is the model proposed by Barabási and 
Albert in 1999 (BA-model) [7]. It is based on two powerful but simple concepts: concept of growth 

and concept of preferential attachment (or preferential linking). According to the latter, the probability 

for a new vertex to attach with some existing one is proportional to its degree. Although at present 
there exists many specifications and generalizations for the preferential attachment rule [1-4, 8-10], 

the proposed network models has some common features inherited from the parental BA-model.  

In particular, all these models inherit such a drawback of the BA-model as the explicit use of 

network's node statistic. The concept of implicit use of node degree information has been proposed in 
the mediation-driven anchor (MDA) model by Hassan [11]. Later the elastic variant of this model 

(EMDA model [12]) has been also developed. 

Apart from the nodes degree distribution, the assortativity property of networks is also very 
important. It is known [2, 13-15] that the real world networks are essentially assortative (social 

networks), or disassortative (biological and technical ones), while artificial dynamic network models 

(such as BA) generate networks that are neutral in assortativity of nodes degree. This fact is a 

significant drawback of existing models of complex networks. Studying the assortativity properties of 
the EMDA-model forms the main subject of current interest. 
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2. Models of dynamics of complex networks overview and problem 
statement 

All models describing the networks topology can be classified into dynamic and static, depending 

on whether they are based on the concept of growth, i.e. increasing the number of nodes and links 

over time, or not. Static are models "inherited" from graph theory (for instance, the Erdős-Rényi (ER) 

model), as well as a well-known "small world" model by Watts-Strogatz [15]. 
In dynamic models, new nodes and links are added to the network step by step. Usually, but not 

always, the addition occurs one node at a each step. In this case, the size of the network (n) is a 

measure of time, and the number of the node (i) is the time of its birth. 
The growth of the network and its properties are determined by the presence or absence of dying 

off nodes and links, the source of links and the linking rule. The simplest and most popular class of 

dynamic models of complex networks is formed by models in which only a new node can be a source 
of a new edge, and there is no dying off of nodes and links. In such models, the linking rule is the 

dependence of the probability i  of connecting a new node with an existing node i  on its individual 

properties ( ( ))Prop i , the network size n , and on the general (control) parameters of the network 

( )Net_Prop : 

 

( , ( ), )i f n Prop i Net_Prop  . (1) 
 
The most famous dynamic network model is the Barabási-Albert (BA) model [7], for which rule 

(1) has the form 
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According to (2) the probability of joining a new node (having a number 1n  ) to an existing one  

( i ) is proportional to its degree ik . Linking rule (2) is called the preferential attachment rule. 

The control parameter of the BA-network is the number of links m const  incident to each 

incoming node. 

The BA-model generates a scale-free network (SFN). It means, that the distribution of nodes by 

degree (i.e. the number of links ( )p k ) follows the Yule-Simon (YS) distribution. This distribution is 

a discrete analogue of a power law and asymptotically tends to it degree tends to infinity: 
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The parameter 2   is called the scaling factor. For BA-network 3  . 

Currently, there are many different extensions and generalizations of the BA model, which 

nevertheless fit into the general form (1) of the linking rule (fitness model [8], model with an aging 

factor [9], with a factor of additional attractiveness [1], based on nonlinear preferential attachment [2], 

link redirection [13], using the properties of nodes of the second level of neighborhood [10], etc.). 
One of such modifications of the BA-model is the elastic network model [12, 16, 17]. This model 

assumes that the relative growth rates of the number of links and nodes are different. Their ratio is 

called the elasticity index: 
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If const   (1 2  ), then the total number of links in the network ( )L n  and, accordingly, the 

average degree of nodes ( )k n  grow asymptotically according to a Yule-Simon law with exponents   

and 1   respectively. Thus, using the concept of elasticity make us possible to generalize the 

original BA-model and allows dense networks to be modeled. 

For 1  , each new node brings more links than their current average: 

 

( ) ( 1) ( ) ( )L n L n L n k n      . (5) 
 

For example, the more scientific papers have been written, the more references the author of the 
new paper should revise. 

