
A Template-Based Mechanism for Dynamic Service Composition Based on
Context Prediction in Ubicomp Applications

Ángel Jiménez Molina, Hyung-Min Koo, In-Young Ko

 Information and Communications University, 119 Munji-Ro, Yuseong-Gu, Daejeon, Korea
{ajimenez, hyungminkoo, iko}@icu.ac.kr

Abstract

In ubiquitous computing environments, an application
describes a task that needs to be performed to satisfy a
high-level user’s goal. When an application is
executed it is important to understand the context of
the user and his/her surrounding environment, in order
to dynamically instantiate a task by using available
services. This task-instantiation process faces the
problem of complexity in choosing appropriate
services for a task. In order to improve the
performance of dynamically choosing and binding
services, in this paper we propose a template-based
mechanism to dynamically select and compose services
according to the context information predicted in
advance. This mechanism ensures continuous service
provision, service conflict prediction and resolution,
and dynamic reconfiguration of services. To make use
of predicted context, our mechanism provides the
following capabilities: (1) task-based context
prediction, (2) template-based task execution and (3)
pattern-based service composition. We developed a
task-oriented architecture to support these capabilities.
Our dynamic service composition mechanism
contributes to improve the reusability, flexibility and
dynamism of ubiquitous computing applications.

Keywords: Ubiquitous computing, context prediction, context
awareness, task-oriented computing, architecture-driven
systems.

1. Introduction

Ubiquitous computing (ubicomp) is a forward state
of distributed systems (DS) and mobile computing
(MC). Some of the supporting technologies (embedded
devices, components services, communications
capabilities and others) in ubicomp correspond to those
in DS and MC (Satyanarayanan, 2001) [13]. The
difference is that ubicomp is user-centric. That is, such
ubicomp applications (UCAs) must satisfy users’ goals,

which are usually represented in tasks [18]. In order to
satisfy tasks, UCAs need to gather users’ goals and
context information [11] through embedded devices
and others.

Context information corresponds to the user’s state
and his/her space [14]. For instance, physical location,
emotional state, physiological state, daily recurrent
activities, users’ profile, or the room temperature, light
and humidity, network bandwidth, etc. When an UCA
is executed, it is important to understand and interpret
the context information, and based on it, execute
adequate services to satisfy high-level users’ tasks.
Services that meet tasks may come from multiple
heterogeneous computing resources, which are usually
connected by the means of a middleware infrastructure.
This infrastructure dynamically instantiates tasks into
available services, which need to be conveniently
configured, initialized and composed [1], [4], [17],
[15].

The task-instantiation process must occurs with the
minimum delay from the UCA identifies the task until
its satisfaction. In this sense, our work strives to
incorporate proactivity into the UCA. In a proactive
system, the state at time t depends on the current, past
and predicted future states [12]. As was explained
before, the state of the user and his/her space
corresponds to the context information. Thus, our idea
is to provide to the UCA not only with the current
context information, but also with predicted context [cf.
12]. In order to enable the UCA to proactively deliver
services, this predicted context need to be of high-level.
In Ubicomp, high-level context is represented in tasks.

A proactive as well as a reactive task-instantiation
process faces the problem of complexity in selecting
appropriate services for a task. This complexity can be
reduced by improving the performance of dynamically
selecting and binding services. In this sense, we
propose a template-based mechanism to dynamically
select and compose services according to the context
information predicted in advance. This mechanism
ensures continuous service provision, service conflict

International Workshop on Intelligent Web Based Tools (IWBT-07) in conjunction with 19th IEEE ICTAI-07 1

prediction and resolution, and dynamic reconfiguration
of services. Our dynamic service composition
mechanism provides three major capabilities: (1) task-
based context prediction –making use of the work of
Mayrhofer et al. [12]-, (2) template-based task
execution and (3) pattern-based service composition.
The organization of those capabilities results in a task-
oriented architecture.

Our solution contributes to improve the reusability,
flexibility and dynamism of UCAs. In fact, templates
and patterns can be reused for others UCAs, which can
be made by composing patterns. That is, patterns can
be composed dynamically to meet dynamically-
changed user’s tasks. Current ubicomp frameworks do
not provide such template and patterns reusability.

