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Abstract  
The paper presents a new iterative approach to solving Linear Assignment problems (LAP) 

and finding a perfect matching in a weighted bipartite graph iteratively. For that, a new 

permutation-matrix model of optimal linear assignment is proposed, which allows recursively 

finding solutions on a set of augmenting paths built based on the current matching. The 

results can be combined with other methods for solving a LAP such as the Hungarian 

Algorithm and minimal cost method in order to find an optimum faster.   
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permutation. 

1. Introduction 

Transport Logistics is a broad application domain for Decision Theory and Optimization Theory 

dealing with routings and scheduling. It is inevitably connected with optimal placement in space and 

time of discrete objects. Therefore, Combinatorial Optimization is utilized widely in Transport 

Logistics problems.  

Among transport logistics problems are numerous models of optimizing closed routes (routing 

models), which contain some conditions and constraints inherent in the actual process of moving 

objects on a plane or in space. Therefore, routing problems are crucial in rational, from economic 

prospective to decision-making and accelerating transport operations and management.  

Even the most complex routing problems have a lot in common with the classical Vehicle Routing 

Problem (VRP) formulated by Danzig and Ramser [1, 2] and extended in many sources [3, 4, 5, 6]. 

This paper is dedicated to a solution of one type of assignment problem (Linear Assignment 

Problem, LAP), which is, in turn, is closely related to the Salesman Problem (SP) of a formation of a 

close route of a minimum length in a graph. The SP is a classical NP-complete problem, while a LAP 

represents a narrow subclass of combinatorial optimization problems solvable for polynomial time. 

That is why it is highly perspective to find other approaches to a polynomial solution of a LAP and 

utilize it in effective metaheuristics for the SP. 

2. Related work 

Conventional methods for solving the Linear Assignment Problem, such as the Hungarian 

algorithm, Kahn-Munkres method, and potential method are based on different combinatorial 
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optimization approaches. They are all polynomial and characterized by different time complexity, 

while the best one is  3 ,O n  where n is an order of their cost matrices [7, 8, 9, 10]. 

In [11], an algorithm for solving one version of the LAP is presented, which complexity has been 

reduced to  2 .O n  It was shown that the algorithm plays a role of procedure functions that can be 

embedded into the Branch and Bound method for solving LAPs. It resulted in faster than before 

calculating tighter lower bounds on the cost of closed routes in TSP. 

This algorithm is designed to find a perfect matching of the minimum total weight in a weighted 

bipartite graph on 2n  vertices. It utilizes an introduced concept of the shortest augmenting path in a 

graph [11, 12].  

One of the common TSP settings is that the distances ijd  between each pair of cities i and j 

,     {1,  2,   ,  }i j n   are known, and it is required to find such a sequence of the cities 

 [1],  [2],  ,  [ ],  ,    [ ]i n      minimizing the value 

      

–1

1 [1]
1

   



n

i i n
i

d d    . (1) 

This value is equal to the length of the shortest route (bypass), starting in a city [1] , passing 

through all cities in turn and ending in [1]  after visiting [ ].n  The TSP, in which  ij jid d  for each 

pair  , i j  of cities is called symmetric (STSP) [13, 14, 15]. 

TSP and STSP are strongly NP-complete problems. They belong to a class of combinatorial 

optimization problems and, reflecting a continuously growing set of applications and generalizations, 

remains a topical research topic [15, 16, 17, 18]. 

Suppose that, to each edge, it is assigned zero weight in a complete graph on 1n  vertices (thus 

reflecting that all delivery routes are of the same cost), but there is a fee for using each vehicle unit. 

This fee is fixed for all vehicles of the same capacity. Here the task is to find the minimum number of 

cars that will transport n cargo  iiid . 

This problem, known as the container packing problem, is NP-complete in the strong sense. Since 

VRP includes the TSP and packing problem conditions, there is unlikely to solve the VRP exactly by 

efficient algorithms [15]. Besides, fulfilling a constraint 
1

   


 
n

iii
d K S  for a given 2K  and a 

container capacity S is not a sufficient condition for the existence of a feasible VRP solution. 

The VPR is representable as a TSP with constraints. Among the conditions is the one that there is a  

vehicle initially located in the depot. The vehicle must deliver a homogeneous cargo from production 

points to consumption ones and then return to the depot. The total number of points of production and 

consumption is  n; they form a set {1,  2,    ,    }N n  , while the depo (the base) is assigned an index 0. 

The cost of transporting cargo from point  i  to point j   ( ,   {0}   i j N  ), the vehicle capacity is equal 

to S , the weight iq  of the load that must be delivered back from the point of production if 0iq   or 

delivered to the point of consumption in case of 0iq  . Also, the balance condition 
1

0
n

ii
q


  has 

to satisfy. 

