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Abstract  
Newton's rings are an interference pattern related to fringes of equal thickness. This image can 

be obtained on a simple experimental optical setup. Modern common renderers, based on zero-

thickness ray tracing, calculate highly realistic images of complex 3D scenes, which are 

computer models of scenes from the real world. However, they do not allow you to reproduce 

such phenomena as interference, because they ignore even the polarization of light. 

Interference is studied by physical optics, and it is natural to assume that if the calculation is 

based on the "tracing" of waves in the scene, this problem can be solved. An algorithm is 

known when a solid beam of light is used instead of a light wave. The results of the calculations 

show images of the interference effects; Newton's rings are also calculated.  

This is an acceptable solution for simple scenes involving a few objects. It is also good for 

optical design systems, when the result is important, and not the time spent. But not practical 

for universal renderers, which must calculate the image in an acceptable time for very complex 

scenes. In this paper, we propose an algorithm based on the traditional method of tracing paths 

consisting of zero-thickness rays. Only on the last ray of a path that crosses the picture plane 

is the modification made. It is assumed that these rays characterize spherical wavelets. In this 

paper, we consider the results of applying the mentioned heuristics to classical optical 

experiments. 
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1. Introduction 

Interference can significantly change the visual perception of a scene without any changes in its 

geometry and the optical properties of objects. It depends on the positions of the light sources and the 

camera or observer. In this paper, we will only consider ray tracing and monochrome stage lighting for 

the calculation. Monochrome lighting allows you to most clearly trace the effect of the calculation 

algorithm on the image without hindrance, which can be introduced by waves of different lengths. 

Recall that only coherent rays can interfere: two or more [1], i.e. rays that are emitted by a single point 

source or a small differential neighborhood of an extended source. 

The interference can be calculated in the spectral rendering mode only, when the scene is rendered 

for each wavelength separately, and the intensity is associated with the ray. Alternatively, in 

monochrome lighting mode. Modern renderers do not allow you to reproduce such phenomena as 

interference, because they ignore even the polarization of light. In computer graphics, there are works 

devoted to algorithms for calculating more or less physically based images of interference effects. In 

the work [2] many of them were considered from different points of view, but here we will pay attention 

to only one characteristic: how these algorithms contribute to the intensity of the pixel of the picture 

plane.  

In the works [3-7] and a number of others, the main attention was most often paid to the problem of 

calculating a photorealistic image of interference in thin films. Soap bubbles and varnish coatings are 
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especially popular. In these works, the interference is calculated by dividing the wave amplitude. In 

fact, the authors, within the framework of a common renderer, when a tracing ray hit an interference 

object, called a special additional module that performed the interference calculation and returned the 

ray to the renderer with a new intensity. Undoubtedly, this approach freed the module developers from 

the need to monitor the impact of the ray on the picture plane. Therefore, it is possible to include the 

interference calculation module in an existing renderer. It is worth noting that the authors, calculating 

the interference of two rays inside a special module, often did not specify how the intensity of the 

resulting output ray is obtained. And this is a task similar to combining two coherent rays in a pixel. 

However, Glassner [4] specified this process, moving at this stage from rays to spherical waves. The 

right-hand scene in Figure 1 shows the situation with the division of the amplitude, which can be 

processed by the mentioned algorithms. In the mentioned works, a special module calculates 

interference of the rays 𝑟1 and 𝑟2 inside itself, and outputs a ray 𝑟𝑂𝑢𝑡 in the renderer format. In the 

case when coherent rays fall on the picture plane, passing through different paths in the scene, this 

approach does not work, in Figure 1: The interference of two coherent rays is calculated on the picture 

plane (left) and two coherent rays obtained by dividing the amplitude (right)this situation is shown on 

the left scene. And, therefore, in such cases, the interference effect may be missed and will not be visible 

in the image.  

