
Trust and Reputation Multiagent-driven Model for

Distributed Transcoding on Fog-Edge

Charles A. N. Costa
Computer Science Dept.

University of Brasilia
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Abstract

Adaptive Bitrate Streaming is a popular technique for providing video
media over the Internet. Nevertheless, the computational cost of
transcoding a video in many formats can limit its application on live
video streaming. Besides, the network overhead of transmitting simul-
taneously many versions of the same content is a problem. Offloading
the transcoding job to the network edge can deal with the problem.
Users and providers of live video could benefit from a joint scheme that
allowed edge devices to do the transcoding with tolerable latency and
delay. This work presents a multiagent-driven model to deal with the
problem of distributed transcoding on fog-edge computing. Agents have
well-defined roles relating to Broker, Transcoder, and Viewer Proxy.
Trust and Reputation metrics derived from utility functions that take
into account users’ quality of experience (QoE) are defined and applied.
The Reputation-based Node Selection (ReNoS) algorithm is presented
for selecting the best nodes to perform the transcoding tasks. The con-
ducted experiments indicate that the proposed approach can afford
utility gain keeping viewers’ QoE having the potential to be applied in
real edge computing environments.

1 Introduction

Adaptive Bitrate (ABR) streaming is a convenient way to distribute video to many users over the Internet.
ABR splits the video into segments and then codes it in different bitrates so viewers’ players can switch from a
version to another to adapt to slow or unstable bandwidth conditions. The appeal of ABR is that experiences
in subjective video quality evaluation suggest that quality of experience (QoE) is better as higher is the bitrate,
but it is very penalized for interruptions. The transport protocol is HTTP, which facilitates its implementation
and adoption ([Bin15]). HLS/MPEG-DASH is an industry pattern that relies on ABR ([Sto11]). Today, most
providers have adopted ABR due to its advantages, but the delay it introduces in live video broadcast is still an
open problem ([DKZ15]).
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The number of computational resources demanded transcoding is not negligible, representing significant costs
for live video providers. Although pre-stored video transcoding could be postulated, for popular live video
providers transcode every live channel is prohibitive. For example, [PS14] describes two strategies used by Twitch
to select what channels will be transcoded to deal with the trade-off between QoE and computational resource
consumption. Other works have tried to offload the transcoding task to users’ devices as a way to alleviate
the costs from providers and improve at the same time viewers’ QoE ([HZML17], [BBE+19], [FKZY20]). In a
Cloud-based architecture, the layer where end-user devices lay on is called the Edge or Fog. The Fog has indeed
plenty of unused computational resources theoretically available at a small network latency, which can be good
for live video transcoding. However, since these devices are neither in control of providers nor viewers, there is a
risk of losing utility instead of gaining. Thus, in such an environment, open and semi-competitive, collaboration
might be improved if nodes are guided to form overlay networks based on trust and reputation (T&R) ([HZJ08]).

Approaching the problem of coordinating the distributed transcoding tasks involving fog nodes and edge
devices, the contributions of this work are the following:

• define a T&R multiagent model for dealing with the problem of distributed transcoding of live-video
events over fog-edge computing.

• present the Reputation-based Node Selection (ReNoS) algorithm for selecting the best nodes to perform
the transcoding tasks.

The rest of the paper includes in Section 2 the main concepts; in Section 3 related work to solve the problem of
distributed video transcoding; in Section 4 our approach to deal with the problem; in Section 5 the experiments
with results; finally, in Section 6 the conclusions.

2 Background

Adaptive Bitrate Streaming

The central idea of ABR is transcoding the same input into segments of different bitrates. A typical workflow to
deliver a live video event using ABR includes five steps ([DKZ15]): i) the video content is obtained and pushed
up to a server; ii) the video stream is decoded and then re-coded to a convenient format for transmission; iii) the
video stream is split into segments and they published on HTTP servers along with manifest files; iv) Content
Delivery Networks (CDNs) are regionally employed to minimize latency; v) viewer’s player performs buffering
before decode and play the stream.

