CEUR-WS.org/Vol-3023/paper3.pdf

VizKG: A Framework for Visualizing SPARQL
Query Results over Knowledge Graphs

Hana Raissya', Fariz Darari (<)!'2, and Fajar J. Ekaputra3

! Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia
2 Tokopedia-UI AI Center of Excellence, Jakarta, Indonesia
{hana.raissya, fariz}Qui.ac.id
3 Institute of Information Systems Engineering, TU Wien, Vienna, Austria
fajar.ekaputraltuwien.ac.at

Abstract. Despite the rise of the knowledge graph (KG) popularity, understand-
ing SPARQL query results from a KG can be challenging for users. The use of
data visualization tools, e.g., Wikidata Query Service and YASGUI, can help ad-
dress this challenge. However, existing tools are either focused just on a specific
KG or only provided as a web interface. This paper proposes VizKG, a framework
that provides a wide range of visualizations for SPARQL query results over KGs.
VizKG aims to assist users in extracting patterns and insights from data in KGs,
and hence supporting further KG analysis. VizKG features a wrapper that links
SPARQL query results and external visualization libraries by mapping query re-
sult variables to the required visualization components, currently allowing for 24
types of visualizations. Not only that, VizKG also includes visualization recom-
mendations for arbitrary SPARQL query results as well as extension mechanisms
for additional visualization types. In our evaluation, the visualization recommen-
dation feature of VizKG achieves an accuracy of 87.8%. To demonstrate the use-
fulness of VizKG in practical settings, this paper also reports on use case evalua-
tion over various domains and KGs. A Python-based, Jupyter Notebook friendly
implementation of VizKG is openly available at https://pypi.org/project/VizKG/.

Keywords: Visualization - Knowledge Graphs - SPARQL - Insights

1 Introduction

A knowledge graph (KG) mainly describes real-world entities and their interrelations
in a graph structure, allowing to cover various domains [3]. The Semantic Web and
Linked Data are concrete embodiments of KGs, popularized by Google in 2012 through
the Google Knowledge Graph.* In the field of data science, the development of the
Semantic Web and Linked Data is becoming increasingly important, serving as both
primary and contextual data sources [13].

* https://blog.google/products/search/introducing-knowledge-graph-things-not/
Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0).

95

VizKG: A Framework for Visualizing SPARQL Query Results over Knowledge Graphs

Visualization is one of the stages in the data science pipeline that plays a key role
in data exploration and analysis [4]. Data visualization can help mediate between data
scientists and domain experts pertaining to the validation of assumptions and findings.
In particular, data visualization might come into handy when little is known about data
sources and analytical objectives [5].

Generally, visualizing (tabular) data takes form of charts, such as time-series charts,
geographic maps, statistical charts, as well as hierarchies and networks [6]. Visualiza-
tions can also be performed over KGs, e.g., Wikidata. Wikidata serves as a (semantic)
data hub among all editions of Wikipedia as well as external sources [8]. Wikidata fea-
tures Wikidata Query Service (WQS), which not only supports SPARQL queries, but
also visualizations in the form of image grids, timelines, dimensions, treemaps, and
many more. WQS is indeed helpful to provide graphical information about the data
stored in Wikidata. Nevertheless, its usage is limited to Wikidata only. On the other
hand, visualization services such as LODmilla® and YASGUI® facilitate visualizing
generic KGs though with a limited support of visualization types compared to WQS.

The provision of KG visualization services using a web, standalone tool is however
less ideal for the data science community. In terms of data visualization, the Jupyter
Notebook’ is a popular choice and has advantages over other platforms [9], such as
real-time interaction with code, inline printing of output, and PDF or HTML exports.
Visualizations generated from a Jupyter notebook can be presented in a browser or as a
shared Google Colaboratory.® With these advantages, Jupyter notebooks enable users to
narrate visualizations generated from (Python) libraries, e.g., Matplotlib? and Plotly.'°

Based on the need for exploration and visualization on the increasingly popular
KGs, through this study, we propose VizKG (https://pypi.org/project/VizKG/), a Python-
based framework with the following functionalities: (z) visualization of SPARQL query
results on generic KGs; (i) automatic recommendation of visualization types; and (%77)
extension mechanisms for additional visualization types.

