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Abstract  
We propose a novel high-level approach for software development on GPU using Vulkan API. 

Our goal is to speed-up development and performance studies for complex algorithms on GPU, 

which is quite difficult and laborious for Vulkan due to large number of HW features low 

level details. The proposed approach uses auto programming to translate ordinary C++ to 

optimized Vulkan implementation with automatic shaders generation, resource binding and 

fine-grained barriers placement. Our model is not general-purpose programming, but is 

extendible and customer-focused.  For a single C++ input our tool can generate multiple 

different implementations of algorithm in Vulkan for different cases or types of hardware. For 

example, we automatically detect reduction in C++ source code and then generate several 

variants of parallel reduction on GPU: with optimization for different warp size, with or 

without atomics, using or not subgroup operations. Another example is GPU ray tracing 

applications for which we can generate different variants: pure software implementation in 

compute shader, using hardware accelerated ray queries, using full RTX pipeline. The goal of 

our work is to increase productivity of developers who are forced to use Vulkan due to various 

required hardware features in their software but still do care about cross-platform ability of the 

developed software and want to debug their algorithm logic on the CPU. Therefore, we assume 

that the user will take generated code and integrate it with hand-written Vulkan code. 
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1. Introduction 

Over the past 5 years, dramatic changes have taken place in the field of GPU programming, which 

put researchers and developers of deep learning algorithms, computer vision and computer graphics 

around the world in a difficult situation: widely used and convenient cross-platform technologies such 

as OpenCL, OpenMP do not provide access to the latest capabilities of modern GPU (indirect dispatch, 

command buffers, ray tracing, texture compression, and many other). Technologies which do provide 

enough hardware features are proprietary (CUDA, OptiX) or difficult/laborious (Vulkan, DX12, Metal). 

In practice, developers have to support several variants of the same algorithm for different GPUs to 

achieve the desired level of performance and compatibility. Moreover, the differences in the source 

code (and in performance) can be dramatic. For example, the implementation of image processing can 

be done via compute shaders or by using the graphics pipeline with hardware alpha blending or graphics 

pipeline with sub-passes on mobile HW. The essence of an algorithm does not change from how exactly 

it is implemented on the GPU, but developers should handle different versions and work with low-level 

details, which usually change for different GPUs. Our goal is to preserve pure algorithmic software 

description, but at the same time with the ability to use any existing or future Vulkan HW features. 
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2. Existing Solutions 

The number of existing GPU and FPGA programming technologies is significant [1] (and we believe 

that this indicates the high relevance of the problems outlined in the previous section). It’s possible to 

classify these technologies into several groups. 

Libraries. Usually aimed at specific class of developers who need implementations of specific tools 

or algorithms. This category includes such well-known libraries as TBB, Thrust [2], CUBLAS, IPP, 

NPP, MAGMA, [3], [4], HPX [5] and many others. Some of them turn into rather powerful software 

solutions (for example PyTorch [6], TensorFlow [7] and [8]). The main drawback of libraries is their 

narrow focus and limited capabilities. In addition, many libraries are deliberately deprived of the ability 

to be cross-platform (for example, TBB, Thrust, IPP, Intel Embree), since they are released by a certain 

CPU or GPU manufacturer in order to promote their own hardware and that is why they are made non-

portable. 

 Directive-based Programming Models. These include technologies such as OpenMP, OpenACC 

[9] C ++ AMP (Microsoft), Spearmint [10], OP2 [11], in works [12-13] and DVM / DVMH [14-16]. 

This approach has 2 key disadvantages. The first disadvantage is the absence of the control over the 

operations of copying and distributing data between the CPU and GPU, which is done automatically. 

This becomes a bottleneck and results in poor performance [17]. In solving this problem, interesting 

results were achieved in [12], where a software pipeline was used that combines the stages of execution 

on the CPU and GPU. However, the pipeline cannot always help and in certain situations, memory 

management and copying must be strictly controlled. The second disadvantage of this group of 

technologies is the extremely weak support for GPU hardware capabilities. For example, in OpenACC 

it is impossible to directly use shared memory, warp voting functions, there is no support for textures 

(which is unacceptable for high-performance and energy-efficient computer vision and computer 

graphics applications). Other technologies have similar problems as well.  
Skeletal Programming. This includes such works as SkePU [18, 19], SkelCL [20], SYCL [21] and 

its derivatives (Intel oneAPI). These technologies target developers actively using STL-like containers 

in C++. The goal is to have one implementation of the algorithm in C++, which can work efficiently 

both on the CPU and on the GPU, or hybrid execution (simultaneously on the CPU and GPU). The 

main advantage over previous group of technologies is higher efficiency for some algorithms (which 

actively use basic skeletons or their combinations). The disadvantage is a significant deterioration in 

readability, code maintainability and flexibility, since the implementation of the algorithms has to fit 

the skeleton which leads to unnaturally looking implementations [22]. In addition, skeletal 

programming inherits almost all the disadvantages of the previous group. However, it still took an 

important step forward, since it was the first to apply algorithmic optimizations on a GPU. 