The buffering technique employed by viewer’s players is the key characteristic in determining the predictability
of video segment requests. There exist many algorithms that different players should apply. Following the work
in [KCTV17], those algorithms can be classified into three categories: Throughput-based algorithms, Buffer-
based adaptation, and Time-based adaptation. Throughput-based algorithms take constant measures of network
bandwidth to evaluate TCP throughput and then schedule video chunk requests based on the current state of a
buffer. The Buffer-based adaptation class observes the buffer occupancy itself to determine the time and bitrate
version from at the video chunks should be requested. Finally, in Time-based adaptation downloading time is
considered rather than TCP throughput, and then uses a pre-computed buffer-map to select the appropriate video
representation. As commented, the audience of online videos do prefer high bitrate versions, but interruptions
harm QoE. Considering this fact, the joint utility of an online video session can be defined as the combination of
the average bitrate counterbalanced by the playback smoothness. Playback smoothness is a ratio between time
spent rebuffering and the total time of video exhibition ([SUS16]).

Fog-Edge Computing

Fog-edge computing (FEC) is a complement of cloud computing that employs devices on the edge of the network,
so improving the quality of service towards a service continuum ([BS19]). Hierarchically, the FEC can be divided
into three layers: inner-edge, middle-edge, and outer-edge. The inner-edge layer corresponds to networks where
the covered area is as large as a country or a state. In the inner-edge are placed the infrastructure for geo-
distributed cache and the processing centers of WANs, as the CDN mentioned in [DKZ15]. The objective
of the inner-edge layer is to improve QoE lowering the network latency. The middle-edge corresponds to the
environment where MANs, LANs, Wireless LANs, and the cellular network are placed. Accordingly, with [BS19],
the middle-edge is the common understanding of the fog computing layer. The outer-edge, which is also known
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as the far-edge or things layer, is where we can find user’s devices like mobile devices, as well as small devices
like sensors and actuators. Figure 1 illustrates the FEC layer architecture.

Figure 1: The FEC layer architecture [BS19].

As a complement of Internet infrastructure, the FEC inherits some of its characteristics ([BS19]). Since some
FEC nodes are capable of making decisions to improve their performance, they can be described as agents.
Adhering to the classification presented in [RN10], the FEC properties can be described as: (i) multiagent - it is
expected that agents in the FEC could cooperate to improve overall performance; (ii) non-deterministic - agents
would not be able to determine the next state only evaluating the effects of their actions; (iii) dynamic - assuming
that nodes can join and leave the network unexpectedly; (iv) continuous - some environmental measures can be
discretized but not all of them, and not for all the purposes; (v) sequential - as long as decisions made in the
present will influence performance in the future; (vi) partially observable - information about the environment
and other agents would remain outdated most of the time.

Trust and Reputation

To face the uncertainty involved in collaboration throughout FEC, a rational agent A, before delegating a
task, which its welfare depends on, to an agent B, must somehow compute the probability of B completing
the task successfully. This probability means how much agent A trusts B relative to the completion of the
task. Nevertheless, an agent could not evaluate the trustworthiness of a counterpart if they have never met.
A recurrent solution is to ask others about the opinion they have of the possible partner concerning the coted
task. A weighting of the trust that a node receives from a collective is called its reputation. These definitions
of T&R are in line with the ideas presented in [CF98]. Bringing up our problem domain, an agent that cannot
complete the delegated tasks frequently, does not contribute to improving the delegators’ QoE, should receive a
low trust value. Since viewers of live-video streaming could obtain the stream directly from the stream provider
at the cloud, there is no sense in continuing to select a bad transcoder in the FEC. In this scenario, the decision-
making process proposed in [Mar99] could be adopted. Thus, nodes unable to maintain themselves above a trust
threshold should be removed from the pool of possible partners.