 It is required to find a permutation  [1],  [2],    ,    [ ],  ,    [ ]i n      on  set N such that 

 [ ]
1

0      ,      , 
u

i
i

q S u N

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
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It follows from expressions (1) and (3) that the formulated problem is the classical TSP, in which 

the set of feasible solutions satisfying condition (2) may be empty. For example, it has no solution  

 0,  [1],  [2],  ,    [ ],  ,    [ ],   0i n      for S = 1, n = 5,  2 / 3iq   for suppliers   1,  2,  3i  and 

 –1iq   for consumers  4,  5i  [1]. 

Step one 

 1 1 1 1 1 2 2 1 2 2
min ,  ,    ,    .i j i j i j i ji j

d d d d d  

After solving the TSP with the matrix  
 j ji i
d , one must return to the original transport network 

and add all the arcs to the resulting bypass. 

For the VRP, several applied versions are known in the literature. These include, for example, the 

School Bus Routing Problem (SBRP), which has the following formulation. A school has a fleet of 

identical vehicles of capacity S, designed to deliver each student i  to his residence after classes. The 

school has order number  0. The travel time ijt  from point i  to point j is known,  ,  0i j N  , and 

the cost of the travel ijd  is known as well. Also, there is a requirement that each vehicle must return 

to point 0 no late than at time T  [1]. 

In SBRP, it is required to find Boolean variables ijx ,  ,  0 ,i j N   and such a number K of  the 

vehicles satisfying the following constraints: the point 0 is the beginning and end of a route of each 

vehicle,  

0 0
1 1

   

 

  
n n

i i
i i

x x k , (4) 

any delivery point i is included in a single route: 

 

1 1

1  ;      ; 
n n

ij ji
i i

x x j N

 

     (5) 

there are no routes that include only delivery points: 

 

,   
   

  ;  ij
i j U
U N

x U




  
(6) 

the route  0,  [1],  [2],  ,   [ ],  ,   [ ],   0 ,i i i j i r   [ ]  i j N  of the vehicle satisfies a capacity condition: 

  
–1

 [ ], [   1  ] 
1

  –1       –1 i j i j
j

x S





  . (7) 

Also, there is a time limit T  for the route execution: 

  
–1

0 [1] [ ], [   1  ] [ ]0
1

      . 
r

i i j i j i
j

t t t T


    (8) 

The SBRP objective function is: 

 

, 0

   min.




n

ij ij
i j

d x  (9) 

It is easy to see that, in the SBRP 1,iid  1,i n  instead of iid Z in the VRP, and the number 

of vehicles is /K n S    .  
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If, in the SBRP, the cost ijd  and time ijt of moving the vehicle from a point i to a point j are 

linearly dependent, and 0ijd   if 0ijt .  (9) can be replaced by an objective function 

  

, 0

   min




n

ij ij
i j

t x  
(10) 

utilizing the initial data ,ijd  ,     {0}   i j N   as auxiliary data for the economic assessment of the 

constructed solution. 

The requirement 1iid  for 1,i n  makes a search of (9) much easier. The constraint on the 

vehicle load takes the form of inequality     /  k n S . The latter is a necessary and sufficient condition 

for a feasible solution to the problem. 

If we substitute r n  in (7) and (8), the SBRP becomes the TSP on a set of vertices 

 0 ,      N N n of a transport network represented by the full graph. 

The k-VRP problem is closely related to the VRP. In contrast to the VRP, the k-VRP does not 

specify the amount iid  of cargo delivered to the i-th consumer ( 1,i n ) and the capacity S of each 

vehicle, but it is required to serve at most k clients. It is necessary to minimize the total cost of routes 

of all vehicles, the number of which is equal to   / .m n k     Therefore, the k-VRP is solvable for n, 

   k Z  and     .n k  For    n k , it is the TSP defined on a set of permutations induced by  

        0,    1 ,  2 ,  ,  ,  ,    ,  0i i i j i n  . In particular, for k = 2, it is polynomially solvable, while for 

   3k  , it belongs to the class of NP-complete problems [15, 16, 19, 20, 21]. 

A peculiarity common for all the above routing problems is that they are formulated as 

generalizations or variants of the NP-complete problem TSP, where additional constraints are added. 

These constraints naturally make narrower the TSP feasible domain. The constraints lead to the 

problems' potential infeasibility, stimulating constant interest in further studying combinatorial 

optimization problems related to the TSP. In this paper, a new mathematical model of optimal 

assignment is described, which develops the results of  [11, 12, 22, 23, 24, 25]. 

The paper goal is to build a permutation-matrix model of optimal assignment, which allows 

recursively finding solutions on a set of augmenting paths built from the current matching. 

