
An Evolutionary Algorithm for Rule Learning
over Knowledge Graphs

Lianlong Wu1, Emanuel Sallinger2,1, Evgeny Sherkhonov1,
Sahar Vahdati1, and Georg Gottlob2,1

1 University of Oxford
2 TU Wien

Abstract. Logical rules allow us to declaratively encode expert knowl-
edge, express patterns and infer new knowledge from existing one in
Knowledge Graphs. However, the construction of rules is often a costly
manual process. In this work, we address the problem of learning rules
from the already exiting knowledge. Most of the existing rule learning
algorithms for Knowledge Graphs are based on inefficient full search plus
greedy pruning strategies that cover limited search space by considering
rules of a predetermined shape. We propose a learning algorithm where
a set of rules is learned via the process inspired by biological evolution
and that is geared towards optimizing a fitness function. Such evolution-
ary algorithms typically cover larger search space efficiently and provide
multiple near-optimal solutions. We evaluate the proposed algorithm on
a number of public Knowledge Graphs and compare it to other rule
learning algorithms.

Keywords: Rule Learning · Knowledge Graphs · Evolutionary Algo-
rithms · Genetic Programming

1 Introduction

Knowledge Graphs (KGs) are the hyped technology of recent years and have
gained huge interest in multiple AI-based applications. Logical rules are used
as an intrinsic part of the KGs encoding knowledge, or for Knowledge Graph
construction and completion as well as error detection and noise identification,
entity resolution, query and answering, among other tasks. The main charac-
teristic added to such downstream tasks originates from explainability power of
rule-based languages as they are human and machine-friendly. This makes rea-
soning as deriving new knowledge from the existing ones also fully explainable.

However, the process of gaining logical rules is costly as in traditional process
for obtaining high-quality rules in a KG (often addressed as knowledge engineer-
ing) significant human effort is required. Rule learning is the process of auto-
matically learning rules from underlying KGs. The two manual and automated

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

2 Wu et al.

processes are often complementary, allowing engineered background knowledge
to be used at the same time as rules learned from data, jointly obtaining a
higher-quality result compared to each process used in isolation.

Among the existing methods, the classical Inductive Logic Programming
(ILP) methods for rule learning are based on the Closed World Assumption
(CWA) and consider relatively small scale datasets. However, modern large scale
KGs cause huge challenges for the efficiency of such rule learning methods with
straightforward use of ILP methods [4].

There are recent tools which are specifically designed for Knowledge Graph
rule extraction, considering the Open World Assumptions (OWA). For example,
Ontological Pathfinding (OP) [2] and AMIE [4] are among the recent methods
which are proposed based on exhaustive search with pruning strategies. An-
other tool named as RuDiK[8] uses a greedy algorithm and A∗ graph traversal
algorithm over the entire possible rule space. These tools have proven feasible
performance over modern large scale KGs. However, greedy algorithms or search
with pruning may suffer from being trapped in local optima. Also, the aforemen-
tioned tools often have high running times over large scale KGs with a limited
length of rule where the rule types are also tied to the algorithm in these systems.

Approach and contribution. In this paper we propose an evolutionary rule
learning algorithm that provides multiple near-optimal solutions efficiently, and,
moreover, has fewer syntactic restrictions of the form of learned rules.

Rule learning can be considered as heuristic search on the concept description
space. Evolutionary Algorithms (EA) are a good choice for this intrinsic search
mechanism and the symbolic representation. In order to extend the search space,
this work focuses on studying Evolutionary Algorithms, specifically in the area of
Genetic Programming (GP) for the rule learning problem over large scale Knowl-
edge Graph datasets. EAs are a family of biology-inspired search algorithms that
optimize for the most promising preliminary solutions, while exploring a wide
search space at the same time. In particular, in our setting, one rule or a set
of rules can be treated as a chromosome, from which a new population of chro-
mosomes can be derived via the operations of mutation, crossover and selection
operators. While performing these operations, a quality measure, called fitness
function is computed to judge whether an obtained new generation of chromo-
somes is fit for continuing the search.