The rest of the paper is organized as follow. In
section 2 we introduce the related work in ubicomp and
context prediction. Section 3 provides a brief
explanation of task-oriented applications execution and
the design of our task-oriented architecture. Section 4
provides the dynamic template-based service
composition mechanism. In Section 5 we describe a
sample scenario for our service composition
mechanism. In section 6 we evaluate our mechanism.
Finally, we draw a conclusion and explain future work
in section 7.

2. Related Work

Ubicomp is an active research issue. In fact, several
abstract frameworks have been proposed to develop
UCAs that use context information. However, in
relation to our work, can be mentioned those that use
historical data. In that category we can find examples
like CASS [7], CoBra [6], Context Toolkit [2],
CORTEX [4], Gaia [8], SOCAM [9], etc. However,
none of them provide a proactive way of selecting and
binding services. The Aura project [18] has works
related to computing resource prediction during run-
time. The goal of this prediction is to maximize users’
utility allocating resources to UCAs based on an
instantaneous evaluation of configuration. However
this work does not consider high level context
prediction, which corresponds to the task desired by the
user, inferred from the user’s state and his/her space.

There exist some works related with predicting
high-level context from user behavior, which, for
instance, have been addresses by Mayrhofer et al. in
[12]. In fact, in this work, user behavior in several
domains can be gathered and analyzed in order to
predict future user context from historical data,
delivering proactive services to the user. This
prediction depends on the current and future state of

the environment and UCA context, which is captured
for suitable sensors.

According to [12], one of the most important
constraints in future context is that its capture and
prediction have to be during run-time, in order to
ensure that running applications do not stop and
continuously provide services to the user. On the other
hand, the system also might provide prediction of the
available resources, such as network bandwidth or
memory space [18]. Unfortunately, usually there are
not enough log data for analyzing it offline, such as in
knowledge discovery in databases approach. Therefore,
our approach is based on providing future context
prediction during run-time.

An architecture for context prediction has been
introduced in the work of Mayrhofer et al., which can
be implemented making use of specific type of sensors,
classification algorithms and forecast techniques. In
order to achieve their goals, the authors propose the use
of classification algorithms, which can determine which
action is the closest to the current situation in order to
proactively prepare a future task execution.

In short, in order to forecast context to improve the
task plan generation and deliver proactive services to
the user during run-time, it is possible to process and
classify gathered raw sensor data of a current state,
enabling the prediction of future context based on this
historical data.

2.1 Context Prediction Model

This section introduces the context prediction
model to be used as part of our dynamic template-
based service composition mechanism. As was stated in
the second section, this model is based on the work of
Mayrhofer et al. in [12]; however, in this paper is
provided our own interpretation of the model.

 The first definition for the context prediction model
corresponds to “internal context” of the UCA at time t,
which is established, based on the sensor data. Internal
context depends on the current context, the last context
and the input value at time t-1. The model output at
time t depends on this internal context and on predicted
future contexts. Future contexts are predicted

International Workshop on Intelligent Web Based Tools (IWBT-07) in conjunction with 19th IEEE ICTAI-07 2

recursively making use of suitable algorithms, such as
clustering, neural networks, time series techniques, etc.
[12]. The complete process considers the following
steps:

 Sensor data acquisition: raw sensor data gathered
at time t, defines a sensor vector s in the sensor
space S, with (s1 x s2 x …..x sL)t S1 x S2 x …..x
SL, which dimension is adjusted to the nature of
the sensor measurement (brightness, audio,
temperature, etc.)

 Feature extraction: the sensor vector s is
transformed into the feature space F, contracting or
expanding it in order to better interpretation and
computation management. S F. The new vector
f in F is called feature vector, with (f1 x f2 x …..x
fn)t F1 x F2 x …..x Fn . For instance the sensor
vector can be scaled to the interval [0,1].

