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Abstract  
As we know, clustering refers to the problems of Data Mining. The clustering problem is 

usually solved without a supervisor with using the features of the object or system. It is 

necessary to carry out clustering in various fields: agriculture, medicine, biology, etc. In this 

paper propose to carry out clustering using two objective functions and constructed 

evolutionary population methods based on genetic algorithms, evolutionary strategies and the 

method of deformed stars. 

New elements of such methods for calculation of objective function are developed, 

advantages of the population approach before known classical methods of clustering are 

shown. A comparative analysis of the proposed clustering methods effectiveness using a 

known sample of iris data and a sample of randomly generated data is fulfilled. The 

peculiarities of each proposed method application, its advantages and disadvantages are 

determined. 
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1. Introduction 

The diversity of the modern world, the need and desire to know it are the most important reasons 

for the systematization, clustering and classification of objects and systems. The dynamics of the 

amount of information and the limitations of human perception require the creation of data filtering 
systems, their organization, determining the importance and so on. Obviously, these factors 

emphasize the importance of developing and using modern clustering methods based on new data 

technologies. 
The globalization of the processes of the modern world, the various challenges facing humanity, 

make us think about its future. The famous writer John Galsworthy wrote: "If you do not think about 

the future, you may not have it." However, thinking about the future is not enough, we need to predict 

it and use intelligent decision-making methods to reduce future risks. 
It is known that effective prediction is based on the results of solving the problem of 

identification, both structural and parametric. Today, most often, the basis of prediction methods are 

time series, or the dependence of unknown characteristics on known factors, one of which may be 
time. Prediction using time series is based on the analysis of retrospective data and the construction of 

autoregressive models, usually linear. Otherwise, there are multifactorial dependencies, the values of 

the factors of which are in a certain area, taking into account the possible values. 
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It is important to note that the economy of the modern world is unstable, the processes in it are 
heterogeneous and non-stationary. The use of data from the whole possible spectrum for their 

identification is incorrect, as their logical-dynamic nature can lead to averaging and displacement of 

results. That is why the output data should be divided into clusters that correspond to homogeneous 

processes and allow adequate identification and high-precision prediction. 

2. Clustering Problem and Analysis of Methods its Solving 

The urgency of solving the clustering problem has led to the development of a large number of 

clustering methods. Since this problem has an optimization character, the No Free Lunch Theorem 

(NFL) is applicable to it [1]. The meaning of this theorem is that there is no single method that can 
best find a solution to any optimization problem. That is why both the development of clustering 

methods and the study of their effectiveness continue. 

Historically, hierarchical methods were developed first. They were divided into agglomerative 
and divisive methods of clustering [2,3]. For the first methods, clusters were formed by merging 

smaller groups into larger ones, for the second, on the contrary, clusters were formed by dividing 

larger groups into smaller ones. The class of similar methods includes dendrograms, as well as 
decision trees. Typical representatives of the agglomerative paradigm are Ward's method, single 

linkage, pair-group method using arithmetic mean and complete linkage, and the pair-group method 

using centroid average. 

The next large group of clustering methods includes algorithms of the Forel family of the 
Novosibirsk school of data analysis [4], the method of K-means and K-medians [5], EM-algorithm 

[6], and others. Their feature is the iterative nature of the search and refinement of cluster centers. 

In recent decades, clustering methods based on new paradigms, usually inspired by the structure and 
functioning of biological and social systems have been developed. In this case, the affiliation of 

objects to clusters could be ambiguous, with a certain degree of correspondence, the object could 

belong to a particular cluster. This is the method of C-means. The method of C-means is a method of 
fuzzy clustering, which is based on the idea of calculating subjective conclusions [7]. Much of the 

clustering methods were developed based on the use of neural networks. In the foreground here is the 

Kohonen neural network with the implementation of the principles of WTA (winner take all) and 

unambiguous assignment of the object to a particular cluster and SoftMax with the assignment of the 
object to several clusters with certain probabilities [8]. 