Such evolutionary algorithms typically do not need to perform exhaustive
search, and are less likely to fall into local optima[3]. Furthermore, they are flex-
ible in that they might not require imposed template on the shape of rules, as it
is typically the case in other approaches. In addition, EA supports multiple met-
rics as optimization target: Precision, Support (Recall) etc. and any combination
of them. EAs are well balanced by optimizing the most promising solutions while
exploring the wider search space at the same time. While greedy search may be
trapped in local optima, the parallel search mechanism and mutation operations
of Genetic Programming can avoid such traps. The robustness of EAs imposes
fewer limitations on the rule learning system compared to other methods. It
is easy to incorporate arbitrary constraints into the search space. Furthermore,

An Evolutionary Algorithm for Rule Learning over Knowledge Graphs 3

EAs are adaptable in a complex search space, which makes them increasingly
utilized in the different learning systems [6]. In this work, we are combining the
learning power of Genetic Programming (GP) and Knowledge Representation
(KR) from logic-based languages. The main contributions of this paper are:

– We introduce a new evolutionary algorithm for rule learning which, to the
best of our knowledge, is a first genetic programming algorithm applied in
the context of learning rules over Knowledge Graphs.

– We report preliminary experimental results of the new algorithm on publicly
available Knowledge Graphs YAGO [10] and YAGO2 [9].

Organization. Section 2 introduces the necessary preliminaries. In Section 3
we will introduce the approach and algorithm. Section 4 presents the initial
experimental evaluation. We give concluding remarks in Section 5.

2 Preliminaries

In this section we present the necessary concepts that are required for better
understanding of our rule learning algorithm. Let us assume a disjoint sets of
entities indicated as E , literals as L , predicates as P of arity two, and variables
depicted by V.

Knowledge Representation is by atoms in the form of p(X,Y), where p ∈ P,
X ∈ E ∪ V and Y ∈ E ∪ V ∪ L. For example, livesIn(X, Oxford) is an atom,
where livesIn is a predicate, Oxford is an entity and X is a variable, and it
denotes that person X lives in Oxford.

Knowledge Graphs (KGs) are sets of ground atoms indicated by K, i.e., atoms
p(s, o) such that s ∈ E and o ∈ E ∪ L. For instance,

K1 = {livesIn(John, Oxford), isMarriedTo(John, Mary)}

is a small KG that states the fact that John lives in Oxford and that he is
married to Mary.

A Horn rule, or simply a rule, is an expression of the form of H ← B, where
B is a set of atoms {B1, . . . , Bn} called body atoms, and H is an atom called
head atom. For instance, the expression

livesIn(Y,Z)← livesIn(X,Z), isMarriedTo(X,Y) (1)

is a rule that expresses the fact that whenever X lives in Z and X is married to
Y , then Y also lives in Z. A program is a set of rules.

A mapping from V to E∪L∪V is called a substitution. For a rule r of the form
H ← A1, . . . , An and a substitution σ, by σ(r) we denote the result of applying
σ to r, i.e., the rule obtained by substituting the variables in H,A1, . . . , An

according to σ. For a KG K if for every i ∈ {1, . . . , n} it holds that σ(Ai) ∈ K,
then σ(H) is called a prediction of r over K. If additionally K contains σ(H),
then it is a true prediction, otherwise it is a false prediction. In our example
livesIn(Mary, Oxford) is a false prediction of the rule (1) over K1.

4 Wu et al.

We define the support of a rule r in a KG K, denoted as Srule(r,K), as the
number of true predictions of r over K. Additionally, for a rule r = H(X,Y)← B,
the support of the body B, denoted as Sbody(r,K), is defined as the number of
substitutions σ defined over X and Y that can be extended to a substitution σ′

(i.e., σ′(X) = σ(X) and σ′(Y) = σ(Y)) such that σ′(B) ⊆ K. In our example,
for the rule (1) and KG K1, we have Srule(r,K1) = 0 and Sbody(r,K1) = 1.