The most important classifying factor of network growth models is the availability of information 

about the nodes and / or links of the existing network. In BA-model and its numerous generalizations, 

this information (for example, the values ik  of the degrees of nodes in (2)) is considered as available. 

Obviously, for many networks in the real world, the hypothesis of the availability and explicit use 

of information is unrealistic. Both because of the closed nature of this information, and because of its 
huge volumes. Thus, a more natural class of complex network models is mediation-driven attachment 

(MDA) models. In the original model [11], a new node chooses one of the existing ones as an 

intermediary (equiprobably) and then connects (also equiprobably) with m  of the neighbors of this 

mediator. The probability of joining i  will depend on the degree of this node ik , but this degree 

value is used implicitly. In the elastic MDA-model (EMDA, [12]), not m  is fixed, but the probability 

( q ) of forming a link with an intermediary's neighbor. Parameter q  is also called the copy-factor. 

This model is relatively new, its description and analysis is the first task of the current study. 
An important property of networks is assortativity, i.e. the tendency of nodes to connect with 

similar ones by some property, or with opposite ones. Any node parameter can be used as such a 

property; in the simplest case, the node degree. It is known [13-15] that the real world networks are 
essentially assortative (social networks), or disassortative (biological and technical ones), while 

artificial dynamic network models (BA, ER, and others) generate networks that are neutral in 

assortativity of nodes degree. This property should be considered as a significant drawback of existing 

models of complex networks. Studying the assortativity properties of the EMDA-model is the second 
and main problem of current research. 

3. Model of an elastic network with mediation-driven attachment (EMDA) 

In the EMDA model [12], the control parameter is the copy-factor ( )q  - the probability with which 

a new node binds to an mediator's neighbor node. In addition, it is assumed that the intermediary node 

itself is always linked with a new node (Figure 1). 

Thus, the number of links incident with the new node is not a constant (as in the MDA rule, or in 

the BA-model), but equal to 1 medm q k    (where medk  is the degree of the intermediary node). 

Then the equation for the dynamics of the number of links in the network has the form 

 

{ ( )} 2(1 { }) 2 2 ( )medE L n q E k q k n       . (6) 

 

Comparing (5) and (6), it is easy to see that the EMDA model is elastic with the elasticity index 
 

2q  . (7) 
 

The average degree of nodes ( ) ( ) /k n L n n  depends on the network size and on the copy-factor: 
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Figure 1: Probabilities of connecting a new node according to the EMDA rule. 

 

According to (8), for 0 0.5q  , the average nodes degree increases to a finite limit limk . While 

0.5 1q  , the average nodes degree grows unboundedly according to an asymptotically power law. 

And for 0.5q   the growth rate is logarithmic: 

 

2 1

2 / (1 2 ), 0 0.5

( ) 2ln( ), 0.5

, 0.5 1
n

q

q q

k n n q

n q




   


 


 

. (9) 

 

The dependence of the average degree of nodes on the network size and the copy factor (both 
theoretical (8)-(9) and numerical) is shown in Fig. 2. 

 

 
Figure 2: The dependence of the average degree of nodes on the network size and the copy factor 
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It was shown [12] that the rank distribution of the nodes of the EMDA network asymptotically 
follows to a power law with the scaling factor 

 

min{ ,1 }q q   . (10) 
 

The power law of the rank distribution with exponent (10) corresponds to the power law of 

frequency distribution (3) with the scaling exponent 
 

1 1/ 1 1 / min{ ,1 }q q      . (11) 
 
Thus, the EMDA model generates networks that are elastic with the elasticity exponent (7) and 

scale-free with the scaling factor (11). 

We can compare this fact with the properties of non-elastic (MDA) model. In such models factor 

m  (instead of q ) used as a control parameter. Because of m  is not scale-free, thus the generated 

MDA – networks should be not. Hassan [11] called MDA models "superpreferencial" in the sense of 

the attachment rule. Rank distributions of nodes degree for cases 1m  , 5m   and 100m   (obtained 

in [12]) are shown on Fig. 2 – Fig.4. 