 Classification: the context predictor finds out
common patterns in the feature space, defining
clusters. In this sense, the feature vector in F is
assigned to one cluster c, or multiple clusters with
different degree of membership, in the space C,
with (c1 x c2 x …..x cm)t C1 x C2 x …..x Cm. The
classes {ci} constitute the detected context in the
space C.

 Labeling: in this step each class is assigned to
predetermined strings in N that denote descriptive
names. These descriptive names are defined
according to the current space features. In this
sense, C1 x C2 x …..x Cm N. A context label nt
N describes the current context at time t.

Fig. 1 Context Prediction Model

 Predicition: It is defined the future class vector (c1
x c2 x …..x cm)s = p((c1 x c2 x …..x cm)t , t, s), whit
(s > t) and p an iterative process. The results are

the future classes in s, based on time t, which is the
predicted context.

3. Tasks-Oriented Architecture

Task-driven computing enables the UCA to access
explicit computing tasks and task context, automatic
service configuration and composition, manage
computing resources constraints and dynamic services.
In this sense, the benefits to users are that they can
accomplish high-level tasks with transparency of low-
level configuration activities (manual configuration of
single devices such as desktop computers, laptops,
PDAs, or manual transference of users; state among
those devices, or mapping of their tasks by themselves)

In this paper, a task is defined as a set of actions
organized in a sequential or parallel way. An action is a
high-level function defined according to the user’s
perspective. In this sense, a task attempts to formally
and explicitly represent high-level user’s goals, such as
preparing a presentation, taking a rest, editing a
document in the airport, meeting scheduling, etc.

In real world, users require to move from one to
another task or to continue performing a specific one.
In short, it is task transition and task continuity
respectively. In fact, given an interruption of a task, the
system has to be able to realize when the user attempts
to retake it, providing continuity in the same or another
space. In addition, task transition is verified when users
require to change from one to another task.

The organization of these actions constitutes a task
plan, which involves a generation effort to the UCA
that can be reduced. In fact, making use of high-level
predicted context, can be determined a future action of
other task, that switch with the current action in a given
task. Actually, can be determined several different
tasks that match with the current action. Therefore, in
order to reduce the efforts to generate the task plan,
there exists the need of a mechanism to decide between
the set of predicted future tasks. However, it is not in
the focus of this paper.

As is noted in this paper, there is a benefit utilizing
the capability of context prediction in order to
dynamically compose services in advance. In addition,
this goal is pursued through two more capabilities
provided by this paper: template-based task execution
and pattern-based service composition. These
capabilities are organized in a task-based architecture.

The fundamental definitions provided in this paper
to design the task-oriented architecture are: application
template and service composition pattern. In fact:

i. Application template: a determined and

Sensor
Data 1

Sensor
Data 2

Sensor
Data 3

Sensor
Data n

C1

C2

Cm

! Exercising

! Taking a rest

! Taskt

! Taskt + "

! Feature extraction ! Classification ! Labeling ! Prediction

Sensor
Data 1

Sensor
Data 2

Sensor
Data 3

Sensor
Data n

C1

C2

Cm

! Exercising

! Taking a rest

! Taskt

! Taskt + "

! Feature extraction ! Classification ! Labeling ! Prediction

International Workshop on Intelligent Web Based Tools (IWBT-07) in conjunction with 19th IEEE ICTAI-07 3

descriptive way to organize actions in a suitable
sequence (sequential or parallel)

ii. Service composition pattern: a configuration or

set of high-level abstract services or functions that
are to perform actions.

In order to provide the required task-based

architecture, let’s consider the following overall
structure composed of its core elements. Main elements
of our architecture are as follow (see figure 2):

i. Context Manager: it receives low-level raw sensor

data and performs high-level task context
prediction, making use of the context predictor
element. In addition, given the predicted task, an
application template is selected from the
repository through the application template broker.

ii. Reconfiguration Manager: it deploys service

composition patterns and makes a consolidated
service composition pattern (for service conflict
prediction and resolution)

iii. Service Composition Pattern Broker: it searches

appropriate service composition patterns to
support actions in application template.

iv. Distributed repositories: they store application

templates and service composition patterns in
distributed environment. In addition, it provides a
way to search appropriate application templates
and service composition patterns from distributed
repositories.

v. Application Composition Tool: this tool supports

developers for developing, registering into the
repositories and simulating application templates
and service composition patterns.