There are many models of interaction based on T&R, like REGRET ([SS01]), March ([Mar99]), and FIRE
([HJS06]). Authors in [HR14] compared T&R models and proposed a meta-model that allows reasoning about
the parameters of the models at run time. Considering the heterogeneity of the devices in the FEC, reasoning at
the meta-level can be applied to adjust requirements for limited resources like storage, network, and energy. The
FIRE T&R model presented in [HJS06] can use several sources of information to calculate the trustworthiness
and reputation of a party. It can use four components for trust calculation: Interaction Trust (IR) is the
result of direct interaction, which is also known as a direct trust; Witness Reputation (WR) is a weighting
of trust evaluations provided by third parties; Role-based Trust (RT) is defined by role-based relationships
between agents, e.g., agents owned by the same proprietary; Certified Reputation (CR) is evaluations made by
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an authority and provided by target agents as proof of past good performance.
In FIRE T&R model, trust evaluations are calculated by Equation 1, where: k is one of the components for

trust calculation; Tk(a, b, c) is the trust that agent a has of agent b in relation to subject c; Rk(a, b, c) is the set
of all ratings collected; ωk(ri) is the relative weight of rating ri and vi is the value of the rating.

Tk(a, b, c) =

∑
ri∈Rk(a,b,c)

ωk(ri) ∗ vi∑
ri∈Rk(a,b,c)

ωk(ri)
(1)

An overall trust evaluation is calculated using Equation 2, which is a combination of all components of the
FIRE T&R model. In that, k varies in the set of all existing components, e.g., {IR,WR,RT,CR}.

T (a, b, c) =

∑
k ωk ∗ Tk(a, b, c)∑

k ωk
(2)

A different weighting function is defined for every information source. The weighting function for IR is defined
in Equation 3 and represents the degradation of the rating reliability over time.

ωIR(ri) = e−
∆t
λ (3)

To calculate the weighting function of the WR component, the witness’ credibility should be accounted for. In
[HJS05] was proposed to compare witness’ ratings with those directly obtained, then the deltas were applied to
the FIRE T&R model to derive a credibility factor. Assuming that an agent a wants to evaluate the credibility
of a witness w and IR ratings are available, the Equation 4 is applied, where vk is the value by the witness and va
by direct interaction. If the difference between the values is greater than an inaccuracy threshold i, the witness
is penalized with the lowest possible value (−1).

vw =

{
1− |vk − va|, if |vk − va| < i
−1, if |vk − va| ≥ i

(4)

The second step is to apply Equation 1 as if calculating the IR component. If direct interaction values were
not available, a default credibility rate is assigned to every witness. Equation 5 demonstrates this reasoning,
where TDWC is the default credibility value.

Twc(a,w) =

{
TIR(a,w, cWC), if RIR(a,w, cWC) 6= 0
TDWC , otherwise

(5)

Finally, Equation 6 is the weighting function for the WR component. It takes weights calculated with Equa-
tion 3, since rating reliability decays with time, but it is multiplied by the credibility factor. If Twc for a witness
is less than zero, it means that the witness is not trustful at all, then its report should not be taken into account.

ωWR(ri) =

{
0, if Twc(a,w) ≤ 0
Twc(a,w) ∗ ωIR(ri), otherwise

(6)

Considering a population where self-interested agents exist, FEC delegator nodes are vulnerable to some trust
and reputation attacks, as fake feedback and unfair rating ([LS10]). Dishonest delegate nodes might plot with
each other to artificially increase its evaluation and decrease the others. As advocated in [HJS05], evaluating
witness credibility can mitigate the harmful effects of those practices, or, at least, it would take more time until
a delegator node was tricked to give trust to a malicious partner.

3 Related work

In this section related work is presented. Since every work has a different approach employing a specific method,
it is difficult to compare one by one in terms of performance. Table 1 summarizes related work’s important
aspects.

In [HZML17] is investigated an edge-fog clouding distributed transcoding scheme. The goal of the work is
to minimize the delay experienced by the viewers. Candidate transcoding nodes are organized in a pool based
on their stability, i.e., as likely they are to stay online until the end of the streaming. The pool is implemented
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in a B+tree data structure which can guarantee that inclusion and exclusion in the pool occur in O(logN) and
selecting the most preferred node for transcoding can take O(1). Some other heuristics for node selection are
suggested, like video quality, but not further explored in the manuscript. In terms of architecture, regional data
centers have the responsibility of distributing the transcoding task to candidate viewers. Thus, management is
executed in the middle-edge while transcoding is performed by outer-edge devices.