Another approach to developing clustering methods is to use technologies that imitate elements 

of natural evolution. Such technologies are genetic algorithms, evolutionary strategies, swarm 
algorithms, imitation of metal annealing, and others. Like the above methods, they belong to the Soft 

Computing paradigm [9,10]. Evolutionary methods have a certain feature in comparison with other 

methods: under certain conditions with a certain probability, they guarantee finding the global 

optimum of the objective function. That is why the development and study of the effectiveness of 
such methods is an urgent task. 

Note that in the article we did not aim to study methods based on other hypotheses about the 

shape of clusters, their functional nature, etc. [11-13]. The developed methods are designed to solve 
the classical problem of clustering, where objects are points in space of a certain dimension, because 

the solutions of such a problem are most often used by decision makers in solving practical problems 

of today [14]. 
When solving the clustering problem, the proposed metric which determines the distance 

between object plays an important role, s. It is necessary to consider what kind of similarity is being 

considered. In addition to distance, it can be an existing analytical relationship between objects or a 

form of their condensation. The problems of studying possible metrics were studied in [15-18]. 

3. Clustering Method on the Base of Evolutionary Strategy 

Suppose that objects or systems of research are characterized by a certain range of properties. 

Then 
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each object can be represented as a point in the n -dimensional space of the following properties, that 

is: 

1 2( , ,..., ), 1, ,i i inXi x x x i m   
where n  is the number of properties, m  is the number of objects. 

Data about objects are in the matrix 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

n

n

m m mn

x x x

x x x
X

x x x

 
 
 
 
 
  . 

It is necessary, based on the data of the matrix X , to divide the set of studied objects into 
clusters. As a rule, the number of clusters is known a priori, but there are problems where the optimal 

number of clusters also needs to be determined. 

Consider the first problem and assume that the number of clusters is K , and K m . At the first 

stage we normalize the elements of the matrix X  and get the matrix 
'' { }, 1, , 1,ijX x i m j n   , its 

elements are 

'

min

, [0,1].
max min

ij ij

i
ij ij

ij ij
ii

x x

x x
x x



 


 

As a result of normalization, the points from the matrix X  will lie in a single hypercube 

[0,1]n . Remind that the distance between two points in n -dimensional space is equal to 

2 1/2

1

( , ) ( ( ) ) , , 1,
n

ij i j ik jk

k

d d X X x x i j m


    . 

We write the objective function for the problem of clustering the objects described above: 

                                                          
1

( ) ( , )
K

i j

i j

F C d C X


 ,                                                    (1) 

where C  is the set of point-centers of the clusters, iC  is the point-center of the i -th cluster, j  is the 

index that indicates the affiliation of jX  to the i -th cluster. There are problems in which the essential 

requirement is that the centers of the clusters must be as far apart as possible. Therefore, in this case, 

function (1) is modified to the form:                                             

b                                       
1 1

( ) ( ( , )) / ( ( , ))
K K K

i j i j

i j i j i

F C d C X d C C
  

                                              (2) 

or   

                                       
1 1

( ) ( ( , )) ( ( , )).
K K K

i j i j

i j i j i

F C d C X d C C
  

                                              (3) 

Let us solve the problem of finding cluster centers 

                                                                   
*

[0,1]

arg min ( )
nc

C F c


 .                                                             (4) 

To do this, we use an evolutionary strategy ( )   with an elite selection of elements of the new 

population, where   is the number of potential parental solutions,   is the number of potential 

descendant solutions. The authors of the evolutionary strategy consider that the necessary condition to 

ensure the diversity of the population of solutions is 7  . 

Step 1. Initialization of evolutionary strategy parameters. 0t  . 

Step 2. Generation of a population of potential solutions of problem (1-4),

{ }, 1, , 1, , 1,t tl

ijC C i k j n l     . Thus, the number of potential solutions is equal   (in most cases 

10-30). 

Step 3. Build   matrices of distances from the centers of clusters to objects: 
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where 1, , ( , )tl tl

ij i jl d d C X  , tl

iC is the center of the i -th cluster in the l -th potential solution. 

Step 4. Find the value of the analog of the objective function (1) for each of the   potential solutions, 

                                                       
1

( ) min , 1,
m

t tl

e ij
i

j

F A d l 


  .                                                     (5) 

Thus, the value of the objective function is matched to each potential solution. 

Step 5. Generate a population of potential descendant solutions as follows. For every l -th potential 

solution: 

Perform   times. 