2 Related Work

KG visualization is a research topic that has been around for many years. A stream of re-
search studies aims to support end-users to explore and visualize KGs. One of the earlier
studies in this area is SemLens [7], which provides a visual tool allowing end-users to
perform robust data analysis on KGs. SemLens, however, focuses only on a single visu-
alization type, i.e., scatter chart. Linked Data Visualization Model (LVDM) aims to pro-
vide a formal model for RDF data visualization [2]. LVDM provides two reference im-
plementations: (¢) LODVisualization, connecting & analyzing various datasets, and (i)
Payola, providing details on specific parts of KGs. Another approach is LDVizWiz [1],

3 https://www.dbpedia.org/community/lodmilla/
® https://yasgui.triply.cc/

" https://jupyter.org/

8 https://colab.research.google.com/

? https://matplotlib.org/

10 https://plotly.com/

96

VizKG: A Framework for Visualizing SPARQL Query Results over Knowledge Graphs

which identifies seven data categories and their associated standard vocabularies for vi-
sualizations in existing Linked Data infrastructure and workflow. LinkDaViz [14] is a
tool that allows for automatic data visualization. The tool features a recommendation
algorithm that automatically binds data properties to visualization options. Neverthe-
less, the tool does not support direct visualization of arbitrary SPARQL query results.
More recently, ProWD [11] is a user-friendly tool developed to visualize knowledge
imbalances in Wikidata. The tool supports visualization types like bar charts & area
charts, and demonstrates how KG visualizations can be relevant in practice. However,
the tool only caters to very specific use cases (i.e., knowledge imbalances) for a specific
KG (i.e., Wikidata).

Another stream of research focuses on supporting KG visualizations for more tech-
nical, SPARQL-savvy users. In this direction, the most prominent approaches are web-
based approaches, such as YASGUI [12] and Wikidata Query Service (WQS). YASGUI
is a web-based SPARQL client that can be used to query both remote and local end-
points. It allows visualizing SPARQL query results, albeit with limited visualization
types. Unlike a general-purpose SPARQL tool such as YASGUI, the WQS interface
has been customized for Wikidata to improve its functionalities. WQS supports a wide
variety of result visualizations in addition to the standard tabular view. The WQS inter-
face, however, can only be used on Wikidata. While these tools are helpful for technical
users, there are still gaps to support (generic) KG visualizations by the growing role of
data scientists, who typically rely on a specific environment (e.g., Jupyter Notebook)
for their data science pipeline.

3 VizKG Framework

In this section, we present the general VizKG architecture and workflow (Section 3.1),
VizKG visualization recommendation procedure (Section 3.2), and the extension mech-
anism for new visualization types (Section 3.3).

3.1 Architecture and Workflow

Fig. 1 displays the architecture as well as workflow of VizKG. VizKG consists of four
main stages: () Preprocessing, (i¢) Query Execution, (¢¢) Visualization Recommenda-
tion, and (¢v) Visualization Generation.

From the user input, VizKG receives a SPARQL query string, a SPARQL endpoint
URL, and (optionally) a preferred chart type (Step 1). Next, the Preprocessing stage of
VizKG parses the query string and validates the endpoint URL (Step 2). VizKG also
checks whether the selected chart type is supported or not. Then, in the Query Execu-
tion, VizKG invokes a REST-based API call to a remote SPARQL endpoint, to which
the SPARQL query is evaluated, and that subsequently the query results (in JSON for-
mat) are returned (Step 3). Afterwards, VizKG transforms the query results into a tab-
ular form. VizKG leverages the SPARQLWrapper!! library to support both the Prepro-
cessing and Query Execution stages.