The context manager acts given a current task.

Indeed, its components are the context predictor and
the application template broker. The context predictor
is in charge of determining proactively the next task to
be executed, based on the raw sensor data gathered by
the devices, and the historical information keeps into
the context base repository. The context base
repository holds high-level and low-level information.
Regarding to high-level information are the tasks,
actions and required quality attributes of them. This
information must be determined in advance and is part
of design work. Indeed, this repository stores the
history of switched tasks. Regarding to low-level

information, it is stored current and historical raw
sensor data. A deep description of the context base
repository can be done through an ontology description
model, but it is not in the scope of this paper. The
application template broker gets the predicted task
from the application template repository.

The reconfiguration manager contains the service
composition pattern broker, which gets the service
composition patterns from the service composition
pattern repository.

The requesting of services is done by the service
discovery, which interacts with the service repository.
There are several protocols that can be used in our
task-based architecture to accomplish the service
discovery process, such as UPnP, Jini, Salutation,
Service Location Protocol, Group-based Service
Discovery, etc. In all these protocols, service providers
make an advertisement of their services description and
attributes, following broadcast, unicast or multicast
strategies. For instance, in Jini each service provider
finds out a lookup service to inform its service object
and service attribute. Then, a client requests a service
downloading the mobile code of the service object.
This service object is used by the client to invoke the
actual service from the service provider [19]. In this
example the lookup service is like a directory
repository that in ubicomp environments is usually
distributed.

Fig. 2 Overall Task-Oriented Architecture.

4. Dynamic Template-Based Service
Composition Mechanism

In this section, we describe our proposed service
composition mechanism, to improve the performance
of dynamically selecting and binding available services
according to the context information predicted in
advance, reducing the complexity of this process. This

International Workshop on Intelligent Web Based Tools (IWBT-07) in conjunction with 19th IEEE ICTAI-07 4

mechanism makes use of our introduced application
template and service composition pattern definitions.

The mechanism has as input low-level raw sensor
data that generate the current task context (state).
Consequently, it predicts during run-time the context
determining next tasks that have to be performed,
enabling to UCA proactively configure, initialize and
compose accessible services in advance. In this sense,
proactivity ensures that the task-instantiation process is
verified with the minimum delay from the UCA
identifies the task until the delivery of services to the
user.

As is shown in the figure 3, the mechanism
introduced in this paper, begins with high-level user’s
goals represented in tasks. Given a task, the mechanism
considers a medium-level represented in actions. For
each action are selected a set of service composition
patterns, and finally several actual services to satisfy
the user’s goal and execute the task.

Therefore, our dynamic template-based service
composition mechanism considers applying the
following steps:

 The context predictor receives low-level raw

sensor data gathered from physical sensors. Indeed
the context predictor selects historical raw sensor
data and high-level information from the context
base repository.

 The context predictor makes use of the task
context prediction model introduced in the section
two and forecast the next tasks.

 Given the predicted task1 , the context predictor
communicates the task features to the application
template broker, element that is in charge of gather
in advance an adequate predetermined task from
the application template repository. In advance
means before the task is actually required to be
executed by the UCA.

 Once selected the adequate task that match well
with the predicted one’s features, the application
template broker gets the set of actions that
conform the task and that will be necessary to map
to service composition patterns.

 For each action, the service composition pattern
broker must search service composition patterns
into the service composition pattern repository.

 Given the service composition pattern, the service
discovery requests actual services from the service
repository or other distributed repositories. The
searching trials into the service repository are
delimited by the required functionality contained
in each given service composition pattern.

 The actual services are bounded and executed to
perform the service composition pattern, and
consequently perform task actions.

Fig. 3 Dynamic Template-Based Service Composition

Mechanism.

Our proposed mechanism can be described in
pseudocode as depicted in figure 4.