3. Main part  

Let us describe the method for solving the LAP. We will use the following its formulation.For the 

matrix of costs (weights)  
 ij ij

C c  of order n , where 1
ijc R  or , ijc  where 0

R  is a set of 

non-negative real numbers, find 

  , [ ]
1

min .
 

 
n

n

i i
S i

C c 


  (11) 

Here  [1], [2], ...,  [ ]n     is a permutation of a set 1,  2,{  },n  of the columns’  indexes of 

the matrix C, nS  is the permutation group, and  [1], [2], ...,  [ ]n     is the optimal permutation 

(an optimum) corresponding to the objective function value   [ ]1


n
i ii

C c .  

The LAP is feasible if     C  . Respectively, [ ] , ic  1, i n . Note that a LAP with a 

cost matrix containing elements ijc    may be unfeasible. In this case, it is necessary to establish 

that the feasible domain of the problem is empty. 
Further, we will assume that we deal with a feasible LAP.  
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The permutation  [1], [2], ...,  [ ] ,n     where    C  , respectively, [ ]  ic  1, ,i n  

is called a feasible solution to the LAP.  
The core of the Hungarian algorithm for LAPs is that the cost matrix is equivalently transformed 

first to make a significant number of its elements zero. The one applies a greedy search to find as 
many as possible independent zeros. After that, directly the algorithm is applied, increasing by exactly 
one the set of independent zeros. Like the Hungarian algorithm, our approach to finding the 

permutation   sequentially increases by one on each iteration the number elements k, 1, ,k n  of the 

sequence representing a certain part of a feasible solution (a partial solution) of a LAP. 
Let us list some properties of this sequence and outline the way of its construction. 

Any part of a feasible solution of a LAP consisting of k  elements determines uniquely a 

submatrix 
,

 
 s ti j

s t
c  of the matrix C  having the order k , such that  

1 2 1 2... ... , ... ... .s k t ki i i i j j j j           

Introduce a sequence  

 1 2[ ], [ ], ...,  [ ], ...,k k k k si i i    [ ] ,k ki  1 2[ ] ,  , ...,k si j j  , ...,  ,t kj j  

1, 1k n  , such that: 

a) it is a solution TO the LAP having the submatrix 
,

 
 s ti j

s t
c  as its cost matrix; 

b) the cost of the assignment induced by the permutation k  does not exceed the optimal value of 

a LAP induced by any submatrix of C  having the order k . 

Let us try to develop a conversion procedure of a sequence k  into a sequence 1k . If such an 

efficient procedure exists for 0, 1 k n  and the LAP (11) is feasible, then it takes n  steps to find 

n  .  Let us find out how the sequences , 1, k k n   may be constructed. 

Step 1. The initial sequence  1 1 1[ ]i   is trivially defined and is identical to the minimal cost 

greedy method to solve LAPs. We derive the minimum value of the matrix and make the 

corresponding initial assignment of the order 1: let  min |1 , ,lr ijc c i j n    respectively, 

 1 1 1 1 1 1, [ ] , [ ] .  i l i i r    

Step 2. In order to find  2 2 1 2 2[ ], [ ] i i    from 1 , let us determine  

 min | ,  ,ms ijc c i l j r     min | ,lp ljc c j r 
 

 min |vr irc c i l   (see Fig. 1). 

   p q  r  s  

m   mpc      msc   

          

          

l   lpc    lrc     

          

v 
 

    vrc   vsc

 
 

          

w    wqc       

Figure 1. Matrix C  

It is easy to see that if   lr ms lp vrc c c c  (further Case 2.1), then conditions a) and b)  are 

satisfied for a sequence 2  with 1 2 1 2 2 2,  [ ] ,  ,  [ ] .i l i r i m i s      
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It corresponds to a submatrix of the matrix shown in Fig. 1 depicted in Fig. 2. 
 r s  

l lrc     

m  msc  

Figure 2. The C -submatrix with elements lrc  and msc  

Otherwise, these conditions are satisfied by a sequence 2  with elements 

1 2 1 2 2 2, [ ] ,  ,  [ ]i l i p i v i r      (further Case 2.2). The corresponding submatrix is depicted in 

Fig. 3. 

 
p r 

 

l lpc    

v  vrc  

Figure 3. The C -submatrix with elements lpc , lrc  and vrc  

 

Step 3. Now, we transform the sequence 2  into a sequence 3 3 1[ ],i   3 2[ ],i  3 3[ ] .i   

If we deal with Case 2.1, then next we find wqc   min | , ;   , ijc i l m j s r    (see Fig. 1) and the 

value 

1 .lr ms wqMIN c c c    

Note that ,wq msc c  if  2 2 2[ ] , [ ]  l p v r   , i.e. we deal with Case 2.2. The 

transformation from 2  into 3  is the result of solving the following auxiliary problem. For rows 

,  l m  and columns ,  r s  of the matrix C  induced by the elements first two least elements lrc  and 

msc , it is required to find a triple of components with the minimum sum of their values. Any two 

triple elements must be placed in three different rows, particularly including ,  l m  and three various 

columns including ,  r s  ones. 

