
Traversing Knowledge Graphs with
Good Old (and New) Joins

Paolo Atzeni1, Luigi Bellomarini2, Davide Benedetto1, and
Emanuel Sallinger3

1 Università Roma Tre
2 Banca d’Italia

3 TU Wien & University of Oxford

1 Introduction

Knowledge Graphs (KGs) provide a concise and intuitive abstraction for a variety
of domains where edges capture the (potentially recursive) relationships between
the entities [9]. This is leading to the rise of systems and tools able to facilitate
graph data modeling, processing and analysis, with prominent AI companies
developing core systems based on the property graph model [2].

In this context, Datalog-based languages are being re-discovered to be ductile
to accomplish reasoning tasks over complex property graphs as they provide the
essential elements to enable graph navigational operations [3].

The semantics of a Datalog program is usually specificed in an operational
way via the chase procedure [7]. It entails multiple nondeterministic choices
such as the rule application order and the fact binding order when multiple uni-
fication is possible [6]. In state-of-the-art reasoners, chase-based procedures are
not directly adopted, but encoded in the form of engineered variations of the
volcano iterator model [8] and so essentially within a pipe-and-filters architec-
ture, where nodes (filters) are relational algebra operators and edges (pipes) are
dependency connections between the rules. Such (potentially cyclic) structures,
known as access plans, need to be translated into reasoning plans, where abstract
relational algebra operators are transformed into specific project, select and join
implementations: many implementations of each operator exist and it is up to
the optimizer to choose the best one in terms of execution cost.

This paper focuses on cases where the Datalog reasoning process involves
a graph traversal task and investigates the connection between reasoning plans
and graph traversal strategies. We move from the observation that the nondeter-
ministic choices posed by the chase can be leveraged to control graph traversals
—allowing to alternate breadth-first and depth-first strategies— and study the
link of such choices with the reasoning plans. We conclude that in plans, specific
join implementations and rule prioritization policies reflect the nondeterministic
choices and exploit them to guide graph traversals in modern reasoners. Specif-
ically, we implement our results in the vadalog System [3], a state-of-the-art
knowledge graph management systems and conduct experimental evaluation.

Copyright c© 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).



2 P. Atzeni, L. Bellomarini, D. Benedetto, E. Sallinger

2 Knowledge Graphs

Let us start from some some preliminary notions. A KG can be defined as semi-
structured data model characterized by three components: (i) a ground exten-
sional component (EDB), i.e., a set of relational constructs for schema and data
which can be effectively modeled as a property graph; (ii) an intensional com-
ponent (IDB), i.e., a set of inference rules over the constructs of the ground
extensional component; (iii) a derived extensional component that can be pro-
duced as the result of the application of the inference rules over the ground
extensional component (with the so-called reasoning process) [4].

Reasoning in logic-based KGs substantiates in the application of rules (rep-
resenting the IDB) to the EDB, in order to generate the derived extensional
component by logical inference. This process is commonly known as forward
chaining [1], typically applied via chase-based procedures [7].

KGs are particularly suited for the representation of domains with many
interconnected entities: EDB is typically modeled as a property graph (PG),
while IDB encode the traversal logic. We adopt a relational representation of
EDBs and thus of PGs where nodes and edges are encoded as facts over relation
symbols that are specific to the domain of interest.

3 Traversing Knowledge Graphs

To uncover the relationship between reasoning plans and graph traversals in
Datalog, we can start with a basic st-connectivity scenario [11].4 For nodes B
and C of a directed graph, st-connectivity is the decision problem of establishing
whether C is reachable from B. Let us consider an example.

Example 1. The following set Σ of Datalog rules reasons on st-connectivity be-
tween Frankfurt and Zurich. EDB � contains facts of the form Linked(G, H),
expressing that a city H is directly reachable from G. The intensional predicate
Connected denotes connectivity.