For each i -th center of the cluster: 

Generate a random number {1,2,..., }r n  and modify the r -th coordinate: 

2
( (0, ))

9

tl tl

ir irC C N


  , where 
2

( (0, ))
9

N


 is a normally distributed random number 

with zero mathematical expectation and variance 
2

9
. 

If 0tl

irC  , then 1tl tl

ir irC C  . 

If 1tl

irC  , then 1tl tl

ir irC C  . 

This means that the descendant solution will differ from the parent solution by one   

coordinate. Write the descendant solution in the intermediate population PC . 

Step 6. Calculate function (4) for all descendant solutions from PC . 

Step 7. Combine t pC C  and arrange potential solutions in descending order of the objective 

function (4). 

Step 8. 1t t  . Build a population tC  from the best   population solutions 1t pC C  .  

Step 9. If the stop condition is not carry out, go to step 3. 
Step 10. Output of the result (the centers of clusters). 

As is known, evolutionary strategy is a method of global optimization, implemented, as a rule, by 

a population algorithm. Unlike other evolutionary modeling algorithms, the evolutionary strategy does 
not use binary coding or other types of coding. At the beginning of the algorithm, a population of 

potential solutions (cluster centers) is generated. 

If there are three clusters, then we generate, for example, 20 triplets of cluster centers. For each 

such triple, we find the points that belong to the corresponding cluster and calculate the values of the 
objective function. Then we store these triplets and the values of the function in the intermediate 

population. Next, for each triple, we generate triplets-offsprings using the normal distribution on the 

principle that the point of the initial triangle is subject to modification, and the modified points form 
new triplets. 

According to the authors of the evolutionary strategy [10], to ensure population diversity and the 

optimal number of computational procedures, the number of solutions-offsprings must refer to the 

number of solutions-parents at least 7 to 1. 
Thus, for example, for 20 initial triplets should be at least than 140 modified triplets-offsprings. 

For these 140 triplets, the values of the objective function are also calculated and the corresponding 

data are also entered into the intermediate population. Thus, in the intermediate population there are 
160 triplets and values of the objective function. Arrange these 160 triplets according to the values of 

the objective function. The first 20 triplets will be written in another intermediate population and will 

be considered as 60 separate points.  
Next, we randomly form 20 triplets and the computational process is iteratively repeated until the 

stop criterion is met. Note that in the proposed method we use the well-known 3-sigma rule, which 
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determines the value of the standard deviation of the points-offsprings from the parent points, which 
significantly affects the depth of the study neighborhood the parent solution and the rate of 

convergence of the algorithm. 

4. Clustering on the Base of Genetic Algorithm 

Genetic algorithm as well as evolutionary strategy under certain conditions is a method of global 
optimization. That is why its elements can be used to solve the problem of clustering. Consider the 

appropriate method. Assume that the points to be broken lie in a rectangular hyperparallelepiped of n

-dimensional space. Find the rationing, all points will be in a single hypercube [0,1]n . The 

coordinates of the points form a matrix X  (see above), their number is m . Assume that the number 

of clusters is K . The solution of problem (1) - (4) will be the vector of cluster centers 
* * * *

1 2( , ,..., )KC C C C . The search for the vector *C  is organized according to the following algorithm. 

Step 1. 0t   (iteration number). Initialization of method parameters n , m , K . 

Step 2. Generate uniform distributed in [0,1]n points (potential centers of clusters) 

1 2( , ,..., ),lC C C C K l m   , 

1 2( , ,..., ), 1,
j j jj nC C C C j l  . 

Step 3. From the elements of the matrix C form matrix 

1 2

1 2

1 2

1 1 1

2 2 2

k

k

k

i i i

i i i

t

q q q

i i i

C C C

C C C
P

C C C

 
 
 

  
 
 
 

, 

where q  is the number of K -gons, and none of the K -gons coincides with the other, that is 

! , :
j j

v w

j i ii v w C C   . 

Step 4. For each K -gon find the distance from it to each point to be assigned to the cluster, that is 
calculate the distance  

1 2

1 2
( , ) (( , , , ),( , , )) 1, , 1,n

j j j j n

vv vv

i l i i i l l ld C x d C C C x x x j k l m      . 