If such a triple does not contain lrc , but includes msc , then the sum of its elements is bounded from 

below by the value   

1 ,vr lp msS c c c    

where  min | , ,vr irc c i l m   min | ,  lp ljc c j r s  (further, Case 3.1). 

Let the solution of the auxiliary problem be a triple, which includes lrc  and does not contain msc . 

Then a value 

2 ,lr mp vsS c c c    

where  min | , ,mp mjc c j s r 
 

 min | ,  vs isc c i l m (further, Case 3.2). 

Elements of a solution of the auxiliary problem that does not contain lrc  and msc define a value  

 3 min ,      lp mr ws mq ls vrS c c c c c c  

(further, Case 3.3). Here,  min | , ,ws isc c i l m 
  min | , mr mjc c j p s   (see Fig. 4), 

 min | , ,ls isc c i m v   min | , mq mjc c j r s   (see Fig. 5). 

Let   

 1 2 32 min , , .MIN S S S  
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It is clear that it corresponds to the sequence 3  we are looking for if 2 1,MIN MIN  otherwise 

3 3[ ] ,l r    3[ ] ,m s   3[ ]w q  (further, Case 3.4).  

  p q  r  s  

m   mqc     msc

 

 

         

         

l     lrc   lsc   

         

v     vrc     

         

w         

 

Figure 4. Elements of  an auxiliary problem solution that does not contain lrc  and msc  that defines  

3S  given  min | , ,ws isc c i l m   min | , mr mjc c j p s   

  p q  r   s  

m   mqc     
 msc

 

 

          

          

l     lrc    lsc   

          

v     vrc      

          

w          

Figure 5. Elements of  an auxiliary problem solution that does not contain lrc  and msc  that defines  

3S  given  min | , ,ls isc c i m v   min | , mq mjc c j r s   

Depending on which one of the Cases 3.1-3.4 corresponds to  min 2, 2MIN MIN , the sequence 

3  is set.  

Step k. A sequence  1 2[ ], [ ], ...,  [ ], ...,  [ ]k k k k s k ki i i i      with the properties a) and b) 

generally is transformed into a sequence 1 1 1[ ],k k i    1 2[ ], ...,k i  1 1 1[ ], ...,  [ ]k r k ki i     

with the same properties as the following. 

In the matrix C , it is found  

 1 1, [ ] 1 2 1 2min | , , ...,  , ...,  ,  [ ], [ ], ...,  [ ], ...,  [ ] ,
 

  
k k ki i ij s k k k k s k kc c i i i i i j i i i i      
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then a sequence  1
11

, [ ]
 k k kk

i    (further, Case k.1) is formed  and  

1 1, [ ] , [ ]
1

1
 



  s k s k k k

k

i i i i
s

MIN c c   

is evaluated. 

Next, the problem of finding 1k   elements is solved, for which in the matrix C  the minimum 

sum of their values is attained. At the same time, they are located in different rows and columns, 

including all rows and columns with numbers specified by values 
1[ ],k ic  

2[ ] [ ] [ ] ,  ...,  ,  ...,  .
k k s k ki i ic c c   This induces several cases Cases k.2-k.K and the values 2 ,..., KS S . 

Then  22 min ,..., KMIN S S  is evaluated, and the partial permutation 
2

1k
  of the order k , where 

the value is achieved, is derived. Finally, 
1k

  is found by assigning 1
1 1 
k k

   in case of 

1 2MIN MIN . Otherwise, 2
1 1

. 
k k

   

In the same way, the iterative process continues until n  will be found. Process terminates and 

 n   is set.  

The complexity of our method for solving LAPs described above has complexity   3 ,O n the best 

known so far and coinciding with the improved version of the Hungarian algorithm. This means that 

these two can be combined in order to get a hybrid method working, n average, better than the 

methods itself.  

4. Conclusion 

A new permutation-matrix model of optimal assignment is proposed.  It allows recursively finding 

solutions on a set of augmenting paths built with respect to the current matching. The proposed 

scheme for finding an optimal assignment underlies a method of solving a LAP where a solution to 

the problem is found exclusively employing matching theory for bipartite graphs.  

The developed model for finding the optimal destination develops transport logistics’  theory. It is 

focused on improving the organization of transportation in real-time and in real situations of vehicle 

traffic. Its implementation allows reducing the time and fuel consumption for carrying out transport 

works. 

The method uses the well-known algorithm for finding maximum matchings in bipartite 

unweighted graphs, built according to a scheme that expands approaches to solving hard optimization 

problems. 
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