GPGPU. This group includes CUDA and OpenCL – technologies which are employed by a wide 

class of professional GPU developers and can provide access to the wide range hardware capabilities 

of modern GPUs. Nowadays, CUDA is the dominant technology thanks to Nvidia's technological 

leadership. However, in addition to the lack of cross-platform functionality, it has many drawbacks: 

CUDA is a very heavy technology with a huge number of functionalities and versions (11 versions at 

the moment), which do not always work equally well on different Nvidia GPUs. Porting a software 

system from one version of CUDA to another is often time consuming.  

To overcome dependence on the single platform several open-source implementations of CUDA 

were developed using OpenCL or SIMD CPU instructions [23-25], as well as AMD HIP [26]. But this 

approach is inherently unsuccessful, - it has a critical problem: the lack of hardware support for certain 

functionality in OpenCL (or other technology used as a back-end) will lead to the fact that the algorithm 

either won’t work at all, or will work slowly (due to software emulation of this functionality), which is 

unacceptable for most GPGPU programming applications. As for OpenCL itself, the main drawback of 

this technology is the lack of support for the hardware functionality of modern GPUs. For example, the 

indirect dispatch [27], which wasn’t included in the recently released OpenCL 3.0 standard. This 

functionality is critical for complex algorithms where control flow is dependent on GPU computation 

[28].  

Graphics APIs, Vulkan. This includes technologies such as OpenGL4+, DirectX10 - DirectX11, 

DirectX12, Metal, Vulkan. GPU programming has changed a lot over the past 5 years with new 



hardware features in APIs such as Vulkan, DirectX12, and Metal. Further we will consider only Vulkan, 

because it is a cross-platform technology, unlike DirectX12 and Metal. Unfortunately, the complexity 

of developing programs using Vulkan exceeds the development using CUDA or OpenCL up to 10 times 

[29], which is a consequence of the manual control over many hardware capabilities. 

The traditional way of reducing code complexity is to create lightweight helper libraries, which can 

be general-purpose or specific for each application. However, in this case such an approach doesn't 

really help much, because the user still has to work with the same Vulkan entities, setting up and 

connecting the relationships between them. An alternative solution is to create a heavier version of a 

library or an engine that encapsulates Vulkan entities and tries to handle things automatically (V-EZ, 

VUH, Kompute). But this method does not greatly distinguish the engine from the work that, for 

example, the OpenGL driver does. This usually leads to suboptimal implementation and bugs, as the 

developer largely duplicates the work of the driver (or the other API). The problem is fundamental, 

because if someone is going to use Vulkan, they need a very specific low-level control on certain 

functionality that is supposed to be implemented and carefully configured in some places, but not for 

everything.  

Domain Specific APIs. This group is comprised of technologies such as Nvidia OptiX [30], 

Microsoft DirectML [31], AMD MIOpen. OptiX is a specialized technology for accelerating GPU ray 

tracing applications developed in C ++. OptiX includes two key technologies: (1) Hardware-accelerated 

ray tracing and (2) accelerating virtual function calls using shader tables. These 2 functionalities are 

also available in Vulkan and DirectX12. Since it is much easier to program in OptiX (and this is the 

only industrial-level technology of this kind that supports C ++), almost all industrial rendering systems 

have switched to OptiX: Octane, VRay, IRay, RedShift, Cycles, Thea and many others. Although the 

latest AMD GPUs have hardware support for ray tracing, in fact there is no alternative for users to 

Nvidia. Analogues (such as [32, 33]) significantly lag behind solutions based on OptiX. This is an 

example of how programming technology combined with hardware implementation established the 

monopoly of one GPU manufacturer, preventing the developers of rendering systems of the ability to 

create cross-platform solutions which is a significant drawback.   

Domain Specific Languages (DSL). This group targets developers working in specific fields, for 

whom it is important to achieve maximum simplification and abstraction from the details of the 

algorithm implementation on the GPU with a good level of performance.  

For example, the languages Darkroom [34] and Halide [35-37] are designed to create image 

processing algorithms. Cross-platform ability in Halide is achieved by implementing a large number of 

low-level layers, and high efficiency due to the use of optimized filter sequences. One of the key 

optimizations is based on the idea of reordering operations: if we consider applying two filters 

sequentially to an image, then often the image can be divided into regions and the entire chain of filters 

can be applied to each region at once: this decreases L2 cache misses.  

