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Abstract  
This article explores the capabilities of pretrained convolutional neural networks in relation to 

the problem of recognizing defects for which it is impossible to identify any abstract features. 

The results of training the convolutional neural network AlexNet and the fully connected 

classifier of the VGG16 network are compared. The efficiency of using a pretrained neural 

network in the problem of defect recognition is demonstrated. A graph of the change in the 

proportion of correctly recognized images in the process of training a fully connected classifier 

is presented. The article attempts to explain the efficiency of a fully connected neural network 

classifier trained on a critically small training dataset with images of defects. The work of a 

convolutional neural network with a fully connected classifier is investigated. The classifier 

allows for classification into five categories: «crack» type defects, «chip» type defects, «hole» 

type defects, «multi hole» type defects and «defect-free surface». The article provides 

examples of convolutional network activation channels, visualized for each of the five 

categories. The signs of defects on which the activation of the network channels takes place 

are formulated. The classification errors made by the network are analyzed. The article 

provides predictive probabilities, below which the result of the network operation can be 

considered doubtful. Practical recommendations for using the trained network are given. 
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1. Introduction 

Currently, the most advanced image recognition tool is convolutional neural networks [1-4]. The 

use of modern neural network architectures [5-8] and a large training set will certainly allow obtaining 

a high percentage of correctly recognized images. Such studies are no longer original. At the same time, 

identifying tasks in which it is quite possible to get by with networks of simple architecture is a hot 

topic. 

This article examines the operation of a convolutional neural network, which allows the 

classification of defects on products into five categories: defects of the "crack" type, defects of the 

"chip" type, defects of the "single pore" type, defects of the "accumulation of pores" type and "defect-

free surface". 

For each of the five classified categories, the researchers only had 55 images, meaning the entire 

training set consisted of only 275 images. Seventy five images (15 images per category) were used to 

validate the network during the training (validation) phase. The set of validation already at the training 

stage allows us to track the epoch from which the network retraining begins [1, 9]. In addition, there 
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were 50 test images (10 images per category) available, which were used to test the network 

performance after it was trained. 

2. Choosing a convolutional network architecture 

When choosing a network architecture, the researchers proceeded from the fact that the initial layers 

of the convolutional neural network highlight the most generalized (local) features (for example, 

boundaries and textures) in the image, while deeper layers highlight abstract concepts, that is, high-

level features (such as "cat's nose" or "bird's feather") [9]. When it comes to defects, it is rather difficult 

to talk about any abstract signs of defects, since defects look very amorphous. 

Thus, the main information about defects should be laid down in low-level features, the most 

complex of which can be, for example, broken lines (a sign of a crack), darkening on the surface or 

large accumulations of small dark spots (a sign of pore accumulation), violation of strict geometry at 

the edges. Products (a sign of chipping), a single spot (a sign of a separate pore), large surface areas 

with a uniform texture (a sign of a defect-free surface). These features are far from abstract, therefore, 

to identify such features, it is enough to use a convolutional network [10, 11] with a sufficiently small 

number of convolutional layers (no more than fifteen).  

Complex, abstract features (which are not detected in a problem with defect recognition), 

characteristic of specific classes, are “wired up” in deep layers. Therefore, to solve the problem of 

recognizing defects, we can remove not only the fully connected classifier [9], but also the deep 

convolution layers. The parameters of the convolutional basis of the network must be frozen in the 

process of training a new classifier, that is, only weights and thresholds [1, 9] of a fully connected 

classifier will be trained. Naturally, you can also retrain the parameters of the convolutional basis or its 

individual blocks. But this approach leads to significant time costs. 
Initially, an attempt was made to solve the problem of defect recognition using the AlexNET 

network [12]. The network was trained from scratch using the functions of the Keras library written in 

Python. To initialize the weights, a normal distribution with zero mean and a standard deviation of 0,1 

was used. The initial thresholds were set to 0.1. The RMSprop method [1] was chosen as the 

optimization method (gradient descent method). When training the network using Keras library 

functions, the initial learning rate was set to 
52 10 , and the rest of the parameters of the RMSprop 

algorithm were left by default (these parameters can be found in the description of the Keras library 

functions, for example, here [13]). 

Each iteration, five images (minibatch) from the training set were fed to the network input. Already 

after eight epochs of training, the effect of overfitting began to manifest itself: losses on the validation 

set began to increase, so training was stopped. The trained network showed poor performance results: 

the share of correctly recognized images from the test set was only 72%. Such a low recognition 

accuracy can be explained (in addition to the small volume of the training set) by the too primitive 

architecture of the network, as well as by ineffective initial initialization of weights and thresholds [14-

16]. In [1], it was shown that even the most successful combinations of the initial initialization of the 

neural network parameters and the gradient descent algorithm can significantly increase the network 

learning rate, but will not give a serious gain in the accuracy of image recognition. That is, even using 

the pre-trained AlexNET network does not guarantee high recognition accuracy after additional 

training. 

Subsequently, the problem of recognizing defects was solved using the VGG16 network [17-18]. To 

avoid the difficulties associated with the initial initialization of the weights and thresholds of the 

network, it was decided to use the VGG16 network, already trained on a million images (1000 images 

per category) from the ImageNet training set [9]. The VGG16 model is part of the Keras framework, 

and the capabilities of this library allow you to modernize the network for your tasks: a fully connected 

classifier was chosen, which has only one hidden layer of 256 neurons. The RMSprop method was 

chosen as the optimization method. The initial learning rate was set to 
52 10 . The size of the minibatch 

was five. The fully connected classifier was trained over 40 epochs, after which the overfitting effect 

began to be observed [1, 9]. 