The objective of joining nodes on the fog in a distributed transcoding system for live video streaming is modeled
by [LDL19] as a Non-convex Integer Programming problem. The model is optimized through the expected QoE
that viewers could obtain watching the stream from transcoder nodes. The success rate of a device transcoding
is considered in the cost model. Anyway, the success rate is chosen to reflect the stability of the node online.
Authors use Complementary Geometric Programming to provide a sub-optimal solution. Although no structure
to where to place nodes in the Fog is provided, transcoding nodes are placed between regional data centers and
CDNs, which locate them in the inner-edge.

Considering mobile network architecture, [BBE+19] delegates the transcoding jobs to Mobile Edge Computing
(MEC) in Antenna Integrated Radios (AIR). MEC-AIR nodes are placed in the middle-edge. Only the highest
bitrate available is requested to CDN servers and then transcoding to lower bitrates is performed by MECs. It
is intended to minimize backhaul utilization and the number of CDN hits per stream. The most suitable bitrate
is chosen by applying a greedy algorithm, which resulted from the relaxation of an Integer Linear Programming
solution to the modeled problem.

The objective of [FKZY20] is to cope with the problem of distributed transcoding in vehicular fog computing.
Both roadside units and vehicles are considered FEC nodes so that roadside units are placed in the middle-edge
and vehicles in the outer-edge. The problem of selecting bitrate versions and transcoding nodes is modeled as
a Markov Decision Problem and then an algorithm that employs actor-critic and deep-reinforcement learning is
proposed.

In our approach, transcoding jobs will be dynamically assigned to nodes in every turn according to their past-
observed performance. Hence, T&R metrics can represent an overall utility contribution including not only the
node stability but also their competence for doing the assigned task. Besides, we propose that transcoding should
be done in the outer-edge, nearby viewers’ locations, so transcoded segments would be served with relatively low
latency. Thus, the problem is addressed on two fronts: defining an architecture in terms of a multi-agent system;
and reasoning about selecting appropriate nodes for transcoding jobs in an open environment.

Table 1: Related work comparison.

Work
Transcoding in
the outer-edge

Selecting by
performance

Method

[FKZY20] X X actor-critic & deep reinforcement learning

[BBE+19] integer linear programming & optimization

[LDL19] X complementary geometric programming

[HZML17] X B+Tree sorting from stability metric

This Work X X T&R & multiagent models

4 Multiagent Model

The multiagent model comprises three well-defined agent roles: Viewer Proxy, Transcoder, and Broker. The
Viewer Proxy is the agent for the audience of the live video stream, the ones that ask brokers for the adapted
ABR stream. The Transcoder is interested in receiving transcoding jobs and being rewarded for them. The
responsibility of the Broker is to manage the association of Viewer Proxies and Transcoders for the benefit of
both. Concerning the network architecture, viewers and transcoders are expected to reside in the outer edge.
However, it is important to point that nodes must be geographically close to each other to keep latency inside
an acceptable range.

The model will act as an intermediary between viewers and the platform streaming. As an intermediary,
the model will provide the viewers with the live-video content they want to consume with an advantage: It
will manage to ensure that viewers could get the better QoE possible, providing all the bitrate versions needed.
In exchange, is expected that viewers provide feedback on the quality obtained from each video segment. On
the other side of the relations, the streaming platform is now depending on an external agent to maintain the
viewers connected. The streaming platform must rely on our model’s ability to coordinate transcoding jobs so

5



as the viewers could obtain a good QoE. The streaming platform could evaluate our model performance just by
observing the viewers’ tendency of staying connected or not.

Since the viewer, a human agent, would not be able to respond within the required time, we introduced the
Viewer Proxy, a software agent represented by a role. The Viewer Proxy’s responsibility is to interact with the
other software agents using a protocol of messages, in the interest of the Viewer. Those agents who will perform
the Transcoder role are interested in receiving the transcoding jobs. As a Viewer Proxy role, the Transcoder
role is also suited to be performed by software agents. The Brokers are to select the better nodes to perform the
transcoding tasks, offer them the transcoding jobs, and then inform Viewer Proxies where to find the transcoded
video segments. Within a specific geographic region, a Broker should be able to interact with many different
Transcoders and Viewer Proxies, coordinating the distributed transcoding of more than one live-video streaming
at the same time.