  

 
Figure 1: The interference of two coherent rays is calculated on the picture plane (left) and two 
coherent rays obtained by dividing the amplitude (right) 

 

Interference is studied by physical optics, and it is natural to assume that if the calculation is based 

on the "wave tracing" in the scene, then this problem can be solved most physically correctly and 

accurately. For example, in the paper [8], instead of a light wave, a solid beam (or fat ray) of light is 

used, which has geometric dimensions that depend on the surrounding objects. The results of the 

calculations show images that realistically and physically correctly show the interference effects. For 

the first time, the results of rendering the photorealistic image of Newton's rings calculated under 

monochrome illumination are demonstrated. This is an acceptable solution for simple scenes involving 

a few objects. This is also acceptable for optical design systems, where the result is important, not the 

time spent. But it is impractical for universal renderers, which must calculate the image in an acceptable 

time for very complex scenes. Moreover, it is not yet clear whether it is possible to perform such beam 

tracing in any scene. Note that in the work [8] the emphasis is on optical design. Consequently, many 

scenes have a rather specific geometry similar to geometry of microscopes, which Bloss called the 

"optical tube" [9], in which it is quite convenient to trace the wave in the form of a solid beam. 

In computer graphics, various tracing shapes were studied – a cone, a beam, a pencil (a beam with 

a central ray). But all of them are not used in practice [10], it is more practical to use Monte Carlo 

tracing with zero-thickness rays. 

Newton's rings are an interference pattern referring to fringes of equal thickness. This image can be 

obtained on a simple experimental optical setup and photographed. We have not seen images of 

Newton's rings calculated on the basis of zero-thickness ray tracing in the literature. This was the 

motivation to choose fringes of equal thickness as the target test for the algorithm being developed, and 

especially the Newton rings. We propose an algorithm based on the traditional method of tracing paths 

consisting of zero-thickness rays. Only on the last ray of each path that crosses the picture plane is the 

modification made. It is assumed that these rays characterize spherical wavelets. In fact, the proposed 

approach is the next stage in the development of physically based algorithms for calculating 

photorealistic images of interference effects based on zero-thickness ray tracing. 



The second section discusses the main elements of a virtual setup or 3D scene for numerical 

experiments. The third section is devoted to the description of the algorithm. The fourth section presents 

the results of numerical experiments. The fifth and sixth sections contain the conclusions and 

acknowledgements. 

2. Virtual setup for numerical experiments  

A virtual setup is a 3D scene that should contain a light source and a screen, and then we can trace 

the paths of the rays in the scene as a whole. The scene also contains a certain number of objects, from 

the interaction with which the necessary branching paths occur. We prefer optically isotropic 

transparent objects, from the meeting with which the rays are bifurcated. The optical literature deals 

with such scenes in the most detail, since most of these books are devoted to the description of the 

operation of interferometers, for example, see [1]. 

2.1. Light source 

The light source 𝐿 is a homogeneous rectangular area that emits linear polarized monochrome light 

with a 𝜆 wavelength. In the experiments, the source is represented by a rectangular grid of nodes that 

play the role of point sources of directional linear polarized light. Each node 𝐿𝑖,𝑗 has its own unique 

identifier 𝐿id and emits the light ray of intensity 𝐼 strictly in the 𝐿d direction. We set the linear 

polarization using the coordinate right-hand system associated with the ray: 
{𝐗, 𝐘, 𝐿d}. 

In this implementation, we chose the coordinate system so that the oscillations of the electric vector 

occur along the 𝐗 axis. 

In experiments, light can be polarized, partially polarized or unpolarized. A wave or ray of 

unpolarized light is modeled as the sum of two linearly polarized rays (waves) with different identifiers 

𝐿ida and 𝐿idb with an intensity of 𝐼/2, in which the vectors of the electrical component oscillate in 

mutually perpendicular planes [1]. Note that both components of the decomposition of unpolarized light 

are independent and do not interfere, i.e., when rendering, they can be considered as independent point 

sources. 

Partially polarized light can be represented as the sum of the unpolarized and polarized parts. In the 

monochrome version, there is no need to use spectral rendering, since only one wave of light is used, 

but the wavelength itself is necessary for performing calculations.  

2.2. Scene objects 

In our experiments, optically isotropic transparent objects play the main role, for which the refraction 

index is specified. The interaction of the tracing ray with them is calculated based on the application of 

the Fresnel equations [1, 11]. 

2.3. Screen & rendering 

A rectangular screen 𝑆 consisting of square pixels is located on a picture plane. Naturally, any image 

is represented by a matrix of intensities. The source light can be represented as the sum of up to three 

(in the case of partial polarization) independent linear polarized components. In this regard, it is possible 

to render three times for each component separately, getting three independent matrices of intensities, 

which are then simply summed element by element.  