' https://github.com/RDFLib/sparqlwrapper

97

VizKG: A Framework for Visualizing SPARQL Query Results over Knowledge Graphs

3

SPARQL
Endpoint

Preprocessing = Q"‘_efy
xecution

4
g:;:}(Data Type
” Identification
Retrieval

SPARQU
Mapping Chart Type
pChatTypel Identification
Checking]
i | Chart Type |

””” | Matching |
VizKG [

IExternal Library Process
=Main Process

STAR]

'
'
'
'
' Query Endpoint =
' i HCheckln =
INPUT: ' fa[Parsing, o call
query, endpoint, | ! j

chart_type
{optional)

Transform Query Data Visualization
Results into Libraries
: m:&<=0

Fig. 1. VizKG Architecture (bit.ly/VizKG-Architecture)

The next stage is the Visualization Recommendation. The first thing to do in this
stage is to identify the datatypes of each query variable (Step 4). The identified datatypes
as well as ordering of the variables serve as the main reference to determine recom-
mended charts (or visualizations) of the query results based on the VizKG mapping
rules (Step 5). In the case that a preferred chart type is given as an input parameter,
VizKG simply checks if the chart type is in the chart recommendations (Step 6). As for
the other case when there is no chart type preference given, VizKG bypasses the chart
type matching. In the Visualization Generation stage, VizKG maps the query result
variables to visualization components, and delegates the creation of the visualization
to off-the-shelf visualization libraries, such as Matplotlib, Plotly, and Seaborn (Step 7).
The final output would be the graphical visualization of the query results (Step 8).

3.2 Visualization Recommendation

The Visualization Recommendation stage determines which visualization types are suit-
able for the returned query results. Here we describe the stage in more detail.

First, the datatypes wrt. the variable values are identified via regex matching. We
support the following datatypes: numerical, date, URI, image, coordinate, and label.
Then, via the VizKG mapping rules,'> we check the compatibility of the datatypes of
the query variables with the datatypes of the supported charts.

In the checking process, we use the following heuristics: (z) all visualization com-
ponents (except the optional ones) must have query variables mapped into them; (z%)
the datatype of the query variable mapped must conform to the required datatype of the
chart; and (i72) whenever there are more than one conforming datatypes, the ordering
matters (i.e., it is first-come-first-map).

As an example, if there is a query result with two variables (i.e., V4 and V%) of
type numerical, then the visualization of scatter chart can be recommended, since there
are exactly two non-optional variables required with the same datatypes, and that the
variable V7 is mapped to the X-component and V5 to the Y-component of the scatter
chart. VizKG iterates over all visualization types, checking whether they are compatible
or not, and collects the compatible ones as visualization recommendations.

12 https://bit.ly/VizKG-MappingRules

98

VizKG: A Framework for Visualizing SPARQL Query Results over Knowledge Graphs

3.3 Extension Mechanism for New Visualization Types

In the code structure of VizKG,!? all chart implementations are made modular, in that
they have their own classes, inheriting from the Chart class. Every class added to
VizKG must then make concrete the methods of the datatype compatibility check-
ing, variable-to-component mapping, and visualization generation. These methods are
called during the visualization recommendation and generation stages. Furthermore, the
added chart implementation must be registered in the __init__.py and chartdict.py
configuration files, listing all the supported VizKG visualizations.

4 Evaluation

In this section, we report on the visualization recommendation evaluation and use case
evaluation of VizKG.

4.1 Visualization Recommendation Evaluation

To evaluate the accuracy of VizKG visualization recommendation (as described in Sec-
tion 3.2), we conduct an experimental evaluation using real-world SPARQL queries
taken from the Wikidata query examples page (as of September 16, 2021).'* We take
only the visualization queries from the page, that is, those queries starting with the
“#defaultView:[viz-type]” directive where viz-type refers to the preferred visualization
type for the query results. We consider 82 out of 92 visualization queries because the
remaining 10 queries either give no query results or a time limit error. We run the
queries using our VizKG library, and record the visualization recommendations given
by VizKG. Then, we check whether the VizKG recommendations include the original,
preferred visualization type, as stated in the “#defaultView:[viz-type]” directive of the
Wikidata queries.