After training the network, the classification accuracy of images on the validation set reached 92% 

(69 images out of 75 validation ones). The change in the percentage of correctly recognized images 

during training is shown in Figure 1. 

 
Figure 1: The process of changing the proportion of correctly recognized images in the learning 
process 
 

Testing on a test set (50 images) showed that the accuracy of the trained network is 90% (45 images 

out of 50 test ones).  

The figures in Figure 2 - Figure 6 shows examples of channels [9] of the VGG16 network, which 

are activated on the most characteristic signs of defects. 

 

  

Figure 2: Activation on broken lines, which are a sign of a crack (channel 188 in the third convolutional 
layer of the third block of the VGG16 network) 



 

  

Figure 3: Activation on blackouts, which are a sign of multi hole (channel 61 in the third convolutional 
layer of the third block of the VGG16 network) 

 

  

  

Figure 4:  Activation in areas where the smooth geometry at the edges is broken, which indicates the 
presence of a chip (channel 182 in the third convolutional layer of the third block of the VGG16 
network) 

 



  

Figure 5:  Activation on single spots, which are a sign of separate holes (channel 192 in the second 
convolutional layer of the third block of the VGG16 network) 

 

  

Figure 6:  Activation in large areas with a uniform texture, which is a sign of a defect-free surface 
(channel 240 in the third convolutional layer of the third block of the VGG16 network) 

3. Analysis of the results of the trained network 

Examples of recognized defects are shown in Figure 7 (the most difficult cases are selected). The 

parentheses in the figures indicate the true categories (class labels), without parentheses, the labels 

predicted by the network are indicated. The percentages in the figures are the predictive probability [1, 

9] of class membership. 

 



  
a) b) 

  
c) d) 

Figure 7:  Examples of the trained network operation: a – «crack» type defect; b - defect of the «multi 
hole» type; c - defect of the «chip» type; d - defect of the «separate hole» type 

 

Of particular interest are the faulty verdicts handed down by the network. In a test set of 50 images, 

only 5 images were incorrectly identified. In the validation set of 75 images, 6 images were incorrectly 

identified (at the time of the end of training). The two images are poorly classified even by an 

experienced operator. Another six out of eleven incorrectly recognized images are “uncharacteristic” 

images for the training sample. Such images should not be presented to the network: the use of image 

data in network testing is due to the limited availability of test and validation images. Another option 

for solving the problem is additional training or retraining of the network using "problem" images. 

Separately, it is necessary to pay attention to three erroneous verdicts of the network, which, upon 

first examination, may seem rather rude. In Figure 8a shows a defect-free surface that has been classified 

by the network as a "pore pool". In Figure 8b shows a defect of the “crack” type (the network classified 

the defective product as a defect-free surface). Nevertheless, the predictive probability for the cases 

presented in the figures in Figure 8a and Figure 8b is rather low, that is, the network “doubts” its verdict. 

In Figure 8c shows a clearly visible crack at the edge of the product. However, the network with a 

probability of 57.63% passed the verdict that the image shows a chip. This problem can be solved by 

adding images of products with cracks closed to the edges of the product to the training set. 
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Figure 8:  Errors made by the network  

4. Recommendations for using a trained neural network  

To formulate recommendations for using the network, you must first of all proceed from the analysis 

of errors made by the network. Erroneously recognized defects were found only among images with a 

predictive probability of less than 60% (Figure 8c shows an incorrectly recognized defect, the predictive 

probability for which is the highest among all incorrectly recognized images). Thus, if an engineer is 

interested not only in the fact of a defect, but also in its type, then any verdict made by the network with 

a probability of less than 60% should be considered doubtful. Such "questionable" images must be sent 

to an experienced professional for a final decision.  

On the contrary, all images for which the predictive probability exceeded 60% were correctly 

recognized by the network. This fact allows us to make a rather rough assumption that all verdicts for 

which the predictive probability exceeds 60% are reliable. Such an assumption, in spite of all its 

roughness, is quite acceptable for control processes, in which a certain percentage of errors is pre-built. 

Among all the test and validation images (a total of 125 images), there were only 21 images for 

which the network delivered a verdict with a predictive probability of less than 60%. That is, a rough 

estimate based on the analysis of the recognition results of test and validation samples shows that a 

trained neural network saves 83% (104 images from 125) time for examining samples from silicified 

graphite. That is, if the operator does not check for image defects, the predictive probability for which 

exceeds 60%, he will save 83% of the working time. 

If the researcher is interested only in the fact of the presence of a defect, and not in its type, then the 

percentage of “doubtful” images should be estimated from Figure 8b. The fact is that among all test and 

validation images with defects, only one image (Figure 8b) was incorrectly classified as a defect-free 

surface. Such errors are the most dangerous, since the defect that the network "overlooked" can be 

harmful. Based on Figure 8b, then we can conclude that all images for which the network delivered a 

verdict with a predictive probability of less than 40% should be sent to an experienced specialist for 

additional research. Among all test and validation images, only 6 images were identified that meet this 

requirement. Thus, if the researcher is only interested in the fact of the presence of a defect on the 

surface, then the trained network will save 95% of the time spent on examining samples. 

5. Conclusions  

Taking into account the smallness of the training set (when training commercial networks, 1000 

images per category are used), the result obtained (90% of correctly recognized images on the test set) 

indicates the effectiveness of using a pre-trained neural network of a simple architecture. This effect is 

most likely due to the fact that defects do not need to reveal any abstract features. That is, to recognize 

objects that do not have high-level features, it is quite sufficient to use pre-trained networks with a 



simple architecture. Only a fully connected classifier will be trained, which will significantly save time 

for training. 
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