The disadvantage of DSL is that algorithms and knowledge written in them are difficult to transfer 

to other areas and difficult to integrate with the rest of software that does not use a DSL. In addition, 

the more areas the software solution targets, the more different DSLs will need to be used and stacked, 

which significantly complicates the development. For example, in modern computer graphics 

applications, shaders are essentially a domain-specific language. Currently in graphics and ray tracing 

pipelines an algorithm is distributed over several programs (from 2 to 5), supplemented by setting the 

pipeline state in C ++ code. This makes the process of writing a program extremely difficult, since there 

is no single description of the algorithm, but instead there are many disparate programs and 

configurable links between them in different places.  

Various high-level approaches. This group includes different unique solutions. 

[38] focuses on achieving cross-platform high performance. The goal is to have a single 

representation of an algorithm that can be translated into an efficient implementation on various 

computing systems. The means of achievement is the so-called “multidimensional homomorphisms”, a 

formal description of a problem at a high level that allows expressing computations with parallel 

patterns that can be implemented in different ways on different hardware. A significant limitation of 

[38] is the use of OpenCL as a low-level layer which does not provide access to many of the new 

capabilities of modern GPUs (including mobile ones) due to the limitations of the OpenCL. Next, [38] 

uses extremely limited DSL, which is a significant drawback.  



TaskFlow [39] proposes a model for expressing computations in the form of static and dynamic task 

graphs for heterogeneous computing systems. Tasks communicate with each other by streams of data 

along the edges of the graph through queues using the producer-consumer scheme. TaskFlow has the 

ability to build heterogeneous graphs (using both CPU and GPU) and then pipelined execution similar 

to [13]. Such a computation model is promising since it can not only be efficiently performed on CPU 

and GPU, but also can be used for prototyping hardware implementations on FPGA or VLSI. The 

disadvantage of TaskFlow is that the algorithm must be explicitly described in terms of task graphs, 

which is not very convenient for development and debugging.  

The PACXX compiler [40, 41] uses skeletal programming ideas, but is more convenient for use in 

existing code. PACXX directly implements modern C ++ constructs and translates the use of STL 

containers into GPU buffers. Unfortunately, PACXX does not provide access to many hardware 

features (for example, textures) which available even in CUDA and OpenCL. Therefore, from a 

practical point of view, its advantages over pragmas (for example, OpenACC) are not significant. 

The main purpose of Chapel [42] is to achieve cross-platform ability, so that a single description of 

the algorithm can work efficiently on both the CPU and GPU. In addition, it is positioned as easier to 

use than CUDA. For this, authors propose new language oriented towards parallel programming. But 

unlike Halide, it is a general-purpose language. The key disadvantage of this approach is that the user 

has to port a significant description of the algorithm to this new language, which is usually met with 

resistance in the industry because it means lack of cross-platform ability.  

Taichi [43] is a programming language and an optimizing compiler oriented on applications dealing 

with sparse data-structures including physical simulations, ray tracing and neural networks. Taichi 

allows users to write high-level code using proposed language (frontend is embedded in C++) as if they 

were dealing with ordinary dense multidimensional arrays. The compiler then generates intermediate 

representation, optimizes it and generates back C++ or CUDA code. Taichi also handles memory 

management and uses unified memory access feature available in CUDA. The ability to target both 

CPUs (by using such techniques as loop vectorization) and GPUs (although only using CUDA) is a 

strong point if this solution. The fact that Taichi targets operations on specific data structures allows it 

to produce highly optimized and efficient code, but at the same time limits its potential applications. 

Being a DSL Taichi also shares same drawbacks, however close integration with C++ somewhat 

alleviates them. 

Tiramisu [44] is a polyhedral compiler (that is, considering different optimization options for the 

same algorithm) that specializes in high-performance code generation for different platforms. At the 

same time, this compiler has several limitations. First, it only supports a specialized high-level 

language, which makes it difficult to implement in applications in other languages and increases the 

time spent on porting algorithms written in other programming languages. Second, it is targeted to 

cluster computing and has significant limitations in terms of hardware. 

The clspv compiler [45] translates OpenCL kernels into an intermediate GPU representation called 

SPIR-V (used by Vulkan to define shader programs) and thus can be used for Vulkan development. 

Unfortunately, it only supports compute shaders and is currently officially in the prototype stage 

(although it is already relatively stable, since it has been in development since 2017).  