The standard confidence is defined as the ratio Srule(r,K)/Sbody(r,K) and
reflects the measure how well the rule r fits the KG K. However, it has been
argued in [4] that the standard confidence is not particularly well suited to
measure the quality of rules over KGs due to the open world assumption for
KGs. Instead, we resort to the PCA confidence [4].

The Partial Completeness Assumption (PCA) asserts that if for some a and
b it holds that p(a, b) ∈ K, then for every fact p(a, b′) that is true it holds that
p(a, b′) ∈ K. In other words, if a KG contains a p-fact of a, then it contains all
true p-facts of a. Moreover, if no p-fact of a is known, then we consider all p-facts
of a unknown. For instance, under the PCA, our KG K1 contains all the true
livesIn-facts about John, while the livesIn-facts about Mary are unknown.

The PCA confidence Cpca(r,K) is then a refined version of the standard
confidence, where the denominator does not take into account the unknown H-
facts of the first argument:

Cpca(r,K) =
Srule(r,K)

#(a, b) : ∃c.B ∈ K ∧ ∃b′.H(a, b′) ∈ K (2)

In our evolutionary algorithm introduced in the next section we use the PCA
confidence as the fitness function.

3 Algorithm

In this section we introduce an algorithm that belongs to the family of Evolu-
tionary Algorithms (EA), also known as Genetic Algorithms (GA). EAs are a
family of biology-inspired parallel search algorithms that optimize for the most
promising preliminary solutions, while exploring a wide search space at the same
time. In particular, in our setting programs can be treated as chromosomes, from
which the new population of chromosomes can be derived via the operations of
selection, mutation and crossover.

We first introduce the basic elements of our algorithm, the operators that
perform transformation of a given set of programs: selection, mutation and
crossover.

Selection Operators. The selection operator is used for take one or two chro-
mosomes from the current population. Fitness-Proportional (Roulette-Wheel)
selection method is used, the chance of each individual being selected is propor-
tional to its fitness score. Each individual is assigned a probability of

pi =
f(xi)∑N
j=1 f(xj)

, (3)

An Evolutionary Algorithm for Rule Learning over Knowledge Graphs 5

where f is a given fitness function. By selector(x, f) we denote the result of
applying the selection operator with the fitness function f .

Mutation Operator. We say that a rule is obtained by mutating the input
rule if either a variable or a predicate that occurs in the input rule is mutated.
Mutating a variable Xi means replacing it with another variable Xj , i ̸= j.
For example, the rule livesIn(X1, X2)← wasBornIn(X1, X2) is obtained from
livesIn(X1, X2) ← wasBornIn(X1, X3) by mutating the variable X3 to X2.
Similarly, mutating a predicate Ri means replacing it by another predicate
Rj , i ̸= j. For example, the rule livesIn(X1, X2)← worksAt(X1, X2) is obtained
from livesIn(X1, X2) ← wasBornIn(X1, X2) by mutating the body predicate
wasBornIn to worksAt. We say that a program (chromosome) P1 is obtained
from a program P2 by mutating, if it is obtained by mutating a rule in P2. For
a given chromosome x, by mutate(x, Pm) we denote the result of applying a
mutation to x with probability Pm.

Crossover Operator. The crossover operator is applied to two given chromo-
somes. The operator randomly chooses a rule from each chromosome, and subsets
of atoms in the body of each of the rules and swaps them respecting the variable
renaming. For instance, for the programs {r1} and {r2} the crossover operator
can select {isCitizenOf(X1, X2)} from the body of r1, and {livesIn(X1, X2)}
from the body of r2.

r1 : isLeaderOf(X1, X2)← wasBornIn(X1, X2), isCitizenOf(X1, X2).

r2 : isLeaderOf(X1, X2)← livesIn(X1, X2).
(4)

The result of swapping these sets is then the programs {r′1} and {r′2}, where

r′1 : isLeaderOf(X1, X2)← wasBornIn(X1, X2), livesIn(X1, X2).

r′2 : isLeaderOf(X1, X2)← isCitizenOf(X1, X2).
(5)

For two given chromosomes x1 and x2, by crossover(x1, x2, Pc) we denote the
result of applying the crossover operator to x1 and x2 with the probability Pc.