0qF  . 

Крок 5. For each object to be clustered, we find the center of the cluster, the distance to which is the 

smallest: 
*

min ( , )
j j

v v

i i l
j

С d C x , 

*

( , )
j

v

q q i lF F d C x  . 

Step 6. Arrange K -gons by the value of the function qF  in ascending order. The vertices of the best 

K -gons are entered in the intermediate population tG .  

Step 7. Next, we perform the usual crossover operations on them by panmixing, inbreeding or 

outbreeding. 

Step 8. Perform a mutation operation. 

Step 9. If the stop condition is not met, then 1t t   and go to step 3. Otherwise, display the centers 

of the clusters and calculate to which cluster the objects belong. 
Stop criteria can be one of the following conditions: 

1. Achieving a certain predetermined number of iterations. 

2. The increment of the objective function on adjacent iterations does not exceed a small 
predetermined number. 
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When applying the elements of the genetic algorithm, it is necessary to take into account the fact 
that its convergence to the global optimum is not guaranteed, not least because, in the general case, 

the condition of continuity in the transition from integers to binary numbers is not met. In particular, 

for example, the numbers 15 and 16 differ by one, and their binary counterparts 01111 and 10000 

differ as much as possible. In order to ensure the continuity of calculations, it is proposed to use the 
Gray code. Its advantage is the ease of obtaining from the usual binary representation and ensuring the 

continuity of the computational process. 

5. Clustering on the Base of Method of Deformed Stars. Type 1 

Another evolutionary method that can be used to solve the clustering problem is the method of 
deformed stars, which was previously proposed by the author in [19, 20]. In this paper, the simplest 

case was considered when the solution space was one or two-dimensional, and the stars were in the 

form of a segment or a triangle. Further, the method was improved [19]; in the two-dimensional case, 
a generalization was obtained for quadrangles and pentagons. And, finally, in [20], a universal method 

of deformed stars was obtained for solving the global optimization problem in the n-dimensional case. 

The main ideas of the method are that the analysis of the set of potential solutions provides more 
information about finding the global optimum of a certain functional dependence, and various 

deformations of polygons that form potential solutions allow exploring the area of probable global 

optimum. Similar ideas can be used to solve the clustering problem, because it has an objective 

function, the minimum of which must be found, and objects that are points in n -dimensional space. 

The illustration of the method of deformed stars for the clustering problem is given in Fig.1 and 

Fig.2. The first figure shows two-point stars that can rotate, stretch, or compress in two-dimensional 
space, thus approaching the real centers of the two clusters. If it is assumed that there will be three 

clusters, then the stars will be triangles. The transformations over them will be shown below. 

 

Figure 1:  Two-point stars                                                  Figure 2:  Three-point stars        
 

Remind that the objects to be clustered are the points in the hypercube [0,1]n  in the n -

dimensional space. Then the steps of the method will be as follows: 

Step 1. Determine the size of the sample population of potential solutions (cluster centers) m . 

Usually, {20,21,...50}m . 0t  . 

Step 2. Generate a population of potential solutions 
1 2

{ , ..., },
m

tP x x x 1 2{ , ,..., }, 1,i i i inX x x x i m


  . 

Step 3. Randomly form k  triangles whose vertices are potential solutions. Note that one vertex can 

belong to several triangles, k m . 

Step 4. For each j -triangle: 
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Step 4.1. Find the value of the objective function 
jF . 

Step 4.2. For each l -th vertex ( 1,3l  ) we rotate the l -th vertex, form new points: 

cos sin ,

sin cos ,

, ,

jl l l l l

jl l l l l

jl l

x x x

x x x

x x

  

  

 

 

 

  

 

 

 

 

Step 4.3. For a triangle composed of new points, we find the value of the objective function 
jG . 

Step 4.4. For each l -th vertex of the initial triangle we play a uniformly distributed number 

(0,1)  . Also, let us play a number {1,2,..., }n   and a random number { 1;1}  . The new 

vertex will be as follows: 

11 2( , ,..., , ,..., )n
l l l ll lx x x x x x      . 

Step 4.5. For a triangle formed from new vertices, we find the value of the objective function
jH . 