2.4. Problem 

It is necessary to develop an algorithm: a) based on the traditional method of tracing paths consisting 

of rays of zero thickness; b) allows one to calculate images visually similar to photos; c) calculate 



images visually similar to the calculated image of Newton's rings from the work [8]. Numerical 

experiments are performed for monochrome lighting in the scene. 

Does this result meet the criteria of photorealistic computer graphics? Yes, quite. It is enough to 

recall Phong's formula for specular reflection [10], i.e. a phenomenological simulation approach. In our 

opinion, in the work [4] Glassner was quite accurate: "As almost always seems to be the case, writing 

a good shader seems to involve some judicious trading off of accuracy and realism with approximations 

and pragmatism. I mean, we could simulate all of this at the molecular or even atomic level, but it 

wouldn’t show up in the results. The trick is to find a nice balance between simplicity, efficiency, and 

verisimilitude". 

It is obvious that in this paper we do not give a complete solution to the problem. Here we are going 

to formulate new physically based approach to rendering interference phenomena, which is supported 

by the results of numerical experiments. 

3. Proposed algorithm 

Let us represent a linear polarized zero-thickness tracing ray with attributes based on the works [2, 

11] in the form 

𝑅 = {𝑃0, 𝐝, 𝐗, 𝐘, 𝐼, 𝜆, 𝐿𝑖𝑑 , 𝑂𝑝, 𝛴} 

where: {𝑃0, 𝐝} is the mathematical ray, {𝐗, 𝐘, 𝐝} is the associated right-hand coordinate system, 𝑃0 is 

the origin of the ray, 𝐝 is the direction. The oscillations of the electric vector of electromagnetic wave 

occur along the 𝐗 axis, 𝐼 is the intensity, 𝜆 is the wavelength of the light, 𝐿id is the identifier of the point 

light source that generated the ray. Two rays are coherent if their source IDs are non-zero and match. 

𝑂𝑝 is the optical path of a geometric path traveled from the source, which is used to calculate the current 

phase of the electromagnetic wave [1]. 𝛴 is the phase jump accumulated during reflections from a denser 

medium, see [2, 11]. 

The generated rays (reflected and refracted) inherit some of the attributes, or they are recalculated 

during the contact of the incident ray with the scene surface. Note that the Fresnel equations apply. 

 

 
Figure 2: Correction of the optical path of the ray 

 

One of the most important issues that arise when calculating the interference in a pixel is taking into 

account a path 𝑇 of a ray from the light source to certain scene point 𝑃. Let us denote its optical path 

𝑂𝑃(𝑇, 𝑃).  Let us consider the example shown in Figure 2: Correction of the optical path of the ray. Let 

the two tracing paths 𝑇𝑞 and 𝑇𝑝 end with coherent rays 𝑅1 and 𝑅2, respectively, which fall into one pixel 

on the screen. In this case, the ray 𝑅1 hits the point 𝑄1; the ray 𝑅2  hits the point 𝑃1. The optical path of 

a single segment is equal to its length assuming that the refractive index of the scene space medium 

𝑛 = 1, see [1, 11].  



In the general case, the points 𝑄1 and 𝑃1 are different, but the interference calculation is only possible 

for coherent rays hitting one point of the screen. Both rays have traveled some unknown paths through 

the scene, and, in fact, the shapes of the fronts of the waves they represent are unknown.  

We apply the hypothesis (heuristic) that both waves have a spherical front and assume that the 

coherent waves intersect at an intermediate pixel point 𝐶 = (𝑄1 + 𝑃1)/2, which is defined as the 

intersection of circles with centers at  𝑄0 and 𝑃0, and interfere.  

Thus, instead of the segment 𝑄0𝑄1, we consider the segment 𝑄0𝐶, and instead of 𝑃0𝑃1, the segment 

𝑃0𝐶. According to the heuristic we compute the new optical paths: 

𝑂𝑃(𝑇𝑞 , 𝐶) = 𝑂𝑃(𝑇𝑞 , 𝑄0) + 𝑄0𝐶, 

𝑂𝑃(𝑇𝑝, 𝐶) = 𝑂𝑃(𝑇𝑝, 𝑃0) + 𝑃0𝐶. 