To give an idea of where, in the FEC layered architecture described in Section 2, the agent roles should
be placed, the Figure 2 is presented. Since different roles can be performed by the same node, the presented
diagram is just a suggestion of network distribution. Roles were organized by the intended coverage area, thus the
Streaming Platform was placed in the core of the cloud. The Directory Facilitator is an agent whose responsibility
is to serve the Viewer Proxies and Transcoders with a way to locate near Brokers. The Broker role could be
placed in the middle-edge so agents could be reached by the nodes in the layer below, without being too far from
the client nodes.

Figure 2: Multiagent architecture with detailed broker’s layered architecture.

4.1 Performance Measures

In many aspects, the idea of the agents’ rationality is linked to a performance measure ([RN10]). Not only for
evaluating the effectiveness of a plan of action but also for learning, when agents need a way to measure their
performance. In the ABR domain, it is usual to resort to utility functions as a way to evaluate performance,
thus it is natural that the reasoning model of our three roles is based on maximizing a gained utility.

However, before defining the utility function, let us take the video being streamed and sliced into n segments
with fixed duration T . We define a video stream S as a sequence of segments, S = {s0, s1, ..., sn}. In the
same way, we take the set of viewers under the influence of a broker as V = {v0, v1, ..., vn}, and the set of
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transcoders as TC = {tc0, tc1, ..., tcn}. B(v, tc, s) is a primitive function that denotes the bits that a viewer v
downloaded from a transcoder tc when it required a segment s, and I(v, tc, s) denotes the time interval passed
during the association concerning s. The function S(v, tc, s) says if the association was successful or not, i.e., if
the segment was completely downloaded it returns 1, or 0 otherwise. Using these definitions, the utility that a
viewer obtained downloading a segment from a transcoder can be defined as Equation 7. Since all the functions
have the same arguments, they were omitted for readability. The constant β is empirically defined to adjust the
equation considering how bad viewers evaluate video playback interruptions (QoE). The value returned by U
can be negative if the association to download a segment was not successful.

U(v, tc, s) =
B.S + β(T.S − I)

T
(7)

Viewer’s utility can be calculated from U fixing a viewer and then iterating all over the transcoders and
segments, as shown in Equation 8.

UV (v) =
∑

tc∈TC

∑
s∈S

U(v, tc, s) (8)

For understanding how those utility functions should work, let us take the segment duration of 2s and β at
250 and then compare a stream at 3,000 Kbps with another at 6,000 Kbps1. This way, the resulted utility will
improve by 1%. But if increasing the bitrate resulted in an interval of 1s per minute, then the accumulated
bitrate will decrease by 1%, and then the user might prefer the lower bitrate version.

4.2 Reasoning model

Since we propose to deal with video processing on the fly during live video events, we identify our approach as a
real-time constrained system. Our agents do not have much time for deliberation, which leads us to design agents
where reactive behaviors are predominant. Two of our roles are implemented as purely reactive agents. These
are Viewer Proxy and Transcoder roles. The Broker role architecture is hybrid since one of the components is a
Trust and Reputation model. Figure 2 shows the internal architecture of the Broker role, besides an illustration
of the location of roles in the FEC layers.

The transcoders’ trustworthiness evaluation involves an interaction between the layers of Transcoder Evalua-
tion (TE) and the Trust and Reputation Model (TRM). The Broker will collect Viewer Proxy feedback and then
apply the Equation 9, where R is the rating concerning the association of Viewer Proxy v with Transcoder tc
regarding segment s and M is the maximum utility possible and function U is the Equation 7. Viewer Proxies
will give up the interaction if the utility reaches a minimum negative value.

R(tc, v, s) = max((U(v, tc, s)− 5 ∗M(s))/6 ∗M(s),−1) (9)

Many T&R models can be implemented within the layer TRM. If the FIRE TRM is used, Broker agents can
evaluate the transcoders’ performance based on the feedback provided by the Viewer Proxies. From the point
of view of Brokers, Viewer Proxies’ feedback is the report of indirect interaction, so witness credibility should
be considered. Thus, Brokers must test transcoders in order to obtain direct interaction ratings to be used in
Equations 4 and 5.