As one can see, this distributions are not power-law, thus MDA-model is not scale-free. 
Conversely, the analyzed class of models (EMDA) produces networks, which are scale-free. 

 

 

Figure 3: Rank distribution of nodes degree for the case 1m  . 
 

 

Figure 4: Rank distribution of nodes degree for the case 5m  . 
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Figure 5: Age distribution of nodes degree for the case 100m  . 
 

4. Assortativity of complex networks 

An assortativity coefficient is defined as correlation coefficient of the nodes by their degrees [13, 
15], or by the adjacency matrix: 
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A  is adjacency matrix of the network, id  is node degrees. 

In general case assortativity coefficient (12) lies in the range 1 1r   ; 0r   for random 

networks, such as BA-model or ER-graph. In boundary cases 1r   , the network has [14] a special 
structure (shown in Fig. 6), which are far from the structure of real networks. 

 

 
Figure 6: Structure of extremely disassortative (a) and extremely assortative (b) networks 

 
The power law of the nodes degree distribution (3) significantly limits the boundary values of the 

assortativity index. In [14] the lower and upper bounds of the assortativity coefficient for BA-

networks were estimated: 
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It is known [15] that the real-world networks are not neutral on its assortativity: social networks 

are positively assortative while technical and biological ones are disassortative. Based on the 

correlation nature of the assortativity coefficient, the numerical values given in Table 1 (less than 0.3 
in absolute value) do not seem to be very significant. But supposing these networks as follows to BA-

model, we can conclude that the assortative property should be considered as strongly significant 

(Fig. 7). In fact, the networks shown in this example are SFN (3), but do not follow exactly to the BA 

model (i.e., scaling factor 


 is not obviously equal to three and the elasticity index   also is not 

necessarily to be unity). 
 

Table 1 
Assortativity of some real-world networks (from [15]) 

Kind of networks Network Size Assortativity 

social 

physics coauthorship 52 909 0.363 

biology coauthorship 1 520 251 0.127 

mathematics coauthorship 253 339 0.120 

film actor collaborations 449 913 0.208 

company directors 7 673 0.276 

email address books 16 881 0.092 

technological 

power grid 4 941 -0.003 

Internet 10 697 -0.189 

World-Wide Web 269 504 -0.067 

software dependencies 3 162 -0.016 

biological 

protein interactions 2 115 -0.156 

metabolic network 765 -0.240 

neural network 307 -0.226 

marine food web 134 -0.263 

 

 
Figure 7: Estimates of the boundaries of the assortativity coefficient for BA-network 
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Asymptotic bounds of the assortativity index for the general case of SFN ( 2 3   and 1 2  ) 

are also known [18]: 

 

(1 )
minr n   ,           

2( 1 )(1 3 )
maxr n        , (15) 

 

where 0.5 1   is the nodes degree rank distribution scaling factor (10). 

In this, general case, the boundaries (15) are wider than in the case of the BA-model (14), but the 

general properties of the asymptotic boundaries are preserved: the boundaries narrow to zero with 

increasing the network size, and the lower boundary tends to zero much faster than the upper one. 

5. Numerical estimation of the assortativity of the EMDA-network 

The seed of the EMDA network model was two nodes connected by an edge. At each step, one 

node was added and linked to the existing ones according to the EMDA algorithm. Thus, network 

models having size (128,256,512,1024,2048,4096,8192)n   were built. For each of these networks, 

the assortativity index was calculated by (12)-(13). The results obtained were averaged over 100M   

ensembles. 
The dependence of the assortativity coefficient of the network on its size and control parameter 

(copy-factor q ) is shown in Fig. 8. 

 
Figure 8: The dependence of the assortativity coefficient of the network on its size and copy-factor 

 
In Fig.9 is shown the dependence of the assortativity coefficient of the network with fixed size 

8192n   on the control parameter. 