5. Sample Scenario

In this section, we describe a simple scenario of

using the service composition mechanism. This
scenario shows how the UCA makes use of predicted
context to compose in advance the services that are
required for a future task. The involved tasks are:
“exercising” task and “taking a rest” task in a home
space. We assume that there is one user at home, and
that user’s hobby is exercising.
i. John comes to home from his job.

ii. John changes his suit to training cloths, and then
context manager finds out that John wants to
exercise and select the “exercising” task.

iii. The application template for exercising is selected
and prepared for execution.

iv. John goes to the area where the exercising

International Workshop on Intelligent Web Based Tools (IWBT-07) in conjunction with 19th IEEE ICTAI-07 5

machines are.
v. The application template for exercising is activated

by the reconfiguration manager.
vi. Actions (e.g. “making the room cooler”, “making

the exercising machines available”) and services
(e.g. “open the windows”, “turn on the running
machine”) are executed.

vii. During the exercising, the context manager
collects sensor data (e.g. temperature of John’s
body and the room, passed time of exercising,
burnt calories of user).

viii. The context manager predicts that the user will
take a rest after exercising and select “taking a
rest” task. Then the application template for
“taking a rest” is selected.

ix. When John finishes his exercises, the application
template for taking a rest is activated and actions
(e.g. “making room darker”, “making room quiet”)
and services (e.g. “make lights darker”, “make AV
devices quiet”) are executed (See figure 5)

Fig. 4 Pseudocode of the Dynamic Template-Based

Service Composition Mechanism.

Application templates and service composition
patterns are described making use of ACME
architecture description language, as preliminary
depicted in figure 6.

6. Evaluation

Main feature of our mechanism includes the high-
level abstract representation of actual services into
service composition patterns, which reduces the
necessary searching trials into the set of primitive
services. Therefore, this mechanism reduces the
complexity of selecting suitable services for a task, and
improves the required process. As this abstract
representation is linked with the user’s goals through
the reusable application templates, which are not
present in other popular ubicomp frameworks such as
Aura [18], it inherits the required functionality from a
high-level user’s perspective. Therefore, our task-
oriented architecture and template-based mechanism
constitute a topological optimization to enable the
dynamic service composition process to reduce its
inherent complexity. The Following features are
implied from our dynamic template-based service
composition:

i. High-level abstract service composition: services
can be composed based on user-perspectives,
rather than system-perspectives.

ii. Dynamic reconfiguration of services: services
and their composition can be dynamically
reconfigurable based on changes of available
services and environment conditions.

iii. Continuous Service Provision: predicted context
enables the UCA to prepare the execution of tasks
in advance. It reduces interruptions to service
provision, which is performed without a hitch.

Fig. 5 Taking a Rest Task.

//Given a current task
Gather_Sensor_Data () {

s := sensor_vector;
}
Gather_context_repository_information ()

hi := historical_information;
}
Context_prediction (s, hi) {
 Feature_extraction () {

f := feature vector;
 }
 Classification (f) {
 ci := classi; //Detected user context
 }

Labeling (ci) {
 nt := contextt; //Predefined context names
}
Prediction (nt);

}
Get_task_application_template_repository
(predicted_task); //Application template broker
Get_actions (task); //Application template broker
For each actioni {

Get_service_composition_patterns_repository
(actioni); //Service composition pattern broker

 For each service_composition_patternsj {
Get_actual_services
(service_composition_patternsj);
//Service discovery

 }
}
Execute_actual_services (actual_servicek)

International Workshop on Intelligent Web Based Tools (IWBT-07) in conjunction with 19th IEEE ICTAI-07 6

iv. Service conflict prediction and resolution:
conflicts can be detected and resolved by using
high-level abstraction mechanism, before
executions of actual services. It enables the UCA
to improve the use of its limited resources.

We are currently working in the implementation of
a prototype of our task-oriented architecture to perform
experiments in our test-bed [20]. We will evaluate the
performance of our service composition mechanism
through two specific metrics: number of service
provision interruptions and the required searching trials
of actual services in long term execution. By the means
of the first metric, it is possible to perform a binary
evaluation of the service provision continuity. The
second metric is a way to evaluate the reduction of
complexity in searching suitable services to execute a
given task, and in switching them.