Step 5. 1t t  . The points of the triangle to which corresponds max{ , , }j j jF G H  are entered in 

the population 
tP . If j n , then 1j j   , and go to step 4. 

Step 6. If the stop condition is not carry out, go to step 3.  
Step 7. The end of the algorithm. 

The peculiarity of this algorithm is that it is not necessary to look for the centers of polygons in 
n-dimensional spaces, in contrast to the classical algorithm MODS [16]. For simplification, the 

rotations of the points are made relative to the coordinates center in a randomly selected plane. The 

operations of stretching and compressing the vertices of the polygon to simplify the algorithm are also 
performed on one randomly determined spatial coordinate. The proposed algorithm is a global 

optimization algorithm, because in this case there is a probabilistic convergence with the number of 

iterations, which goes to infinity. A necessary condition for such convergence is the elite selection of 

elements of the population of potential solutions-offsprings. 

6. Clustering on the Base of Method of Deformed Stars. Type 2 

The method of deformed stars can be a basic algorithm for solving a wide range of optimization 

problems, one of which is clustering. In addition, the method of deformed stars is a parametric method 

that allows wide variational possibilities for creating new elements of the method and their 
optimization. In particular, in the proposed clustering method, triangles whose vertices are the centers 

of the clusters are randomly generated. For the  n -dimensional case, n -triangles are considered. The 

operation of mutation is to create descendant triangles, the vertices of which are the midpoints of the 

segments that connect the nearest points of the three triangles. These points will form an intermediate 

population. The population of descendants is formed from the points of the initial population and the 
points of the intermediate population, but those that correspond to the triangles with the best values of 

the objective function. 

Let us all preconditions of the method application are fulfilled. Steps 1, 2, 3 remain the same. 

Step 4. For each triangle we find the values of the objective function:
1 2, ,..., kF F F . 

Step 5. Perform 1k   times: 

Step 5.1. According to the principle of tournament selection (in proportion to the values 

1 2, ,..., kF F F ) to determine randomly , {1,2,..., },i j k i j  . 

Step 5.2. Mark the vertices of j -th triangle , ,j j jA B C . 

Step 5.3. Find the vertex closest to 
iA , that is, the vertex that corresponds 

min{ ( , ), ( , ), ( , )}i j i j i jd A A d A B d A C . Let us mark it as 
j j j jD A B C   . 

Step 5.4. Connect by the segments points 
iA  and 

jD , and find its middle: 

1 1 2 2

( , ,..., )
2 2 2

n ni ji j i j

l

a d a d a d
A

  
 , where 1 2( , ,..., )nii i

iA a a a  and 1 2( , ,..., )njj j

jD d d d . 
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Step 5.5. Find the vertex closest to 
iB , that is, the vertex that corresponds 

min{ ( , ), ( , ), ( , )}i j i j i jd B A d B B d B C , provided that this vertex is not a vertex 
jD . Let it be 

j j j jE A B C   , 
j jE D . Similarly, we find the middle of the segment that connects the 

points  
iB  and 

jE , let it be a point 
lB . 

Step 5.6. Two points left: 
iC  and 

jG . The middle of the corresponding segment will be 
lC . 

Step 5.7. Points , ,l l lA B C  are recorded in the population of the new generation. 

Step 6. Perform the generation of random three points ( , , )k k kA B C  in [0,1]n . Mutation. 

Step 7. 1t t  . 
1 1 1( , , ,..., , , )t k k kP A B C A B C . 

Step 8. If the stop condition is not carry out, go to step 3. 

Step 9. The end of the algorithm. 

The difference between the second method of clustering and the previous methods is that only 
one modification of the method of deformed stars is used. Such a modification is a special type of 

mutation operation. Mutation allows to simultaneously avoid hitting the local optimum and more 

deeply explore the environment of finding a potential optimum. This algorithm is easier to implement, 
its execution time is relatively short. 