Connected(x, y) : − Linked(x, y) (1)
Connected(x, z) : − Connected(x, y),Linked(y, z) (2)

> : − Connected(source, target), source = Frankfurt, target = Zurich (3)

Let us analyze how Datalog rules are applied, by considering the chase
procedure. The chase adds new facts to the source database � until the final
result Σ(�) satisfies all the rules of Σ. Initially Σ(�) = �. A unifier is a mapping
from variables to constants. We say that a rule d = i(Ḡ, H̄) → k(Ḡ) is applicable

4While specialized algorithms exist for st-connectivity [11], here we do not aim
at providing new heuristics for the problem, but at showing how Datalog evaluation
strategies materialize into different traversal algorithms.



Traversing Knowledge Graphs with Joins 3

to Σ(�) if there is a unifier \d such that i(Ḡ\d, H̄\d) ⊆ Σ(�) and and k(Ḡ\d)
does not belong to Σ(�). If d is applicable to Σ(�) with a unifier \d, then it
performs a chase step, i.e., it generates new facts k(Ḡ\ ′d) that are added to Σ(�),
where Ḡ\d = Ḡ\ ′d. The chase performs chase steps until no rule in Σ is applicable.

The chase poses two classes of nondeterministic choices: (i) for an applicable
rule, multiple possible unifiers can exist and, (ii) multiple rules can be applicable
at the same time. By handle we mean a mechanism by which a specific nonde-
terministic choice in the chase can be leveraged to control the resulting graph
traversal behaviour. We recognize two of them:

– unification anatomy, i.e., controlling the application order of logical unifiers;
– unification morphology, i.e., controlling the application order of rules.

The unification anatomy induces an implicit order on the bound facts and, in-
directly, the order of the EDB; choosing a specific applicable rule prioritizes the
application of base vs inductive cases. A combination of the two handles can be
used to define specific visits in the graph. Preferring inductive cases to base cases
gives rise to depth-first exploration; vice versa, prioritizing base cases produces
breadth-first ones. In depth-first traversals, nondeterministic choices of paths are
more relevant than in breadh-first and are taken by prioritizing unifiers.

The vadalog System does not directly adopt the chase procedure, but fol-
lows the architecture of traditional relational DBMSs, encoding Datalog rules
in terms of reasoning plans, where specific implementations of relational algebra
operators are considered —multiple join versions exist— and a set of so-called
routing strategies are used to decide on rule application priority. These two de-
grees of freedom allow to act on the anatomy/morphology handles: different
join implementations result in different unifiers being applied (anatomy) and
the routing strategy is an encoding of the unification morphology. This means
that graph traversal strategies in vadalog can be controlled by choosing rout-
ing strategies and join implementations, opening the way to the development
of graph-based optimizers that compile execution plans into reasoning plans on
the basis of specific cost-based heuristics evaluated against the EDB (defining
the structure of the graph) and the IDB (encoding the specific problem to be
solved). For instance, for our st-connectivity instance, a hybrid depth-/breadth-
first approach would pay off, by first optimistically trying multiple direct and
deep connectivity paths (even driven by some heuristics, in more sophisticated
settings) and eventually resorting to breadth-first search in case of failure.

vadalog offers multiple routing strategies, e.g., round-robin (RR) and EDB-
first, and join implementations, e.g., the standard nested-loop join (NLJ) and
depth-search join (DSJ), an original implementation we present in this work,
specifically devised for depth-first traversals. It is intuitive to understand how a
combination of RR and NLJ can be used to simulate general purpose breadth-
first traversals. In the next section we briefly describe DSJ, which addresses
depth-first exploration.



4 P. Atzeni, L. Bellomarini, D. Benedetto, E. Sallinger

Algorithm 1: Depth-search Join
1 static LSTACK, static RCUR; match = false;
2 L, RCUR_POS = LSTACK.pop(); ⊲ Skip visited tuples (cycle avoidance)
3 R = RCUR[RCUR_POS]; ⊲ Position is 0 by default
4 while !match do
5 match = tryJoin(L,R);
6 while !match and RCUR_POS<length(RCUR)-1 do
7 RCUR_POS++;
8 R = RCUR[RCUR_POS];
9 match = tryJoin(L,R);

10 if !match then
11 L, RCUR_POS = LSTACK.pop();
12 RCUR.pos(RCUR_POS);