Initial Population consists of |P| chromosomes, each chromosome has one
rule with a single body atom, each rule has a different predicate.

We are ready to describe our main algorithm as shown in Algorithm 1. As
input it takes the chromosome population size N , the maximum generation
number M , the crossover probability Pc, and the mutation probability Pm. The
initial population consists of N chromosomes. For each generation, a set of chro-
mosomes (or programs) is generated, and fitness score for each of them is calcu-
lated, using a rule reasoning engine. The reasoning engine stores the knowledge
graph facts, evaluates candidate programs, and computes the fitness function.
In our experiments, the Vadalog reasoning engine is used [1]. Once all the fitness
scores are calculated, pairs of chromosomes are selected, the crossover operator
produces two new offspring, and mutation operators are applied to them. The
new chromosomes are placed in the new population. Duplicated chromosomes
are removed, in order to preserve the diversity of the population. These steps
are repeated until the new population size becomes equal to N . The algorithm
iterates until maximum generation M is reached.

6 Wu et al.

Algorithm 1 Rule Learning Evolutionary Algorithm

1: Input: Knowledge Graph K, Population size N , Maximum Generation M
2: Input: Fitness Function f(x) = Cpca(x,K),
3: Input: Crossover probability Pc, Mutation probability Pm

4: Initialize population set S′ ← {r1..r|P|}.
5: for g = 1 to M do
6: S ← S′

7: S′ ← {xm}, xm = argmax(f(x)), x ∈ S
8: repeat
9: xi ← selector(S, f);xj ← selector(S, f)
10: x′

i, x
′
j ← crossover(xi, xj , Pc)

11: x′
i ← mutate(xi, Pm);x′

j ← mutate(xj , Pm)
12: S′ ← S′ ∪ x′

i, x
′
j

13: until |S′| ≥ N
14: end for
15: Output: argmax(f(x)), x ∈ S′

4 Experiments

In this section, we present our results from evaluation of the proposed algorithm
on a set of benchmarks.

Dataset As our dataset, we use the the YAGO KG which contains entities such
as persons, organizations, and cities, and relations (facts) between the entities.
YAGO2 nearly has 1 million facts [10] and we use a complete version of it. We
also included a different version of it namely YAGO2s [9] with 4 million facts.
Table 1 provides a detailed statistics about these KGs.

Table 1. Knowledge Graph Dataset Characters

KG Name # Triples # Predicates

YAGO2 948,358 33

YAGO2s 4,122,426 37

Experimental Results As shown in Table 2, our algorithm found 18 rules for
YAGO2 and 20 rules for YAGO2s, with PCA confidence threshold> 10%, and no
explicit rule length limitation. The PCA confidence for the top 5 rules in YAGO2
is 97.14% and 85.26% for YAGO2s, the average PCA confidence of all the rules
is 57.72% and 52.34%, respectively. The precision rate is evaluated by sampling
five facts predicted by the rule, then verifying through human judgement. For
reference, top 10 rules from AMIE on YAGO2 are at precision of 39%[4], and
top 5 rules from RuDiK on YAGO3 are at precision 79.17% and all rules average
precision at 62.86%[8]. In general, compared with RuDiK and AMIE, we find
fewer rules with higher confidence and quality in terms of precision.

An Evolutionary Algorithm for Rule Learning over Knowledge Graphs 7

Table 2. Knowledge Graph Rule Learning Precisions

KG Name # Rules
PCA Confidence Precision
Top-5 Average Top-5 Average

YAGO2 18 97.14% 57.72% 48% 61.11%

YAGO2s 20 85.26% 52.34% 80% 64.00%

Hardware Specification In the standalone setup, experiments are run on 48-core
machine with 2 × Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.5GHz, 64GB RAM.

