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Abstract  
The problem of packing unequal circles of fixed radius into a circle of minimum radius is 

considered. An approach to improving local solutions obtained by any of the known methods 

is proposed. The approach is based on the idea of expanding the space of variables. The 

dimension of the problem expands if we assume that the radii of the circles are considered as 

independent variables. In this case, an additional rigid system of constraints is constructed in 

such a way that the convergence of variable radii to the initial fixed values is ensured in the 

process of the algorithm. To construct such a system of constraints, the combinatorial structure 

of the problem is used.The numerical results of solving test problems of packing various 

numbers of circles are presented and the analysis of the results obtained is carried out.  
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1. Introduction 

The problems of packing circles and spheres in containers of various shapes are given constant 

attention from scientists. Problem statements differ in the space dimension, the shape of containers, the 

specifics of accounting for metrical parameters (sizes) of objects and containers, etc. [1 – 7]. In recent 
times, the number of publications in this area has increased [8 – 12]. This, on the one hand, is due to 

the fact that the problems have numerous practical applications. On the other hand, these problems have 

become a testing benchmark for new methods of global optimization, since they are characterized as 

multi-extremum and of high dimension. 
According to the typology proposed by Wäscher et al [13] the problems can be considered as the 

Knapsack Problems (KP) or Open Dimension Problems (ODP): 2DCKP, 3DSKP, 2DCODP, 3DSODP. 

The subject of this article is the problem of packing unequal circles into a circle of minimum radius. 
However, the approach proposed below can be easily extended to pack both circles and spheres into an 

arbitrary container and even into multiple containers. 

The main idea of the proposed approach is to identify the combinatorial structure of the problem and 
artificially expand the space of variables (lifting) to create new possible directions for improving the 

objective function. Note that increasing the dimension of the problem due to the variable radii of the 

spheres (circles) is used in Jump Algorithm [14], where successively the auxiliary problems of 

minimizing the unused domain of the container are solved. This allows the transition from one local 
extremum to another, with the best value of the objective function.  

The problems of optimal packing of unequal circles and spheres have wide practical application. 

Such problems arise in various industries, materials science, powder metallurgy, nanotechnology, 
radiosurgery, laser coagulation, monitoring systems design, studying various structures in biology, 

layout problems in logistics systems and space technology, coding, classification, information security, 

etc. [15 – 21]. 

                                                   
II International Scientific Symposium «Intelligent Solutions» IntSol-2021, September 28–30, 2021, Kyiv-Uzhhorod, Ukraine 

EMAIL: svsyak7@gmail.com 

ORCID: 0000-0003-1707-843X 

 
© 2021 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 



151 

 

2. Problem Statement 

Let be given a set of circles nSSS ,...,, 21 , the radii of which are equal nrrr ˆ,...,ˆ,ˆ 21  respectively. 

Without loss of generality, suppose nrrr ˆ...ˆˆ 21  . The problem is to place the circles nSSS ,...,, 21   

in a circle 0S  of minimum radius 0r  with a center at the point  0,0=0p . We denote the coordinates 

of the centers by  ii

i vup ,= ,  .1,2,...,= nJi n  Then the mathematical model of the problem will 

take the form 

minr 0 ,                                                                          (1) 

subject to  
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Thus, we have a nonlinear optimization problem with variables 0r , ii vu , , nJi , which we call 

Problem 1. 
Problem 1 is multiextremal due to the nonconvexity of constraints (2). The use of numerical methods 

for nonlinear optimization allows finding only its local solutions, depending on the choice of initial 

values 0r , ii vu , , nJi . Traditionally, methods of directed search of local solutions are further used. 

At the same time, multi-start schemes are effective, in which starting points are generated randomly or 
according to some special rule. This paper proposes a new approach that improves local solutions 

obtained by known methods. The approach is based on the idea of the method of artificial extension of 

the dimension of space, first proposed in [22] using the concept of the configuration space of geometric 
objects [23]. In this case, generalized variables of the configuration space are the metrical and  

placement parameters of geometric objects. First of all, let us use the combinatorial structure of the 

problem as a Euclidean combinatorial optimization problem [24]. 