From the experiment results, we observe that VizKG gives a correct recommenda-
tion in 72 out of 82 cases, giving an accuracy of 87.8%. One of the reasons for the
incorrect recommendations is that there is a difference in the mapping rules between
WQS and VizKG: WQS only requires one numeric variable to generate a scatter chart,
whereas VizKG requires two numeric variables. Overall, we believe that the visualiza-
tion recommendation of VizKG delivers quite a good result considering that the recom-
mendation procedure (as described before) is fairly simple.

4.2 Use Case Evaluation

We highlight use cases of VizKG in several domains (i.e., COVID-19, cultural heritage
in Indonesia, and higher education) over a number of knowledge graphs (i.e., Wikidata,
DBpedia, BudayaKB, and data.open.ac.uk). The visualization results are discussed be-
low and showcased in Fig. 2.

13 https://github.com/fadirra/vizkg
' https://bit.ly/WD-queries-examples

99

VizKG: A Framework for Visualizing SPARQL Query Results over Knowledge Graphs

covi D-‘D

/W'k'data: Growths of COVID-19 Cases, Deaths, and Recoveries

Wikidata: COVID-19 Vaccine Origins |

Wikidata: COVID-19

Cultural Heritag}

in Indonesia

Budaya KB: Number of Temples
in i

Y -

Wikidata: Number of Temples, Rituals, and &
Traditional Dances in Central Java and East Java o,

Higher Educatioh

ou: of lications by Faculty OU: Courses and Topics Offered

Fig. 2. VizKG Use Case Visualization (bit.ly/VizKG-Usecase)

COVID-19. This domain is relevant at the moment, particularly in regard to the lat-
est updates of the COVID-19 pandemic. The data source used is Wikidata, accessed
through its SPARQL endpoint.!> The visualizations made are about: (i) the growth of
COVID-19 cases, deaths, and recoveries using the stacked area chart type; (i¢) origins
of COVID-19 vaccines using the sunburst type; and (¢72) COVID-19 taxonomy using
the dimensions visualization type.

Cultural Heritage in Indonesia. In this domain, VizKG is evaluated over three different
KGs: Wikidata, DBpedia, and BudayaKB. As a context, BudayaKB is a KG specialized
for Indonesian cultural heritage, ranging from traditional music to folklores [10]. The
left figure uses a radar chart to compare the number of traditional dances, rituals, and
temples in the province of Central Java and East Java. The middle figure visualizes
how Indonesian temples distribute on the map. The right figure illustrates the different
number of temples by Indonesian provinces using the bubble chart type.

The middle figure, which is based on DBpedia,'® relies on the following SPARQL
query that retrieves Indonesian temples (= “candi” in Indonesian) including their geolo-
cations and labels.

'S https://query.wikidata.org/sparql
16 https://dbpedia.org/

100

VizKG: A Framework for Visualizing SPARQL Query Results over Knowledge Graphs

SELECT = WHERE {
?item dbo:wikiPageWikiLink dbr:Candi_of_Indonesia;
geo:geometry ?geo
?item rdfs:label ?itemLabel.
FILTER (LANG (?itemLabel) = "en")

In the query, there are three variables (in the order they appear): ?item, ?geo, and
?itemLabel. Via the VizKG mapping rules (as mentioned in Section 3.2), the query
results can be visualized into a map, by mapping the 2geo variable to the coordinate
component and the ?itemLabel variable to the popup component of the visualization.
Note that ?item need not be mapped in this case. A video demonstrating how VizKG
can be used to visualize a map of Indonesian temples in DBpedia is available.'”

Higher Education. Here, the data is obtained from the Open University (OU).'® The
topics are about employee profiles, courses, and publications of the Open University.
We showcase the number of employees based on the job title with the treemap visual-
ization, the number of publications by faculty using the donut chart type, and offered
topics and courses using the treemap.