7. Conclusion

In this paper we provide a task-oriented architecture
and a template-based mechanism for dynamic service
composition in UCAs based on the predicted context.
We have introduced two key definitions considered in
our architecture and mechanism: application template
and service composition pattern. By the means of the
template-based mechanism, the UCA makes a
coordinated transition in advance between different
tasks based on predicted tasks, reducing the complexity
of the service composition.

Our solution contributes providing an improvement
of UCAs’ reusability. In fact, an application template
constitutes a reusable structure for a specific task, and
the service composition patterns can be reused for
other UCAs. In addition, there is an improvement of
flexibility that can be incorporated during design time.

Fig. 6 An example of Service Composition Patterns
Description Written in ACME

In fact, UCAs can be made by composing patterns,
and patterns can be used for many UCAs, rather than
considering composition of actual services.

Also our solution contributes with an improvement
of dynamism. Patterns can be composed dynamically to
meet dynamically-changed user’s goals and to deal
with dynamically-changed space conditions, based on
context information. Patterns provide units for dynamic
reconfiguration of UCAs during run-time, rather than
reconfiguration of real services. In addition, our task-
oriented architecture can provide user-perspective
services by using high-level patterns and services,
rather than system-perspectives. In this sense, there is a
separation of users’ concern from actual services.

Our future work considers the performance
evaluation of the proposed service composition
mechanism through two specific metrics: number of
service provision interruptions and the required
searching trials of actual services in long term
execution.

We are currently working on the problem of service
conflict prediction and resolution in an abstract level.
For instance, the application template “making the
room quiet” will require the service composition
pattern “making windows closed”. However, an
application template such “making the room cooler”,
will require the service composition pattern “making
windows opened”. In this sense the conflict should be
predicted and resolved through some mechanism, such
as providing alternative services, working with
priorities of services or performing negotiations
between services.

An interesting future work is related with executing
an off line context prediction. In this case it will be
necessary to design a way to detect common patterns
into tasks. These patterns can be deduced from the
historical data making use of clustering algorithms that
create groups of related information. Patterns can be
used in the future for a better reaction of UCAs. Also
patterns can be stored in a new repository accessible
from the context manager. Offline context prediction
would require incorporating into the context prediction
model, an additional steps such logging of the tasks
sequences into the repository.

Acknowledgments. This research is supported by the
ubiquitous computing and network (UCN) project, the
Ministry of Information and Communication (MIC)
21st Century Frontier R&D Program in Korea. The
authors would also like to thank Gonzalo Huerta
Canepa for his comments on the draft.

System making_the_room_quiet ={

Component Making_AV_Devices_quiet= {
Component AV_Services = {

ports send;
operations{AV_service.setVolmueLevel(2);}
properties {rdfsource : string = http://as.icu.ac.kr/services#av_services}}
Connector AudioRequest = { Role { request; response } }

Attachments {
…..

}
}

Component Making_cleaning_devices_off ={
operations{cleaningDevices.turnOff()}
properties {patternSource : string = http://as.icu.ac.kr/patterns#making_doors_cloased}

}

Component Making_doors_closed ={

operations{doors.close()}
properties {patternSource : string = “http://as.icu.ac.kr/patterns#making_doors_cloased”}

}

Component Making_windows_closed ={
operations{windows.close()}
properties {patternSource : string = “http://as.icu.ac.kr/patterns#making_windows_closed”}

}

}

International Workshop on Intelligent Web Based Tools (IWBT-07) in conjunction with 19th IEEE ICTAI-07 7

8. References

[1] A. Dey, S. Salber, M. Futakawa, G. Abowd. “An
Architecture to Support Context-Aware Applications”. GVU
Technical Report GIT-GVU-99-23, 1999.

[2] A. Dey. “Understanding and Using Context”. Personal
and Ubiquitous Computing, Vol 5, No 1, pp 4-7, 2001.