We will consider the radii 1 2 nr ,r ,...,r  of the circles as independent variables and form the system 
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where elements of subsets nJW   of capacity W  in increasing order, and 

ˆ
n

i

i=1

1
τ = r .

n
                          (7) 

System (4-6) is such that the set of its solutions coincides with the permutation set of real numbers 

 nrrr ˆ,...,ˆ,ˆ 21 . This property is a partial case and follows from the general concept of continuous 

representations and functional extensions of  Euclidean combinatorial sets. Representation (4-6) is 

called polyhedral-spherical [25], because, as is easy to see, it describes a set that is the intersection of 
the permutation polyhedron (5) and the hypersphere (6) with center at point (7). Optimization problems 

on polyhedral-spherical sets have interesting properties, which are investigated in the theory of convex 

extensions on vertex-located sets [25]. 
Let us consider the function optimization problem (1) with restrictions 
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where variables ir , nJi  satisfy conditions (4-7). 

The problem of nonlinear optimization (1), (4-9) with variables 0r , ii vu , , ir , nJi  is called 

Problem 2. 

Theorem 1. Both Problem 1 and Problem 2 are equivalent in the sense of the coincidence of their 

global solutions.  
The proof of the theorem is based on the uniqueness of the polyhedral-spherical representation of 

the Euclidean set of permutations  [24, 25]  generated by the set of radii of the circles. 

It is known that the equality of global solutions in multiextremal problems does not imply the 
coincidence of their local solutions. It is this fact that makes it possible to obtain different local solutions 

for the same initial points when implementing numerical optimization methods. 

Note that Problem 1 has a dimension 2n+1, and the dimension of Problem 2 is equal to 3n+1. Thus, 
we have implemented an approach of artificial expansion of the space of variables, based on the general 

scheme proposed in [22]. Applied to the problem of packing circles and spheres, this approach will be 

called the variable radius method. 

3. Variable Radius Method and its Application to the Unequal Circles Packing 
Problem 

The method of variable radii allows one to realize the idea of improving solutions of Problem 1. 
Indeed, we choose the local solution obtained as the starting point and consider the radii of the circles 

as independent variables nrrr ,...,, 21  satisfying constraint system (4-9). As a result, it is possible by 

variables to overcome the neighborhood of attraction of a local extremum and direct to a new, possibly 

better, local solution. The initial values of the variable radii can be chosen as equal to the initial values, 

or generated randomly in ),( 1 nrr . 

The main difficulties in implementing the proposed approach are associated with an increase in the 

dimension of Problem 2. It is easy to see that the number of linear constraints in system (5) is equal to 

22 n
, which already at n >20 leads to difficulties in applying modern numerical methods of nonlinear 

optimization. On the one hand, using the properties of linear and quadratic functions on combinatorial 

polyhedra allows one to partially overcome the arising difficulties. However, this does not greatly 
expand the capabilities of methods in large-scale problems. 

On the other hand, it is possible to select only nl <  circles with variable radii. Let 

  nl JmmmM 
2,...,1,=  be the numbers of circles, whose radii 

l
mmm rrr ˆ...ˆˆ

21
  are fixed, and the 

set MJM n
 \=  be of ordered numbers of circles with variables radii Miri

, . Form a system of 

restrictions 
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The problem of nonlinear optimization (1), (10-18) in the space of variables 0r , ii vu , , nJi , and 

Mjrj
,  we call Problem 3. 

Theorem 2. The sets of global solutions of both Problem 1 and Problem 3 are the same for any 

  nl JmmmM  ,...,,= 21 . The proof is based on the uniqueness of the polyhedral-spherical 

representation of the set of permutations generated by the radii of the circles with numbers from 

MJM n
 \= . Let us expand the above reasoning. Consider a set  nrrrQ ,...,,= 21  and part it onto 

1q  pairwise disjoint subsets as follows. Let be 
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The problem of nonlinear optimization (1), (21-29) in the space of variables 0r , ii vu , , nJi , and 

0\, MJjr nj   we call Problem 4. 

Let us generalize the statements of Theorem 1 and Theorem 2. 

Theorem 3. The sets of global solutions of both Problem 1 and Problem 4 are the same for any 

  nl JmmmM 
0
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, 
0

qJk  with the subsequent formation of constraints (12-14), forms a family 

of modifications of the method of variable radius. 