13 else
14 LSTACK.push((L,RCUR_POS+1));
15 LSTACK.push((join(L,R),0));

16 return match;

4 Depth-search Join

Depth-search join is a join algorithm specifically designed to support recursive
Datalog rules. Indeed, graph traversal is typically expressed by means of left-
or right-recursive rules. For the sake of simplicity and w.l.o.g. here we consider
left recursion (e.g., Rule (2) in Example 1). The key idea of DSJ is prioritizing
the unification of facts generated by recursive cases over those originating from
the base cases. For instance, w.r.t. our example, given a set of possible unifiers
for Connected (G, H), Linked (H, I), the ones that bind Connected (G, H) to facts
deriving from many applications of Rule (2) take priority over those generated
by fewer applications. The rationale is that each activation of Rule (2) applies a
depth-first traversal step from which the next activations of Rule (2) must take
on. Conversely, NLJ would entail a breadth-first behaviour, exploring all direct
connections for each single binding of Connected (G, H).

Algorithm 1 is the pseudocode of the implementation in the vadalog System
of DSJ. We consider binary joins and initialize a stack LSTACK and a cursor
RCUR, holding the left-hand and right-hand side join operands, respectively.
Each element of LSTACK is a pair composed of a left-hand fact and the last
right-hand fact that has been considered in the join; RCUR is assumed to support
absolute positions (basically acting as a map or a dictionary).

At the basis of the algorithm, there is the idea of modifying the standard NLJ
by introducing a stack to induce the depth-first behaviour. In particular, facts
resulting from successful joins (tryJoin() primitive) are pushed into the stack
(line 15) and popped (lines 2 and 11) so as to take priority over other elements
of the left-hand operand. Backtracking is performed by saving and resuming
left-hand positions from LSTACK (line 14). The outer loop evaluates the join
between left-hand fact (L) and right-hand fact (R) (lines 5-6); the inner loop



Traversing Knowledge Graphs with Joins 5

scans the right-hand table until a match is found (lines 6-9); if the join condition
is not satisfied, next L is considered (line 10-12), else the current join status
is pushed into LSTACK to be resumed. The algorithm returns a Boolean value
representing the availability of join tuples, in a streaming fashion so that calling
filters in the pipeline can fetch the respective tuples, whenever true is returned.

Observe that in general, infinite cyclic invocations are avoided by the pop()
primitive, which is customized to skip the already visited facts with a marking
mechanism that in vadalog is known as termination strategy [5].

5 Experiments

We compared NLJ and DSJ in the vadalog System in st-connectivity scenarios
with different KGs to highlight graph traversal strategies. The three scenarios
present different graph size and density configurations, that we chose to analyze
the peculiarities of the two algorithms.

Test configuration. We invoked vadalog via its REST interface and used
CSV data to make tests independent of host-side optimizations. We ran each
experiment ten times, averaging the elapsed times. We used a cloud instance
of the vadalog System, running in a Linux machine with Ubuntu 18.04.4 LTS
with 16 cores and 126 GB of RAM. The reasoning tasks are executed without
any use of concurrency or distribution techniques. Any kind of materialization
or pre-sorting techniques affecting the input data has been avoided.

(a) Italian company KG (b) Barabási-Albert KG (c) Balanced KG

Fig. 2: Experimental evaluations on real-world and synthetic KGs.

Italian company network scenario (Figure 2(a)). A large real-world scenario
with a KG from Bank of Italy about companies (nodes are companies and edges
are shareholding relationships). This graph is composed of ∼ 6" companies and
∼ 6.2M ownership edges. The graph structure is depicted in Figure 2(a): it has
a tree-like shape, where the node density decreases with tree level. The longest



6 P. Atzeni, L. Bellomarini, D. Benedetto, E. Sallinger

shareholding chain between two companies is composed of 18 intermediate nodes,
with ∼ 8 companies in the last layer. We tested different edge subsets of the
graph considering increasing values for the maximum distance between source
and target node.

NLJ showed to be faster for shallow graphs, and DSJ clearly outperforms NLJ
when distance increases. This is exactly what expected of a proper depth-first
traversal, provided that for higher distance the average node degree decreases
and so does the likelihood of meeting the target node.