The monochromatic light source and the screen have grid representations. The grid nodes of the light 

source are the starting points of the paths, and the screen nodes are the pixel centers. As a rule, the 

experiments initially selected a pixel size of 0.01 mm. The grid step of the source is experimentally 

selected so that at least one pair of coherent rays fall into each pixel. If no pair of coherent rays hit any 

pixel on the screen, the source grid step decreased. Each pixel of the screen stores the following data:  

 𝐼𝑝𝑎𝑖𝑟𝑠 is the total intensity introduced by pairs of coherent rays falling into this pixel of the 

screen,  

 𝑁𝑝𝑎𝑖𝑟𝑠 is the number of pairs of such rays.  

Then the resulting intensity in a pixel is equal to 𝐼𝑝𝑎𝑖𝑟𝑠/𝑁𝑝𝑎𝑖𝑟𝑠. We considered to use the original 

values of the optical paths 𝑂𝑃(𝑇𝑞 , 𝑄1) and 𝑂𝑃(𝑇𝑝, 𝑃1) in the calculation. But after a series of 

experiments, we came to the solution described above. To calculate the interference term, it is necessary 

to know the difference between the optical paths 𝑂𝑃(𝑇𝑞 , 𝑄1) and 𝑂𝑃(𝑇𝑝, 𝑃1) in order to obtain the phase 

difference 𝑑𝜑, which is calculated by the formula  

𝑑𝜑 =   2𝜋(𝑂𝑃(𝑇𝑞 , 𝑄1) − 𝑂𝑃(𝑇𝑝, 𝑃1)) / 𝜆, 

see [1, 11]. On the other hand, a pixel of 0.01 mm at a wavelength of 500 nm fits a hundred wavelengths, 

and there is too vague a spread. So we settled on the described solution. 

Also in the first version of the proposed algorithm, the coherent rays crossing the picture plane in 

different pixels, we simply discarded from consideration. Therefore, the part of the energy emitted by 

the source was simply not taken into account. In the final version, only rays were discarded if the 

distance between the points of their intersection with the picture plane was greater than ε to reduce 

energy loss. In experiments, 𝜀 is equal to the pixel diameter. And the result of the interference is 

attributed to the pixel containing the point 𝐶. Thus, in many cases, it is possible to avoid reducing the 

source grid step due to empty pixels and not depend on borders between pixels. 

4. Numerical experiments 

Here we will present three installations that are described in sufficient detail in the literature on 

optics: an air wedge between two glasses, Newton's rings in transmitted light, and Newton's rings in 

reflected light. All glass objects are specified with a refractive index of 1.5. The refractive index of the 

medium is 1.0. 

4.1. Air wedge 

A similar installation is considered in [12], where a wedge is created by superimposing two thick, 

well-polished plane-parallel glass plates. A strip of thin paper is placed between the edges of these 

plates on one side. Thus, a small wedge-shaped air gap is formed between these plates, see Figure 3. 

In the simulation of this experiment, it was decided to take into account not two, but four rays from 

one source, since all four rays carry intensities of about the same order. Rays 𝑅1, 𝑅2, 𝑅3, 𝑅4 are 

coherent. It was found experimentally that the location of the lens and the screen is that in all cases rays 

𝑅1, 𝑅3  fall into one pixel, and the rays 𝑅2, 𝑅4 fall into another. It is impractical to consider more rays, 

because the rays obtained at a greater trace depth have a much lower intensity and do not significantly 

affect the interference pattern. Thus, the first two rays interfere in one pixel, and the second two rays in 



the other. Figure 4 shows the variants of images that were computed at the same scale, i.e. at the same 

maximum intensity. 

 

 
Figure 3: Diagram of the experimental scene and the path of the rays 

 

 
Figure 4: Different rays are taken into account in the calculations of interference fringes: left) only 
rays 𝑅1 and 𝑅3; center) only rays 𝑅2 and 𝑅4; right) all four rays 

4.2. Newton’s rings in transmitted light 

The setup for obtaining Newton's rings in transmitted light (see Figure 5 on the right) consists of a 

mercury lamp, a light filter, an installation for obtaining rings, a collecting lens, a shield, and a screen. 

The shield is an opaque circle in which a round hole is cut to limit the size of the image on the screen. 