4. Numerical Results and Their Discussion 

The ability to control the variable radii of the circles in the process of solving the problem allows us 
to propose various strategies for the formation of initial points and the sequential search of local 
decisions in order to improve them. Suppose that at the initial stage (0-th iteration) a local solution was 

obtained 
(0)

0r , 
(0)(0) , ii vu , ii rr ˆ=(0)

, nJi . Strategies for improving this solution are associated both with 

the method of forming the parameters for placing the circles and with the rule for choosing the radii, 
which we will consider as variables. Classical approaches are associated with the choice of a new 

starting point from an extended neighborhood of the placement parameters 
(0)(0) , ii vu  with fixed radii 

ii rr ˆ=(0)
 and the search for a new local solution 

(1)

0r , 
(1)(1) , ii vu , ii rr ˆ=(1)

, nJi  (1-st iteration). At the 

k-th iteration, the initial values for the placement parameters are chosen, corresponding to the best 
current value of the local solution for fixed values of the radii of the circles. In this paper, it is proposed 
at each iteration to fix the placement parameters of the circles, setting them equal to the corresponding 
best current local solution. In this case, the formation of new local solutions is carried out by considering 
the radii of the circles as variables. We conducted the following computational experiments. For local 
optimization, the IPOPT software package was used (https://projects.coin-or.org/Ipopt), which 
implements an internal point method for continuous nonlinear programming problems. Computer with 
following characteristics was used to perform the computation: i3/8G/SSD 256G. 

At first, test problems with the number of circles less than 15 were considered. A series of 30 
problems was formed in which the radii of the circles were randomly generated uniformly in the interval 
(1, 15). For each test, the coordinates of the circle centers from a square (-100,100) x (-100,100) were 
generated randomly. The values obtained were chosen as initial for the implementation of the local 
optimization method in Problem 1. Then, with the same initial data, Problem 2  was solved, in which 

the radii of the circles are variables. The initial values for the variable radii ir , nJi  in Problem 2  

were randomly generated from the interval (1, 15). Thus, we compared the solutions of both Problem 
1  and Problem 2 using the same local optimization method for the same starting point. 

In 80% of test problems, local solutions of Problem 2  turned out to be better than in Problem 1. The 
average time to complete Problem 2  was only 1.5 times higher. Note that initially we intended to 
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improve local solutions. Therefore, in the future, solutions to Problem 1  were chosen as the starting 
point for the implementation of Problem 2. In all cases, improvements to local solutions were obtained. 
However, when we tried to improve solutions to Problem 2, we succeeded in 86% of cases. An attempt 
to improve the new best solution at the next iteration was successful only in 43% of cases. As a rule, 
there were no improvements after the 7-th iteration. This is natural, since the better the initial local 
solution, the more difficult it is to improve. 

In the problem of packing circles for 15n  , the numerical experiment was carried out using three 
strategies, depending on the rules for forming a set of circles with fixed and variable radii. The first 
strategy corresponds to the case when we fixed the radii of the circles (Problem 1). For the second 

strategy, the radii of 7=l  circles were assumed to be variables (Problem 3). 
At the same time, a series of 10 test tasks was formed in which the radii of circles were uniformly 

randomly generated in the interval (1,100). For each test,  textit problem 1 was solved, in which the 
initial values of the coordinates of the centers of the circles were also randomly generated from the set 

   500,500 500,500   . Then the solutions obtained were improved using Strategies 1,2. 

Improvements were received for all tests reviewed. The average runtime for Strategy 2 was 1.6 times 
higher, but the average solution quality was 4.3% better on average. 

The third strategy was used for large-scale problems and involved decomposing a set Q  into subsets. 

The choice of the set Q  decomposition method has a significant impact on the result. 

Experimentally, the best results corresponded to the groupings obtained as a result of partition of a set 

 nrrrQ ˆ,...,ˆ,ˆ= 21 , in non-decreasing order of nrrr ˆ...ˆˆ 21   (Strategy 3). 