Synthetic Barabási-Albert scenario (Figure 2(b)). We analyzed the be-
haviour of the joins with an artificial setting, generated with the Barabási-Albert
algorithm [10] for scale-free networks. We considered a graph with ∼ 1M nodes
and ∼ 1M edges and of lower density and higher node distance than the real-world
graph. The graph structure that is depicted in Figure 2(b) shows the presence
of hubs, where the local density is higher, while it exponentially decreases along
the paths. We tested st-connectivity for increasing values of s-t distance.

While for low distances NLJ and DSJ show a similar behaviour, when the
analyzed depth grows, DSJ is remarkably faster and outperforms NLJ, though
graph irregularities produce visible fluctuations in elapsed times.

Synthetic Balanced KG scenario (Figure 2(c)). In this scenario we wanted
to evaluate the NLJ and DSJ behavior applied on a tree-search setting, in order
to confirm the actual breadth- and depth-first behaviour of NLJ and DSJ, re-
spectively. We built a balanced tree with a branching factor of 4 and height 11.
In this tree structure, in contrast to the previous scenarios, the density grows
with the tree level. We tested st-connectivity choosing the target nodes from five
different areas (denoted by different colors in Figure 2(c)), while B was fixed as
the tree root.

Our results confirm that NLJ and DSJ behave respectively as a breadth- and
depth-first search. While for the violet and green areas DSJ outperforms NLJ, on
the other hand, NLJ wins in light-yellow and red areas, coherently with what we
expected with the given graph topology. Finally, for target nodes in the central
area (strong-yellow) we obtain similar times for NLJ and DSJ.

6 Conclusion and Future Work

Reasoning on KGs is gaining more and more attention in AI venues, with graph
databases increasingly adopted in many domains. While full ontological reason-
ing calls for a toolbox of sophisticated techniques and algorithms, state-of-the-art
reasoners such as vadalog rely on the vast amount of experience in DBMS ar-
chitectures and adopt reasoning plans, along the lines of relational query plans.
In this work we suggested a twofold handle to induce graph traversal strategies
by tweaking standard logical unification and join algorithms.

We believe this technique will lay the basis for graph-aware relational-like
optimizers, able to bend —when properly complemented with graph statistics—
reasoning strategies to graph topologies.



Traversing Knowledge Graphs with Joins 7

Acknowledgements. The work on this paper was supported by EPSRC pro-
gramme grant EP/M025268/1, the EU H2020 grant 809965, and the Vienna Science
and Technology (WWTF) grant VRG18-013.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. R. Angles. The property graph database model. In AMW, 2018.
3. L. Bellomarini, D. Benedetto, G. Gottlob, and E. Sallinger. Vadalog: A modern

architecture for automated reasoning with large knowledge graphs. Information
Systems, page 101528, 2020.

4. L. Bellomarini, D. Fakhoury, G. Gottlob, and E. Sallinger. Knowledge graphs and
enterprise AI: the promise of an enabling technology. In ICDE, pages 26–37. IEEE,
2019.

5. L. Bellomarini, E. Sallinger, and G. Gottlob. The Vadalog System: Datalog-based
Reasoning for Knowledge Graphs. In VLDB, 2018.

6. M. Benedikt, G. Konstantinidis, G. Mecca, B. Motik, P. Papotti, D. Santoro, and
E. Tsamoura. Benchmarking the chase. In PODS, pages 37–52, 2017.

7. R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: Semantics and query
answering. In ICDT, 2003.

8. G. Graefe and W. J. McKenna. The volcano optimizer generator: Extensibility
and efficient search. In ICDE, pages 209–218, 1993.

9. A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E. L.
Gayo, S. Kirrane, S. Neumaier, A. Polleres, et al. Knowledge graphs. arXiv preprint
arXiv:2003.02320, 2020.

10. C. A. H. R. and A. Barabási. Scale-free networks. Scholarpedia, 3(1):1716, 2008.
11. M. Sipser. Introduction to the theory of computation. PWS Publishing Company,

1997.


	Traversing Knowledge Graphs with Good Old (and New) Joins