For the Transcoding Negotiation layer, we introduce Algorithm 1, called ReNoS, on Reputation Node Selection.
The algorithm was designed to balance exploration and exploitation so that the most trustworthy transcoders
were not overloaded. When a new transcoder registers itself, it receives the maximum possible trust evaluation,
therefore raising its chance to be selected in the next iteration. The input Nodes are the set of available
transcoders. The input Factor must be equal or greater than 1 and represents how much is desired to explore
the set of available transcoders. The default value for Factor is 2. The input Threshold is the interaction
threshold defined in [Mar99] and explained before in Section 2.

We have empirically determined that the best trust threshold, below which transcoders should be disregarded,
can be obtained by the equation th(n) = 1−1/n, where th is the desired threshold and n is the number of available
transcoders. If a transcoder refuses a job, it is removed from available nodes set for two iterations.

1Using the Twitch’s encoder, the bitrates of 3,000 Kbps and 6,000 Kbps correspond to 720p-30fps and 1080p-60fps quality
versions, respectively. See https://stream.twitch.tv/encoding/.
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Algorithm 1 Reputation-based Node Selection (ReNoS)

1: procedure ReNoS(Nodes, Factor, Threshold)
2: Update T&R evaluations of Nodes
3: Sort Nodes by Trustworth
4: Distribution ← Empty dictionary
5: Probability ← 1.0
6: for Each N in Nodes do
7: if Trustworth(N) ≥ Threshold then
8: Distribution[N] ← Probability / Factor
9: Probability ← Probability − Distribution[N]

10: Last ← N
11: Distribution[Last] ← Distribution[Last] + Probability
12: Selected ← Draw a node by Distribution
13: return Selected

5 Experiments

Real-time transcoding of a live event stream requires tight synchronization. Transcoders must download a part
of the stream before starting the transcoding and only after the job is done the resulting segment will be available
for the viewers. The contribution of a transcoder settles in close relation to its processing power and network
bandwidth. Notwithstanding, our approach must guarantee that transcoded segments are ready on time for
being requested. Experiments were conducted to answer three vital questions (Q1, Q2, and Q3).

Q1 - In Which frequency will viewer proxies require new segments to providers?

In the first experiment, the video Big Buck Bunny (720x480, 24fps, 9 minutes 57 seconds)2 was prepared for
a simulated live video streaming. Four segment durations were used: 1, 2, 4, and 6 seconds. The stream was
played in VLC Media Player3 and hls.js4. After the video execution, the logs analysis revealed two facts: i)
segments are requested by order; ii) players tend to require segments more frequently in the beginning, before
buffer occupancy is stabilized, but after that, the average frequency gets closer to segment duration.

The average time-frequency (Avg) and the standard deviation (SD) of the observed requests after 30% of the
total video duration are presented in Table 2. Note that the Avg follows the video duration as cited in Fact 2.
Comparing SD values, we note that VLC presents higher values than hls.js.

Table 2: Frequency of segment requests (milliseconds).
Duration VLC HLS.js

Avg SD Avg SD

6000 6097 1282 6033 218

4000 4216 919 4096 395

2000 2199 576 2099 138

1000 1101 286 1101 128

The results allow the definition of an initial function to predict the moment when a specific segment might
be requested. Considering that segments were ordered starting by zero and n identifies a segment by its order, a
predictive recurrence is proposed in Equation 10. Q is the number of segments a player can store in the buffer,
and D is the time required to download a segment. Same as in Equation 7, T represents segment duration.

M(n) =

 0, if n = 0
M(n− 1) +D(n− 1), if n > 0 and n < Q
M(n− 1) + T, if n ≥ Q

(10)

2See https://peach.blender.org/.
3See https://www.videolan.org/vlc/index.html.
4See https://github.com/video-dev/hls.js/.
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Q2 - How much processing power should an FEC Node have to perform as a transcoder?