Since we use monochromatic light, we do not need a filter. We also abandoned the shield in order to 

get an image of the rings on the entire screen, compare images shown in Figure 6. The virtual scene for 

obtaining Newton's rings in transmitted light is a glass plate, with which a plano-convex lens with a 

large radius of curvature 𝑟L = 2 meters is in contact. Figure 5 on the left shows only the rays of interest 

in the scene. The ray of light 𝑅0 falls normally on the flat surface of a plano-convex lens and is refracted. 

Then it passes through the lens and is refracted at the point 𝐴. Next, the ray passes through the air layer 

and falls on the glass plate at the point 𝐵.  

𝑅1 is the ray that passed through the glass plate. The ray reflected from the plate at point 𝐵 falls on 

the plano-convex lens at the point 𝐶. This ray, reflecting, falls on a glass plate and passes through it, 

this is the ray 𝑅2. The rays 𝑅1 and 𝑅2 are coherent and interfere. 

The images shown in Figure 6 confirm the photorealism of the image obtained because of the 

calculation based on the zero-thickness ray tracing. 



 

 

Figure 5: On the left: the passage of the rays through the ring-making installation; on the right: the 
scene of the experiment on obtaining Newton's rings in transmitted light [13]  

 

  
Figure 6: From left to right: the photo from [1] and the result of the zero-thickness ray tracing 
calculation, cut from the screenshot  

 

In [12], a practical application of Newton's rings is given, namely: by the number 𝑚 and the radius 

𝑟𝑚 of a ring, the radius of curvature 𝑟𝐿 of the plano-convex lens can be determined using the formula: 

𝑟𝐿 =
2𝑟𝑚

2

(2𝑚−1)𝜆
. 

We checked this fact using the screenshot, see Figure 7. Given that λ=500 nm, and the pixel size is 

0.005 mm, we perform the following calculations: 

 If 𝑚 = 1, 𝑟L =
2𝑟1

2

𝜆
=

2((142−0.5)·0.005)2

0.0005
≈ 2002,2mm ≈ 2m, 

 If 𝑚 = 6, 𝑟𝐿 =
2𝑟6

2

11𝜆
=

2((470−0.5)·0.005)2

0.0055
≈ 2003,9mm ≈ 2m. 

The obtained values are fairly accurate estimates of the lens radius. Note that this fact also confirms 

the high photorealism of the calculated image. Obviously, the error is related to the pixel size. 

 



 
Figure 7: Numbers and radii of rings on a screen 

 

4.3. Newton’s rings in reflected light 

As the initial prototype of the experiment, we took a demo clip [14], see Figure 8. The virtual scene 

itself is shown in Figure 9. 

 

  
Figure 8: A frame of a clip (left). Image on the wall (right) 

 

 

 
Figure 9: The passage of rays in the system and a setup 

 

Figure 10 shows the results of calculations. The two images on the right contain more rings because 

there is no bounding shield in the scene. 



   
Figure 10: Newton's rings in reflected light. From left to right: image from the work [8]; calculated 
image taking into account the rays 𝑅1, 𝑅2; calculated image taking into account the rays 𝑅1, 𝑅2, and 
𝑅3 

 

5. Conclusions 

We set the task to calculate images of Newton's rings, which are a fairly representative example for 

optical phenomena such as fringes of equal thickness. Basic requirement: the calculation must rely on 

zero-thickness ray tracing. Installations of this type are often called interferometers, they repeatedly use 

the method of dividing the amplitude of the electric component of the light wave. This corresponds to 

the division of the intensity associated with the ray. Newton's rings are convenient to use to confirm the 

visual validity of the algorithm, since there are available photos, see Figures 6 and 8. Sometimes there 

are additional theoretical tests, when the image can be used to check the values of certain quantities, 

based on the nature of the object. In our case, this is the determination of the radius of the lens by the 

numbers and radii of the rings in the image (see Figure 7). 

We would like to note that for the first time, images of Newton's rings were calculated based on 

zero-thickness ray tracing. In general, the problem is solved positively, and the proposed approach can 

be used to visualize interference effects in 3D scenes. Further study of the problem is needed to clarify 

the limits of the applicability of the approach. 

We have planned the development of the approach to other types of lighting in the scene, including 

natural light. Then in the future, this approach can serve as a base of modifications of renderers. 
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