The Circle compiler appeared 2 years ago, but it wasn't until 2020 that it became focused on GPU 

programming [46]. It is currently the only C ++ compiler in the world that supports the graphics 

functionality of modern GPUs (graphics pipeline, ray tracing pipeline, mesh shaders). But the 

development is still in the early stage. Circle is a traditional compiler, which itself has all the drawbacks 

of the traditional approach: If a developer starts using Circle as the main tool (that is, not only for 

shaders, but for the entire description of the algorithm), then it becomes dependent on it and assembly 

for any platform (including mobile systems) is no longer possible without Circle.  

2.1. Conclusion on existing solutions 

General purpose technologies do not support enough hardware features which hinders the 

performance and energy efficiency (for example, PACXX, OpenACC, DVMH, OpenCL, CUDA, 

TaskFlow). Low-level industrial APIs provide such support, but development on them is extremely 

laborious (Vulkan, Metal, DirectX12). Domain Specific Language (DSL) technologies and languages 



(Halide, Optix) are a good solution for both GPUs and even other computing systems (FPGA or ASIC). 

However, their key disadvantage is that algorithms and knowledge implemented with them are difficult 

to transfer to other areas and difficult to integrate with the rest of the software that does not use a 

domain-specific language. There are no technologies which can achieve 2 goals simultaneously: (1) 

cross-platform ability and (2) accessing specific HW features, because existing solutions don’t have an 

intermediate layer between high-level algorithm description and its actual implementation. Best results 

in this direction have been achieved in [43, 44, 38, 39]. 

3. Proposed solution 

The proposed programming technology is not general purpose, but it considers several different 

fields of application and tends to be customer-oriented. At the same time, unlike, for example, Halide 

[35-37], it does not use domain-specific languages (DSL), but instead extracts the necessary knowledge 

from ordinary C++ code. One of the main advantages of our technology is that the input source code is 

not extended by any new language construction or directives. It is assumed that the input source code 

is normal hardware agnostic C++ source code which in general can be compiled by any appropriate 

C++ compiler (with some limitations though). This significantly increases ability to cross-platform 

development using suggested technology. 

To achieve this, we turn the concept of programming technology upside down: instead of making a 

general-purpose programming technology for building various software systems, we propose an 

extendable technology that can be customized for a specific class of applications. Therefore, we use 

pattern-matching to find patterns in C++ code and transform them to efficient GPU code in Vulkan. 

Patterns are expressed through С++ classes, member-functions and relationships between them. 

 Before we proceed it is important to note the difference between our technology and most existing 

parallel programming technologies like CUDA, Taichi, Halide and others: they extend programming 

language with new constructions or propose new languages in which parallel constructions map to some 

efficient implementation in the hardware. Our approach is the opposite. First, we do not extend the 

programming language, but rather limit it. Second, our patterns don’t express hardware features. Instead 

of that, they express algorithmic and architectural knowledge. Thus, hardware features are the 

responsibility of the translator, not the user. There could be a lot of patterns in total, but in this work, 

we have implemented limited number of them. Therefore, we consider implemented patterns by 

examples. 

3.1. Patterns 

Patterns are divided into architectural and algorithmic. The architectural pattern expresses 

architectural knowledge of some part of the software. It determines the behavior of the translator as a 

whole and, thus, is responsible for an application area (for example, image processing, ray tracing, 

neural networks, fluid simulation, etc.). Algorithmic patterns express algorithmic knowledge and define 

a narrower class of algorithms that can have efficient hardware implementations and can be found inside 

architectural patterns. For example, parallel reduction, data compaction (parallel append to the buffer), 

sorting, scan (prefix sum), building histogram, map-reduce, etc. Now, let’s consider patterns that we 

have implemented in the current version of our translator: 

 Architectural pattern for image processing. This pattern provides basic GPGPU capabilities. 

The input source code looks like ordinary C++ code with loops in OpenMP-style except that we 

don’t actually use directives (pragmas). Instead of that we suppose that there is certain class with a 

control and kernel functions (listing 1). The kernel functions contain the code that is assumed to be 

ported to GPU almost “as is”. The control functions are the functions, which call kernel functions, 

and thus they define the logic of kernel launches and resource bindings.     

 Architectural pattern for ray tracing. The goal of this pattern is to provide access to hardware 

accelerated ray tracing and efficiently call virtual functions on GPU. Therefore, it can be considered 

as a cross-platform OptiX analogue. The significant difference between this pattern and the previous 

one is that in the image processing pattern loops are assumed to be placed inside kernel functions 



while in the ray tracing pattern they are assumed to be placed out of control functions (and thus out 

of kernels too). Therefore, ray tracing pattern is convenient if complex and heavy code is used for 

each thread or each processed data element, but the data processing loop is straightforward. The 

image processing pattern is convenient when number of threads (processed data elements) changes 

during the algorithm and inter-thread communication on GPU is actually needed for implementation. 