[3] Baldauf M., Dustdar S., Rosenberg F. “A Survey on
Context-Aware Systems”. International Journal of Ad Hoc
and Ubiquitous Computing, 2004.

[4] Biegel G, Cahill V. “A Framework for Developing
Mobile, Context-Aware Applications”. Trinity College
Dublin. In Proceedings of the 2nd IEEE Conference on
Pervasive Computing and Communication, 2004.

[5] Bradbury, J.; Cordy, J.; Dingel, J.; Wemelinger, M. “A
Survey of Self Management in Dynamic Software
Architecture Specifications”. Proc. Of the International
Workshop on Self-Managed Systems (WOSS’04), Newport
Beach, California, USA, October/November 2004.

[6] Chen, H. “An Intelligent Broker Architecture for
Pervasive Context-Aware Systems”. PhD thesis, University
of Maryland, Baltimore County, 2004.

[7] Fahy P; Clarke, S. “CASS a Middleware for Mobile
Context-Aware Applications”. In Workshop on Context
Awareness, MobiSys, 2004.

[8] Gaia Project. University of Illinois at Urbana-Champaign.
At gaia.cs.uiuc.edu

[9] Gu, T; Pung, H; Zhang, D. “A Middleware for Building
Context-Aware Mobile Services”. In Proceedings of IEEE
Vehicular Technology Conference (VTC 2004), Milan, Italy,
2004.

[10] Hnetynka, P.; Plasil, F. “Dynamic Reconfiguration and
Access to Services in Hierarchical Component Models”.
Department of Software Engineering, Faculty of
Mathematics and Physics, Charles University, Czech
Republic. Proceedings of CBSE, 2006.

[11] Moran T, Dourish P. “Introduction to Context-Aware
Computing”. IBM Almaden Research Center, University of

California, Irvine. Special Issue of Human Computer
Interaction. Volume 16, 2001.

[12] R Mayrhofer, H Radi, A Ferscha . “Recognizing and
Predicting Context by Learning from User Behavior“.
Institute for Pervasive Computing, Johannes Kepler
Universitat Linz; Proceedings of The International
Conference On Advances in Mobile Multimedia, Volume
171; September 2003.

[13] Satyanarayanan, M. “Pervasive computing: vision and
challenges“. Carnegie Mellon Univ., Pittsburgh, PA;
Personal Communications, IEEE, Volume 8; Aug 2001.

[14] Schilit B, Adams N, Want R. “Context-Aware
Computing Applications”. Procsof IEEE Workshop on
Mobile Computing Systems and Applications. 1994. Pages
85-90.

[15] Shang-Wen Cheng; Garlan, D; Schmerl, Sousa J;
Spitznagel, B; Steenkiste, P; Ningning Hu. “Software
Architecture-Based Adaptation for Pervasive Systems”.
Trends in Network and Pervasive Computing - ARCS 2002 :
International Conference on Architecture of Computing
Systems, Karlsruhe, Germany, April 8-12, 2002. Proceedings

[16] Tae Seung Ha; Ji Hong Jung; Sung Yong Oh. “Method
to Analyze User Behavior in Home Environment”. Graduate
School of Techno Design, Interaction Design Lab; Personal
and Ubiquitous Computing, Springer-Verlag London,
Volume 10, numbers 2-3; April 2006.

[17] Yu-Sik Park; In-Young Ko; Sooyong Park. “A Task-
based Approach to Generate Optimal Software-Architecture
for Intelligent Service Robots”. Information and
Communications University, Sogang University, Republic of
Korea, 2007.

[18] Z. Wang and D. Garlan. Task-Driven Computing.
Technical Report CMU-CS-00-154, School of Computer
Science, Carnegie Mellon University, May 2000.

[19] Jini Network Technology.
http://www.jini.org/wiki/Main_Page

[20] Group-aware Ubiquitous Computing Middleware
System. Information and Communications University.
http://as.icu.ac.kr/index.html

International Workshop on Intelligent Web Based Tools (IWBT-07) in conjunction with 19th IEEE ICTAI-07 8