Execution Time As one of the comparison criteria, we considered the execution
time. As shown in Table 3, rule learning for all the 33 predicates on the YAGO2
takes 12 minutes, and takes 21 minutes for the YAGO2s dataset. The run time of
AMIE, OP and RuDiK are quoted from their typical setup in the publications3.
It shows our running time is at the same level with the state-of-the-art systems.
It also proved that our algorithm takes less time for execution when the KG gets
larger. This is particularly important in real world scenarios of large-scale KGs.

Table 3. Rule Learning Execution time comparison

AMIE[4] AMIE+[5] OP[2] RuDiK[7] This Work

YAGO2 3.62m 8.35m 3.59m 18m 12m

YAGO2s - 59.38m 19.4m 47m 21m

5 Conclusion

In this work, we highlighted the problem of rule learning in knowledge graphs
and provided a formal definition for that. The undulate goal is to emphasis on
the importance of explicit rule learning. A novel genetic programming algorithm
is proposed for rule mining over large scale Knowledge Graphs. The initial ex-
periments confirm the feasibility and efficiency of this algorithms. This work
provides the foundation for the development of a comprehensive framework for
rule learning into a new scope with longer rule length limitation. Our approach
governs less language restrictions, so that a larger hypothesis space could be ex-
plored in order to provide high quality rules. In future work of this research, we
aim at addressing complex rule extraction and learning within a single frame-
work. The experiments are planned to be extended and comparisons will be
provided to other rule extraction and learning tools.

3 Note: Considering the differences in the problem definition, the outcome of learning
specifications, the algorithm parameters and the database implementations, the run
time comparison is for illustration purpose only.

8 Wu et al.

Acknowledgements. The work on this paper was supported by EPSRC programme

grant EP/M025268/1, the EU H2020 grant 809965, and the Vienna Science and Tech-

nology (WWTF) grant VRG18-013.

References

1. Bellomarini, L., Sallinger, E., Gottlob, G.: The Vadalog system: Datalog-based
Reasoning for Knowledge Graphs. In: Proceedings of the VLDB Endowment.
vol. 11, pp. 975–987 (2018). https://doi.org/10.14778/3213880.3213888

2. Chen, Y., Goldberg, S., Wang, D.Z., Johri, S.S.: Ontological pathfinding: Min-
ing first-order knowledge from large knowledge bases. Proceedings of the ACM
SIGMOD International Conference on Management of Data pp. 835–846 (2016).
https://doi.org/10.1145/2882903.2882954

3. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy
of Machine Intelligence: Third Edition. John Wiley & Sons (2005).
https://doi.org/10.1002/0471749214

4. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: Association rule
mining under incomplete evidence in ontological knowledge bases. WWW 2013 -
Proceedings of the 22nd International Conference on World Wide Web pp. 413–422
(2013)

5. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in on-
tological knowledge bases with AMIE+. VLDB Journal 24(6), 707–730 (2015).
https://doi.org/10.1007/s00778-015-0394-1

6. Giordana, A., Saitta, L., Campidoglio, M.E., Bello, G.L.: Learning relations using
genetic algorithms. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). vol.
728 LNAI, pp. 218–229 (1993). https://doi.org/10.1007/3-540-57292-9 60

7. Ortona, S., Meduri, V.V., Papotti, P.: Robust discovery of positive and
negative rules in knowledge bases. Proceedings - IEEE 34th Interna-
tional Conference on Data Engineering, ICDE 2018 pp. 1180–1191 (2018).
https://doi.org/10.1109/ICDE.2018.00108

8. Ortona, S., Meduri, V.V., Papotti, P.: RuDiK: Rule discovery in knowl-
edge bases. Proceedings of the VLDB Endowment 11(12), 1946–1949 (2018).
https://doi.org/10.14778/3229863.3236231

9. Suchanek, F.M., Hoffart, J., Kuzey, E., Lewis-Kelham, E.: YAGO2s: Modular high-
quality information extraction with an application to flight planning. In: Lecture
Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik
(GI). vol. P-214, pp. 515–518 (2013)

10. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A core of semantic knowledge.
16th International World Wide Web Conference, WWW2007 pp. 697–706 (2007).
https://doi.org/10.1145/1242572.1242667