For example, if we need to resize (down sample) image, we can process small version of the image 

and then upscale it back. 

 Algorithmic pattern for parallel reduction. For this pattern, we detect access to class-data 

variables (members of input class, fig. 1) and generate code for parallel reduction on GPU. 

 Algorithmic pattern for parallel append of elements to the buffer and the related pattern of 

subsequent indirect dispatching. Imagine that you have a member-function which processes input 

data and appends some data to a vector via “std::vector.push_back(…)”. Now you are going to 

process selected data in the other function. This time, loop counter depends on “vector.size()” and 

thus actual number of threads on GPU should be different: it will be known only after first kernel 

finishes, therefore we have to insert indirect dispatch here. 

 

Listing 1 shows input code example and listings 2 and 3 – simplified output examples. 
1. class Numbers { 
2. public: 
3.   void CalcArraySumm(const int* a_data, uint a_dataSize) { 
4.     kernel1D_ArraySumm(a_data, a_dataSize); 
5.   }  
6.   void kernel1D_ArraySumm(const int* a_data, size_t a_dataSize) { 
7.     m_summ = 0; 
8.     for(uint i=0; i<a_dataSize; i++) { 
9.       int number = a_data[i]; 
10.       if(number > 0) 
11.         m_summ += number; 
12.     } 
13.   } 
14.   int m_summ; 
15. }; 

Listing 1: Example of input source code for the image processing architectural pattern. Calculation of 
sum of all positive numbers in the array. Kernel function and its dimensions (1D, 2D or 3D) are 
extracted by analyzing function name (kernel1D_ArraySumm, lines 6-12). Control function is extracted 
by analyzing its code: if at least one of the kernel functions is called from this function, then it is a 
control function (CalcArraySumm, lines 3-5). Any class data members which are accessed by kernels 
are placed in a single “class data buffer” (m_summ, line 14). Access for such variables is further 
analyzed. If in any kernel writes single variable on different loop iterations (line 11), then we generate 
parallel reduction code at the end of the shader for this variable (listing 3).  

1. class Numbers_Generated : public Numbers { 
2. public: 
3.   virtual void SetInOutFor_CalcArraySumm(VkBuffer a_dataBuffer) { ... } 
4.   virtual void CalcArraySummCmd(VkCommandBuffer a_commandBuffer, uint a_dataSize) { 
5.     m_currCmdBuffer = a_commandBuffer; 
6.     vkCmdBindDescriptorSets(a_commandBuffer, ... , ArraySummLayout, &allGeneratedDS[0], ... ); 
7.     ArraySummCmd(a_dataSize); 
8.   } 
9. protected: 
10.   virtual void ArraySummCmd(size_t a_dataSize) { 
11.     ... 
12.     vkCmdBindPipeline   (m_currCmdBuffer, ... , ArraySummInitPipeline); 
13.     vkCmdDispatch       (m_currCmdBuffer, 1, 1, 1);  
14.     vkCmdPipelineBarrier(m_currCmdBuffer, ... ); 
15.     vkCmdBindPipeline   (m_currCmdBuffer, ... , ArraySummPipeline); 
16.     vkCmdDispatch       (m_currCmdBuffer, a_dataSize/256, 1, 1); 
17.     vkCmdPipelineBarrier(m_currCmdBuffer, ... );   
18.   } 
19. ... 
20. } 

Listing 2: Getting some class as input, our solution generates an interface and implementation for the 
GPU version of the algorithms, implemented in control functions. Due to the peculiarities of Vulkan 



we have to generate 2 functions for each input control function. Thus, for CalcArraySumm we 
generate two funcs: SetInOutFor_CalcArraySumm and CalcArraySummCmd. When the first one is 
called, it creates descriptor set for input buffer (a_dataBuffer in the example) and saves it to 
allGeneratedDS[0]. We have deleted input pointer parameter a_data. In generated code pointer 
parameters of control and kernel functions are not used because this time all data is on GPU and they 
are accessed via descriptor sets in shaders. In this example 2 different shaders were generated: the 
first one is ArraySummInitPipeline which executes loop initialization (zero sum) and the second one is 
ArraySummPipeline which executes loop body (listing 3).      