Thus, numerical simulations show that the EMDA algorithm generates networks with significantly 

positive assortativity. Assortativity coefficient decreases with increasing copying factor. This is 

consistent with the fact that by increasing the copy factor, the scaling factor of the nodes degree 
distribution is also increase. 
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Figure 9: The dependence of the assortativity coefficient of the network on the copy-factor 

 
Last years some new approaches to networks assortativity problem were presented [19-26]. Thus, 

applying it to the theoretical study of the assortativity of the EMDA model is considered as a direction 

for further research. 

6. Conclusions 

The analysis of dynamic models of complex networks and the corresponding attachment rules is 

provided. It was obtained that significant disadvantages of traditional models are the explicit use of 

information about the properties of existing nodes and the linear dependence of the number of links in 
the network on the number of nodes. It is shown that the EMDA model is free of these lacks: it is 

elastic and does not use node statistics. A brief description of this model is provided. 

The analysis of the assortative property of real world networks and dynamic models of such 

networks is carried out. It was revealed that real networks have an explicit property of assortativity 
(positive or negative), while existing artificial models generate networks with zero assortativity, i.e. 

neutral. In this regard, the task of studying the assortativity of networks generated by the EMDA-

model was formulated and solved. 
As a result of the provided numerical simulation, it was found that the EMDA algorithm generates 

networks with significantly positive assortativity. Assortativity coefficient decreases with increasing 

copying factor. Thus, it can be argued that the EMDA model reflects the most important properties of 
social networks: asymptotic scale invariance, implicit use of information about nodes, high density of 

links, and significantly expressed positive assortativity. 

The theoretical study of the assortativity of the EMDA model is considered as a direction for 

further research. 

7. References 

[1] S. N. Dorogovtsev, J. F. F. Mendes, "Evolution of Networks: From Biological Networks to the 

Internet and WWW", Oxford, USA: Oxford University Press, 2003. – 280 p.  

[2] P. L. Krapivsky, S. Redner; F. Leyvraz, "Connectivity of Growing Random Networks", Phys. 
Rev. Lett., 2000, 85: 4629–4632. 

[3] K. Choromański, M. Matuszak, J. MiȩKisz, "Scale-Free Graph with Preferential Attachment and 

Evolving Internal Vertex Structure." Journal of Statistical Physics. (2013), 151 (6): 1175–1183. 



140 

 

[4] J. Kunegis, M. Blattner, C. Moser, "Preferential Attachment in Online Networks: Measurement 
and Explanations.", WebSci13 ACM Web Science Conference 2013. 13. doi: 

10.1145/2464464.2464514. 

[5] M. E. J. Newman, "Power laws, Pareto distributions and Zipf's law", Contemporary Physics, 

2005, 46(5). p.323-351. 
[6] A. D. Broido, A. Clauset, "Scale-free networks are rare". Nat Commun 10, 1017 (2019). 

https://doi.org/10.1038/s41467-019-08746-5 

[7] R. Albert, A.-L. Barabási, "Statistical mechanics of complex networks", Rev. Mod. Phys., 2002, - 
V. 74. - p. 42-97.  

[8] G. Bianconi, A.-L. Barabási, "Competition and multiscaling in evolving networks", Europhysics 

Letters, 2001, 54 (4):436–442. 
[9] G. Caldarelli, Guido; Catanzaro, Michele (2012). Networks: A Very Short Introduction. Oxford 

University Press. p. 78 

[10] Ch. Dangalchev, "Generation models for scale-free networks", Physica A, 2004, 338, 659  

[11] M. K. Hassan, L. Islam, S. A. Haque, "Degree distribution, rank-size distribution, and leadership 
persistence in mediation-driven attachment networks". Physica A: Stat. Mech. and its Appl. 2017. 