5 Conclusions and Future Work

This paper proposes VizKG as a Python-based framework for visualizing SPARQL
query results over KGs. The framework facilitates the creation of visualization for
generic KGs, automatic visualization recommendation, and extension mechanism for
new visualization types. The VizKG visualization recommendation has been evaluated
over real-world queries from Wikidata and achieves an accuracy of 87.8%. The use
case evaluation of the VizKG framework is done over three domains (i.e., COVID-19,
cultural heritage, and higher education) and four KGs (i.e., Wikidata, DBpedia, Bu-
dayaKB, and Open University). All of our use case examples are available as a Google
Colab notebook."”

For future work, we plan to enhance the visualization recommendation with com-
patibility ranking so that not only binary recommendation is given. We also envision
that more rigorous user testing can be performed to get a better understanding of the
features and limitations of the VizKG framework. Furthermore, integrating the VizKG
framework to kglab,? a hub package for graph-based data science libraries, can be a
viable future direction to support wider audience.

17 https://bit.ly/VizKGDemoTemples
18 https://data.open.ac.uk/

19 https://bit.ly/VizKGColab

2 https://derwen.ai/docs/kgl/

101

VizKG: A Framework for Visualizing SPARQL Query Results over Knowledge Graphs

Acknowledgements

We thank the anonymous reviewers for their careful feedback. The dissemination of
this work is funded by a grant from Program Kompetisi Kampus Merdeka (PK-KM)
2021 of Faculty of Computer Science, Universitas Indonesia. Furthermore, this work
was sponsored by the Austrian Research Promotion Agency FFG under grant 877389
(OBARIS) and the Vienna Business Agency (VasQua project).

References

11.

12.
13.

14.

. Atemezing, G.A., Troncy, R.: Towards a Linked-Data based Visualization Wizard. In: COLD

(2014)

Brunetti, .M., Auer, S., Garcia, R., Klimek, J., Nec¢asky, M.: Formal Linked Data Visualiza-
tion Model. In: ITWAS (2013)

Ehrlinger, L., W68, W.: Towards a Definition of Knowledge Graphs. In: SEMANTICS
Posters and Demos (2016)

Fayyad, U.M., Grinstein, G.G., Wierse, A. (eds.): Information Visualization in Data Mining
and Knowledge Discovery. Morgan Kaufmann (2001)

Gomez-Romero, J., Molina-Solana, M., Oechmichen, A., Guo, Y.: Visualizing Large Knowl-
edge Graphs: A Performance Analysis. Future Gener. Comput. Syst. 89, 224-238 (2018)
Heer, J., Bostock, M., Ogievetsky, V.: A Tour through the Visualization Zoo. CACM 53(6),
59-67 (2010)

. Heim, P., Lohmann, S., Tsendragchaa, D., Ertl, T.: SemLens: Visual Analysis of Semantic

Data with Scatter Plots and Semantic Lenses. In: I-Semantics (2011)
Malysheyv, S., Krotzsch, M., Gonzélez, L., Gonsior, J., Bielefeldt, A.: Getting the Most Out of
Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge Graph. In: ISWC (2018)

. Perkel, J.M.: Why Jupyter is Data Scientists’ Computational Notebook of Choice. Nature

563(7729), 145-146 (Oct 2018)

. Putra, H.S., Mahendra, R., Darari, F.: BudayaKB: Extraction of Cultural Heritage Entities

from Heterogeneous Formats. In: WIMS. pp. 6:1-6:9 (2019)

Ramadhana, N.H., Darari, F., Putra, P.O.H., Nutt, W., Razniewski, S., Akbar, R.I.: User-
Centered Design for Knowledge Imbalance Analysis: A Case Study of ProwD. In: VOILA
(2020)

Rietveld, L., Hoekstra, R.: YASGUI: Not Just Another SPARQL Client. In: SALAD (2013)
Ristoski, P., Paulheim, H.: Semantic Web in Data Mining and Knowledge Discovery: A
Comprehensive Survey. J. Web Semant. 36, 1-22 (2016)

Thellmann, K., Galkin, M., Orlandi, F., Auer, S.: LinkDaViz — Automatic Binding of Linked
Data to Visualizations. In: ISWC (2015)

102