In a practical approach, five FFmpeg transcoding methods were applied in three similar computers ([Tom06,
Bra]). The subject video was taken from a CSGO match transmitted on Twitch (1280x720, 50fps, 60 seconds)5.
The goal was to test if a typical domestic computer could be capable of transcoding a segment in a compatible
amount of time. The used computers setups are as following: (i) i7-3770s, 3.10GHz, 8GB, HD ST100DM0003,
Windows 10; (ii) i7-8565U, 1.8GHz, 16GB, SSD 256 G LiteOn Cv8-8e256, Windows 10, video card GTX 1650;
and (iii) i5-6500T, 2.5GHz, 8GB, SSD SanDisk x400 256GB, Windows 10.

The results are summarized in Table 3. We relate the method used, the obtained bitrate reduction, peak
signal-to-noise ratio (PSNR) ([Bin15]), average time spent (Avg), and the SD. Since the time spent is near half a
second, and from the first experiment we expected that segments are requested every two seconds, results indicate
that a common personal computer is capable of performing the transcoder role in our approach. Additionally,
data comparison between bitrate reduction and PSNR does not show a clear correlation. Future experiments
should be set to investigate how these transcoding methods influence measures of utility concerning Equation 7.

Table 3: Transcoding performance in common personal computers.

Method
Bitrate
Reduction

PSNR i7 3770 i7 8565U i5 6500U

Avg SD Avg SD Avg SD

Resize to 720x480 59.26% 30.66 321ms 0.72% 319ms 0.31% 415ms 1.45%

Reduce bitrate in 2/3 30.03% 33.15 328ms 0.81% 349ms 0.60% 467ms 11.15%

CRF 25 26.24% 40.21 382ms 1.57% 400ms 2.09% 489ms 1.78%

CRF 23 9.05% 42.16 388ms 0.59% 408ms 1.43% 500ms 1.75%

Default filter 12.39% 33.31 333ms 0.17% 354ms 1.63% 440ms 0.99%

Q3 - Can ReNoS algorithm perform as well as other selecting algorithms?

In this, Viewer Proxy agents have buffered players of fixed size, and transcoder agents have a similar processing
power. Broker agents can select nodes using three algorithms: random choice, multi-armed bandits upper
confidence bound (MAB UCB), and ReNoS. Random choice just draws a transcoder in every iteration by chance.
The MAB UCB was implemented as defined in [Sli19], but using trustworthiness evaluations provided by the
TRM layer as the average reward.

The experiment was designed to simulate our approach executing a distributed transcoding during a live
video streaming session. An implementation of our approach was written using JADE, a popular open-source
agent platform in Java ([BCG07]). The simulation parameters, as segments request frequency and time spent
transcoding, were set up accordingly to previous experiments.

From Q1 observations, viewers will request segments at their duration, i.e., every 2 seconds. Viewers’ players’
buffers were set five-segment lengths. Transcoders are set up to one of the profiles of Table 4. Upload speed
determines how long a viewer will wait for a segment but transcoding times include time spent downloading
original segments from the server. In Table 4 values are consistent with the range observed in the Q2 experiment.
Transcoders of A profile have more than sufficient resources to be good. B profile is just sufficient. C profile,
otherwise, will seldom complete the tasks successfully. As a result, A and B transcoder agents are expected to
accumulate positive utility, but the C kind is more prone to lose.

Table 4: Transcoder profiles.
Profile Upload speed Transcoding Time (avg.)

A 5Mbps± 15% 400ms± 25%

B 2Mbps± 20% 400ms± 25%

C 1Mbps± 25% 400ms± 25%

In the simulated live video streaming, a new segment is generated every 2 seconds. Despite in a real situation
segments should have different bitrates, in the experiment every segment is 2s in length and has 1MB after
transcoded. The total video length is 200 seconds or 100 segments. Also, agents are willing to exchange
information, never reject an offer and do not lie about evaluations. Those are assumptions that hardily will

5See https://media.xiph.org/video/derf/.
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be found in a real scenario, but our objective is to compare the three algorithms in fair conditions. Besides,
assumptions are close to those used to test the FIRE T&R model in [HJS06].