 
1. __kernel void kernel1D_ArraySumm(__global const int* a_data, __global NumbersData* ubo, ...) { 
2.   __local int m_summShared[256*1*1]; 
3.   ... 
4.   int number = a_data[i]; 
5.   if(number > 0) 
6.     m_summShared[localId] += number; 
7.   ... 
8.   barrier(CLK_LOCAL_MEM_FENCE); 
9.   m_summShared[localId] += m_summShared[localId + 128]; 
10.   barrier(CLK_LOCAL_MEM_FENCE); 
11.   m_summShared[localId] += m_summShared[localId + 64]; 
12.   barrier(CLK_LOCAL_MEM_FENCE); 
13.   m_summShared[localId] += m_summShared[localId + 32]; 
14.   m_summShared[localId] += m_summShared[localId + 16]; 
15.   m_summShared[localId] += m_summShared[localId + 8]; 
16.   m_summShared[localId] += m_summShared[localId + 4]; 
17.   m_summShared[localId] += m_summShared[localId + 1]; 
18.   if(localId == 0) 
19.     atomic_add(&ubo->m_summ, m_summShared[0]); 
20. } 

Listing 3: Example of generated shader for the clspv compiler. The original loop body transforms to 
lines 4—6. It can be seen that access to m_summ was rewritten to m_summShared[localId] which is 
further used in parallel reduction at the end of the shader. Lines 13—17 implements optimized variant 
of parallel reduction for Nvidia HW assuming warp size is 32 threads. It changes depending on input 
parameters of our translator. For example, we can turn off optimization or assume smaller warp size 
(8 for mobile GPUs), or use subgroupAdd instead of 13—17 lines (available only in GLSL). 

3.2. Code generation 

The proposed generator works on the principle of code morphing [47]. The essence of this approach 

is that, having a certain class in a program and transformation rules we can automatically generate 

another class with the desired properties (for example, the implementation of the algorithm on the 

GPU). The transformation rules are defined by mentioned patterns, within which the processing and 

translation of the current code is carried out. The generated class in inherited from the input class, thus 

having access to all data and functions of input class. 

Input source code is processed via clang and libtooling [48]. Almost all tasks in our translator are 

done in 2 passes. On the first pass we detect patterns and their parts via libtooling: nested loops inside 

kernel functions, reduction access, access to class data members and et c. On the second pass we rewrite 

the source code using clang AST Visitors. The final source code is produced via templated text 

rendering approach [50]. Thus, our solution is implemented via pure source-to-source transformations 

and unlike Circle, for example, we don’t work with the LLVM code representation. While this approach 

has certain limitations (we can’t change input programming language, for example, to Rust or Ada 

which is easily achieved in the LLVM in general), it also has significant advantages: 

1. The generated source code for both shaders (OpenCL C for clspv [45] or GLSL) and host C++ 

with Vulkan calls looks like a normal code written by hand. It can be debugged, changed or 

combined with another code (hand written usually) in any way. Thus, unlike many existing 

programming technologies it is easy to distinguish errors of generator/translator from user errors. 

This is a problem for OptiX or Circle for example because we can’t see what programming 

technology actually does with the input code. 



2. The ability to generate source code for shaders gives us a huge flexibility by the subsequent 

shader compiler features because we can easily add different HW features support. The early version 

of our tool used only clspv [45] for shaders.  However, we quickly found that the capabilities of the 

clspv are not enough for ray queries, virtual functions and many other things. It is possible to add 

such support to clspv to get desired features in SPIR-V from OpenCL C shader source code, but this 

is expensive and hard way because both working with SPIR-V and clspv source code requires special 

knowledge and significant effort. At the same time, adding new HW feature support directly to the 

generated GLSL source code is relatively easy.  

CPU <=> GPU data transfer. As were mentioned in a related work review, many existing solutions 

solve the problem of data copying automatically. In most cases for software that uses Vulkan this is not 

satisfactory for many reasons. In the proposed approach, we generate code for executing algorithms on 

the GPU and performing copying and then let the user independently call this code. The generated 

function called “UpdateAll” performs this task. If user needs data back on the CPU from some internal 

data of generated class, he or she could make a new class, which is inherited from the generated one. In 

this class any additional algorithm or copying functionality can be implemented.  

Our solution implements the entire generated algorithm to the GPU, therefore, in general, all 

generated variables and buffers are located on the GPU. However, since the generated class is inherited 

from the original one, it also contains all the original variables and vectors on the CPU under their own 

names. The user either provides his own copy implementation to “UpdateAll” method (via the interface 

implementation), or uses ours from the library. Accordingly, temporary buffers are either created 

manually by the user or an implementation provided by us is used to create them. In the same way use 

may manually clear unnecessary CPU data after UpdateAll method. 