 

7. Analysis of experimental results 

The proposed methods belong to the class of clustering methods based on the evolutionary 

paradigm. Its main idea is to gradual approximation the desired solution based on the development 

and movement of the population of potential solutions. Population development under certain 

conditions provides a variety of search and depth of research in a particular area. This search is slower 
than in other methods, but allows you to work with different, not necessarily differentiable objective 

functions, which will allow you to generalize them later to determine clusters of objects based on 

metrics other than Euclidean. 
We will conduct experiments and test the effectiveness of the proposed methods. To do this, 

consider a well-known sample of data on irises, which contains fields such as Petal Length and Widht, 

Sepal Length and Width, Classes Types. To illustrate the operation of clustering methods without 
general restrictions, we use only the data of the fields Petal Length and Widht. Another sample was 

randomly generated based on a uniform distribution. The number of elements in both samples is 150 

points. It is assumed that these data represent three clusters. 

The experiments were performed using the following clustering methods: K-means, Forel, CGA 
(clustering with use of the genetic algorithms elements), CES (clustering with use of the evolutionary 

strategy elements), and CMODS (clustering with use of the method of deformed stars elements). The 

algorithm stop criterion is a fixed number of iterations. The results of the calculations are recorded in 
Table 1 and Table 2. Data of Table 1 correspond to the objective function (1), Data of Table 2 

correspond to the objective function (3).  

Table 1 
Test results for the objective function of type (1) 

 Random points Irises 

 300 iter 1000 iter 2000 iter 1000 iter 2000 iter 
K-means 34.77 32.83 34.2 29.44 29.43 
Forel 46.02 47.17 44.6 33.81 33.33 
CGA 35.92 35.75 34.72 30.85 31.4 
CES 34.83 33.34 34.24 35.66 34.23 
CMODS 34.49 32.52 33.92 29.36 29.32 

The first experiment concerned randomly generated points (Fig. 3). The Forel method showed 

consistently the worst results. The best results are shown by CMODS, and these results are on average 
better by 0.86% than in the method of K-means, the results of which are in the second place. The 

number of iterations has a negligible effect on the accuracy of clustering, except for the CGA method, 



45 

 

where the value of the objective function decreases monotonically with the increasing number of 
iterations. For the Petal Length and Widht iris clustering experiment, there is a reverse trend for CGA. 

The results of the CMODS method remain the best. 

In another experiment (objective function (3)) it was necessary to minimize intracluster distances 

and maximize distances between cluster centers. For random points, as the number of iterations 
increases, the value of the objective function increases. The CMODS method demonstrates the best 

accuracy again. Methods based on other population algorithms show good results, but they are worse 

than the results of the K-mean method. It is worth noting that for problems with higher data 
dimensions, the results of evolutionary methods will show better results. 

Table 2 
Test results for the objective function of type (2) 

 Random points Irises 

 1000 iter 2000 iter 1000 iter 2000 iter 
K-means 32.11 33.34 27.11 27.11 
Forel 38.71 43.12 36.39 36.39 
CGA 32.49 35.07 28.89 28.98 
CES 31.26 33.64 32.36 31.15 
CMODS 30.92 33.07 27.06 26.79 

 
Figure 3:  Random points distribution  

 
Figure 4:  Irises data 
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Figure 5:  Fitness-function for random points 

 
Figure 6:  Fitness-function for irises 

 
8. Conclusions and prospects 

The obtained results testify to the prospects of development, research, and progress of 

evolutionary optimization technologies in general and their application to solve the clustering 

problem. Such methods are of particular value when the objective clustering function is complex, 
possibly with a polyextreme dependence, and the characteristic space of objects or systems is 

multidimensional. 

It is worth paying attention to the method of deformed stars, which has demonstrated its 

advantages in most experiments. Such results can be explained by the fact that when searching for the 
optimal location of clusters, information from a certain number of points at the same time is taken into 

account. In methods based on elements of a genetic algorithm or evolutionary strategy, such 

information is insufficient. In particular, in a genetic algorithm, each potential solution contains 
information about two parental solutions, and in an evolutionary strategy, each solution contains 

information about only one parental solution. Note that in MODS the amount of information in the 

system is determined by the shape of the star, and the more vertices it has, the more information there 
is. At the same time, computation time increases. That is why the qualification of the researcher plays 
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a decisive role in solving the problems of clustering using the ideas of evolutionary population 
algorithms. The proposed methods require modification and can be used in clustering problems, when 

the degree of reliability of objects or systems is not only the distance between them but also, for 

example, functional dependence. 
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