JADE environment was populated with one broker, twelve identical viewers, and three transcoders, one of
each profile. For bootstrapping the FIRE T&R model, trust evaluations were initially set to 1.0, and then
transcoding jobs were randomly assigned for the first fifteenth segments, and the utility informed by the viewers
was used to calculate transcoders’ trust values. After this, the ReNoS algorithm was used. Regarding the utility
evaluations, in Equation 7 the β factor used was 250, so the Equation 9 minimum rating value (-1) is reached
after four iterations.

The experiment was repeated three times for each algorithm, and then the average utility gained was calculated
for each iteration. Table 5 summarizes the experiment outcomes. In Figure 3 (a), we present the accumulated
utility over the average utility gain by segment, where the radius represents the standard deviation. In (b), we
present the accumulated utility obtained with each selection method over time, calculated using Equation 8. We
can see that both MAB UCB and ReNos performed significantly better than a random choice, obtaining similar
results. Comparing ReNoS and MAB UCB means with 95% confidence interval, we found out that the mean of
one is inside the interval of another. Besides, comparing with a T-Test with the same confidence interval, we
found a t-Value of −0, 563, and a p-Value of 0.574. Thus, despite the accumulated utility using MAB UCB was
higher, the statistical tests revealed that there is no significant difference between the two algorithms.

Table 5: Comparison of utility gain from Random Choice, ReNoS, and MAB UCB.

Algorithms
Avg. Utility
per Segment

Std. Dev.
Accumulated
Utility

Improvement over
Random Choice

Random Choice 955.97 7,910.41 95,596.56 -

ReNoS 3,528.18 5,365.70 352,817.74 269%

MAB UCB 3,842.14 5,269.73 384,213.91 302%

However, analyzing the accumulated task assignments over time, as shown in Figure 4 (a) and (b), we can
see that ReNoS was able to rapidly identify the harmful performance of profile C, avoiding assigning tasks to it
in the early run. After this, the number of tasks was similarly assigned between Profiles A and B. On the other
hand, the MAB UCB was too able to learn about profile’s different performances, but the difference between
assignments of profiles A and B is higher than that observed using ReNoS. We consider that in an environment
where load balancing is important, our algorithm could be more interesting.

Figure 3: (a) – Accumulated utility over Average utility. (b) – Accumulated utility over time.

Still about reputation feedback from witnesses, in Figure 4 (c) it is possible to see the effect of outdated
information in the Broker’s trust evaluations. Observing the evolution of trustworthiness evaluations over time,
it is notable that Profile C evaluation became way below the initial threshold (0.66). This occurs because of the
delay between the moment when the Broker has to do the offloading of a transcoding task and the moment when
it receives the Viewer Proxies’ feedback.

10



Figure 4: (a) – MAB UCB task assignments. (b) – ReNoS task assignments. (c) – Trustworthiness evaluations
over time.

6 Conclusions

In this work, we presented a multiagent model for dealing with the problem of distributing live-video events
transcoding throughout FEC nodes and edge devices. Our model related three software agent roles with well-
defined responsibilities, the viewer proxy, the transcoder, and the broker. The broker role has the responsibility
of coordinating the interaction of the other two. About the FEC layered network architecture, we suggested
where to place agents to achieve the desired improvement on QoE.

Since delegating tasks in such an open and dynamic environment as FEC can be risky, we explained how
T&R models should be applied to evaluate either transcoders performance as viewers’ credibility as witnesses.
Then, the algorithm ReNoS, which takes advantage of reputation reports from viewers to select the best nodes
for performing the transcoding jobs, was presented.

Three experiments were conducted. The objective of the first two was to understand in which conditions
distributed transcoding in the Fog using our model could be feasible, and then those raised parameters were
used in a simulation that compared ReNos with two others, random choice, and MAB UCB. As an outcome, we
could see that ReNos is much better than random choice and it is at least as performative as MAB UCB, with
the advantage of balancing the transcoding load more evenly among the best transcoders.

In future work, other T&R models than FIRE should be tested, inclusively against questions about self-
interested agents and their impact on trust evaluations. Interaction among T&R models and multi-armed
bandits algorithms deserves further investigation. Simulations should be conducted in an environment closer to
real FEC computing.
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