4. Experimental evaluation 

We evaluated our approach on several applications for which we generated different 

implementations (GPU v1—v3) using different options of our translator (fig. 1). Unlike traditional 

compilers these options force our translator to apply different HW features and different actual 

implementations of the same algorithm on GPU. Therefore, performance difference is significant in 

some cases. Results of our experiments are presented in tables Table 1 and Table 2. The GPU 

implementation is usually 30-100 times faster than a multicore CPU version which means performance 

is on desired level on average. Table 2, on the other hand, demonstrates the high labor intensity of 

implementing such experiments manually in Vulkan. Thus, performance study using our solution 

becomes easier. 

Reduction samples (#1--#3). Here we demonstrate the ability to detect and generate different 

implementations of parallel reduction. Although the speedup is not very significant (which is expected 

on such tasks), it was stable, in contrast to the multithreaded execution on the CPU for which #1 and 

#2 in average were slower than single threaded (we took the smallest time over several runs). GPU v1 

is a cross-platform implementation which uses Vulkan 1.0, doesn’t know warp size and doesn’t use 

subgroup operations. GPU v2 knows warp size (passed via command line argument) and thus may omit 

synchronization operations for several last steps of reduction (listing 3). GPU v3 knows warp size and 

additionally uses subgroup operations. 

 



 
Figure 1: Example applications of the proposed technology. Bloom filter (top, left), spherical 
harmonics integration (top middle), guided Non-Local Means denoising (bottom left and bottom 
middle), path tracing with different materials (for testing virtual functions) and procedural textures 
(right) and finally NBody simulation is on the top-right corner of the image. 

Table 1 
Execution time in milliseconds for different algorithms and different generated implementations via 
proposed technology. Because applications are different, v1—v3 means different optimizations for 
different samples. It is described in details further. First two rows show time in milliseconds for 
calculating the sum of 1 million numbers. This task is mapped to parallel reduction on GPU. The third 
row is spherical harmonic evaluation which is 2D reduction with some math. NLM means guided Non-
Local Means filter. For path tracing implementation on the CPU we used Embree ray tracing. CPU used 
is Intel Core i9 10940X, GPU is Nvidia RTX 2080. For Path tracing 512x512 image was rendered (i.e., 
256K paths were traced). ‘*’ means that for path tracing and v3 variant the generated code was 
finalized by hand due to early stage of GLSL generator in our solution. 

App/ 

Impl 

CPU (1 core) 

Input source 

CPU (14 cores) 

OpenMP 

GPU v1 

Ours 

GPU v2 

Ours 

GPU v3 

Ours 

(#1) Int Arr. Σ 1.263 ms 0.271 ms 0.095 ms 0.089 ms 0.084 ms 

(#2) Float Arr. Σ 1.420 ms 0.342 ms 0.104 ms 0.096 ms 0.096 ms 

(#3) Sph. Eval. 39.73 ms 2.931 ms 0.399 ms 0.364 ms 0.320 ms 

(#4) NBody 250400 ms 11920 ms 118.0 ms - - 

(#5) Bloom 711.8 ms 52.74 ms 0.733 ms 1.420 ms 0.841 ms 

(#6) NLM 88440 ms 6851  ms 422.0 ms 571.1 ms 351.0 ms 

(#7) Path Trace 188.4 ms 14.928 ms 4.790 ms 1.310 ms 0.460 ms* 

 

Nbody (#4) is classic GPGPU problem of a quadratic complexity for which we demonstrate 100 

times acceleration in comparison to multi-threaded CPU version. 

Bloom and Non-Local Means (#5, #6). In these samples we demonstrate the ability to change 

implementation of images from buffers (GPU v1) to textures (GPU v2) and use half float for texture 

format (GPU v3) which gives essential speed-up. It is interesting to note that for these image processing 

examples 32-bit float textures were slower than buffer variants. For Bloom buffers were even faster 

than a half-float textures which is due to the Load/Store access and general texture layout. In this way 

we show that performance question on GPU is not trivial and require to implement and test different 

variants of same algorithm. Withing proposed solution these experiments can be automated. 

 

 

Table 2 
Lines of code for different application. The first (C++) column shows original lines count for input class.  
The second column shows total line number for generated source code. Vulkan (compact) 



approximately estimates number of lines for the Vulkan code written by human without our approach. 
We did this by excluding descriptor sets setup from the generated code because it is quite verbose in 
our generator and it can be written in a more compact way manually. The last column shows lines 
number for device code in generated kernels.  