The proposed approach was tested on the placing of 60 circles, the radii of which were chosen 

randomly and ordered. In this way  6021 ˆ,...,ˆ,ˆ= rrrQ =6, 6, 8, 9, 10, 10, 13, 13, 15, 17, 18, 20, 23, 25, 

25, 26, 26, 30, 31, 32, 32, 33, 34, 34, 35, 37, 38, 39, 41, 42, 42, 45, 48, 49, 49, 51, 55, 55, 56, 58, 58, 
59, 61, 62, 63, 65, 66, 66, 69, 69, 70, 73, 73, 75, 76, 79, 80, 82, 82, 83. First, a local solution of Problem 

1 was obtained with fixed radii from Q . The starting point for the numerical optimization method was 

randomly generated uniformly from the square    00500,500500,5  . Radius 450.88=(0)

0r  was 

obtained in 362 sec. Then, the set Q  was partitioned in accordance with Strategy 3 and Problem 4 was 

solved. At each subsequent iteration, the coordinates of the centers of the circles corresponding to the 
best local solution were chosen as the starting point for the numerical local optimization method. In this 

case, the set  nrrrQ ˆ,...,ˆ,ˆ= 21  was partitioned into 10, 12, 15, 20, 30 groups of 6, 5, 4, 3, 2 elements, 

respectively. At subsequent iterations were obtained 34.72,4=(1)

0r  33.15,4=(2)

0r  31.22,4=(3)

0r  

30.90,4=(4)

0r  30.90.4=(5)

0r  Finally, a solution was reached 4726.4=(6)

0r  and the coordinates 

ii vu , , nJi  of the circle centers are shown in Table 1. The runtime was 968 sec. 

5. Conclusions 

This article proposed a new approach for improving local solutions to the problem of packing 
unequal circles in a circular container of minimum radius. The basic idea is to expand the variable space 
of the optimization problem, assuming that the radii of the circles are considered as variables. At the 
same time, an additional constraint system for variable radii is being constructed using the permutation 
structure of the problem. It is guaranteed that, as a result of the decision at the last stage, the radii will 
take their initial values. This approach differs from the known ones in that it allows overcoming the 
attraction zones of local extrema of the problem not only by changing the coordinates of the centers of 
the circles, but also by partially varying their radii. This provides additional directions for improving 
the objective function, which ultimately improves the result. The method of variable radii can be 
extended to containers of various shapes and even to several containers. In this case, of course, the 
restrictions on the placement of circles inside the container change. Moreover, the proposed approach 
can be used in solving problems of packing unequal spheres into an arbitrary container. In these cases, 
systems of restrictions on one or more metric parameters are formed by analogy with round objects. 
The combinatorial structure of the problem will be generated by the same system of constraints as for 
the radii of circles.Thus, the field of application of the variable radius method for improving the 
obtained solutions can be significantly expanded. 
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Table 1 
Local solution at the final iteration 

 ir    iu    iv    ir    iu    iv   

 6   -280,16   230,82   42   15,42   -228,05  

6   -303,31   -287,32   45   -311,72   -220,35  

8   -271,70   247,70   48   -147,12   -348,99  

9   15,60   50,27   49   -227,14   -179,32  

10   339,56   -235,67   49   -118,14   358,54  

10   -175,93   17,74   51   75,76   19,43  

13   -411,64   41,57   55   -81,88   255,59  

13   -288,63   296,43   55   -371,50   -13,32  

15   -333,40   47,14   56   -322,57   182,74  

17   289,49   35,70   58   -232,51   -286,19  

18   23,63   -287,49   58   -347,36   -123,71  

20   400,88   61,96   59   -19,46   -120,32  

23   -189,86   240,44   61   -257,03   5,46  

25   -304,08   261,71   62   233,50   280,19  

25   187,64   354,83   63   332,47   -147,55  

26   -150,06   211,86   65   108,66   256,86  

26   -2,01   -28,98   66   176,63   126,77  

30   -259,36   -100,62   66   -204,92   121,28  

31   316,29   237,83   69   -30,36   -356,44  

32   -162,54   288,18   69   357,29   -17,90  

32   -197,66   341,68   70   251,46   -253,03  

33   -239,29   214,12   73   -77,78   49,46  

34   54,97   -63,47   73   38,11   138,26  

34   235,13   -135,13   75   5,67   351,69  

35   7,05   241,70   76   -150,45   -80,62  

37   -303,58   91,70   79   -105,57   -228,98  

38   -238,90   285,12   80   322,63   127,01  

39   -378,96   82,02   82   117,16   -324,22  

41   121,82   365,29   82   119,23   -160,23  

42   -104,60   161,29   83   205,29   -19,45  
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