469 (2017): 23–30 

[12] V. Shergin, L. Chala, S. Udovenko, M. Pogurskaya, "Elastic Scale-Free Networks Model Based 
on the Mediaton-Driven Attachment Rule", 2020 IEEE Third International Conference on Data 

Stream Mining & Processing (DSMP), Lviv, 2020, in press. 

[13] R. Noldus, P. Van Mieghem, "Assortativity in complex networks", J. Complex Networks, 2015, 
vol. 3, pp. 507-542. 

[14] V. Shergin, S. Udovenko, L. Chala. "Assortativity Properties of Barabási-Albert Networks," In 

Data-Centric Business and Application. Springer, 2021. 

[15] M. E. J. Newman. “Mixing patterns in networks”. Physical Review E. 67 (2), 2003, 026126. 
arXiv:cond-mat/0209450. Bibcode:2003PhRvE..67b6126N. DOI:10.1103/physreve.67.026126. 

ISSN 1063-651X. PMID 12636767 

[16] V. Shergin, L. Chala, "The concept of elasticity of scale-free networks," 2017 4th International 
Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC 

S&T), Kharkov, 2017, pp. 257-260. 

[17] V. L. Shergin, L. E. Chala and S. G. Udovenko, "Fractal dimension of infinitely growing discrete 

sets," 2018 14th International Conference on Advanced Trends in Radioelecrtronics, 
Telecommunications and Computer Engineering (TCSET), Slavske, 2018, pp. 259-263. 

[18] V. Shergin, L. Chala, S. Udovenko. Assortativity Properties of Scale-Free Networks. In 2019 

International Scientific-Practical Conference Problems of Infocommunications. Science and 
Technology (PIC S&T). IEEE, Kharkiv, 2019, pp. 92-96. 

[19] B. K. Fosdick, D.B. Larremore, J. Nishimura, J. Ugander, "Configuring random graph models 

with fixed degree sequences.", 2016, arXiv:1608.00607. 
[20] L. Peela, J-C. Delvennea, R. Lambiotted, "Multiscale mixing patterns in networks", 

https://doi.org/10.1073/pnas.1713019115 

[21] G. Q. Zhang, S. Q. Cheng, (2012) "A universal assortativity measure for network analysis", 

2012, arXiv preprint arXiv:1212.6456 1: 1–8. 
[22] N. Meghanathan, "Assortativity Analysis of Real-World Network Graphs based on Centrality 

Metrics", Computer and Information Science Archives, Vol. 9, No. 3 (2016) 

[23] D. N. Fisher, M. J. Silk, D. W. Franks "The Perceived Assortativity of Social Networks: 
Methodological Problems and Solutions." In: Trends in Social Network Analysis. Lecture Notes 

in Social Networks. Springer, Cham. 2017 https://doi.org/10.1007/978-3-319-53420-6_1 

[24] Y. Yuan, J. Yan, P. Zhang, "Assortativity measures for weighted and directed networks", 
arXiv:2101.05389v1  [stat.AP]  13 Jan 2021 

[25] G. Thedchanamoorthy, M. Piraveenan, D. Kasthuriratna, U. Senanayake, "Node Assortativity in 

Complex Networks: An Alternative Approach", Procedia Computer Science, Volume 29, 2014, 

Pages 2449-2461, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2014.05.229. 
[26] M. Murakami, S. Ishikura, D. Kominami, Tetsuya Shimokawa, M. Murata, "Robustness and 

efficiency in interconnected networks with changes in network assortativity", Applied Network 

Science, vol. 2, No.6 (2017), DOI 10.1007/s41109-017-0025-4 

https://doi.org/10.1073/pnas.1713019115
https://doi.org/10.1007/978-3-319-53420-6_1
https://doi.org/10.1016/j.procs.2014.05.229

	1. Introduction
	2. Models of dynamics of complex networks overview and problem statement
	3. Model of an elastic network with mediation-driven attachment (EMDA)
	4. Assortativity of complex networks
	5. Numerical estimation of the assortativity of the EMDA-network
	6. Conclusions
	7. References