App/Lines C++  

(input source) 

Vulkan 

(generated) 

Vulkan 

(compact) 

Vulkan 

(shaders only) 

(#1) Int Arr. Σ 80 640 500 195 

(#2) Float Arr. Σ 80 780 650 285 

(#3) Sph. Eval. 120 1280 1000 445 

(#4) NBody 115 850 700 140 

(#5) Bloom 300 1460 1050 250 

(#6) NLM 330 1290 1000 250 

(#7) Path Trace 800 4500 3200 1470 

 

For Bloom we get 100x times speedup over multi-threaded CPU version and for Non-Local Means 

it is only 20x, which seems to be suboptimal for such a heavy task. In fact, there could be a lot of 

optimizations for image processing (at least more aggressive pixel quantization/compression), but we 

believe Halide [35-37] project did most of them and Taiichi did similar for physics simulation [53]. So, 

we decided to focus our performance investigation on ray tracing. For path tracing the initial generated 

code (which uses exactly same traversal algorithm) outperforms original CPU variant at factor of 10x. 

We then replace CPU ray traversal with optimized Embree (table 2) and got only 3x. Then we add 

hardware accelerated ray tracing in computer shader (12x) and generate single kernel via RTX pipeline 

which finally gives us 32x over multithreaded CPU path tracing with Embree.  

4.1. Path Tracing experiments (#7) 

Light transport simulation algorithms involve heavy mathematical models and require extensibility 

from the framework in which these algorithms are implemented. In existing CPU rendering systems, 

this usually means object-oriented approach. Therefore, it is not yet enough to accelerate ray tracing. 

To achieve efficiency on GPU we should study how complex and extendible code can be implemented 

on GPU. Currently, there are three general approaches: 

1. Single-kernel – the whole code for light path evaluation is placed inside a single kernel. There 

could be different option for optimizations (like OptiX state machines) [50]. This approach is good 

for relatively simple models, for example in computer games. However, with the growing code base 

it’s performance dramatically reduces due to branch divergence and register pressure.  

2. Multiple-kernel – code is split into several smaller kernels, which communicate by 

reading/writing data into GPU memory. The necessity to read/write data from/into memory results 

in significant performance overhead depending on an application [51] 

3. Wavefront path tracing. This approach extensively uses sorting and compaction of threads to 

organize them into several queues which execute different computational kernels. This helps to 

avoid branch divergence but may result in even bigger performance overhead [52]. 

Therefore, all of these approaches can be used (and are used) in real life applications and there is no 

single approach that is strictly better than the others in all cases. Depending on the available hardware 

and needed features, different implementations may be needed to achieve optimal performance. Even 

though the implementation in code of all these approaches is significantly different, the essential 

algorithm (path tracing) and implemented models (BRDFs) stay the same. The actual difference in these 

approaches is actually how these computer graphics algorithms are translated to the GPU code.  

 

4.2. Adding hardware ray tracing  

We implemented the basic path tracing algorithm and several material models on the CPU and used 

the proposed solution to generate the GPU Vulkan-based implementation with software ray tracing in 



a multiple-kernel way (GPU v1). The generation was performed using ray tracing pattern previously 

described in section 3.1. Generated GPU version corresponds to the CPU version and implements naive 

path tracing algorithm consisting of the following kernel launches: 

1. Primary (“eye”) ray generation. 

2. Loop until maximum tracing depth is reached: 

a. Ray trace kernel, which searches for intersection and stores surface hit (6 floats). 

b. Kernel to obtain material Id for hit surface (store 2 floats). 

c. Next bounce kernel which performs shading computations and stores the path state: new 

ray position and direction (8 floats) and accumulated color and throughput (8 floats).   

3. Kernel which contributes accumulated color to the output image. 

Therefore, the total size of ray pay-load is equal to 24 floats (96 bytes) per thread. 

Next, the host part of generated code was modified via virtual function override (we override 

generated ray tracing kernel call) to use the hardware accelerated ray tracing feature via 

VK_KHR_ray_query extension which allows using RTX functionality in the compute shaders (among 

others). Modification required less than 1000 lines of code (about the same as drawing a single triangle 

in Vulkan). This is a GPU v2. In way we show how generated and hand written code could be connected 

together (both CPU and GPU parts). Considering kernel launches described above, we simply replace 

Ray trace kernel with the new one which uses hardware accelerated ray queries. 

Finally, we have implemented several variants of exactly the same path tracing setup via full RTX 

pipeline for performance comparison. We took a part of generated GLSL code (functions of material 

sampling, etc.) and finalized it by adding to ray tracing pipeline. This is a GPU v3. In fact, there were 

3 different implementations of GPU v3 because RTX itself has many options (fig. 2, first 3 rows). 

In all cases path tracing was performed with tracing depth equal to 6 and with 8 samples per pixel 

(for larger sample numbers Nvidia Nsight runs out of memory for GPU trace). Measurements were 

made on a geometrically simple scene (about 31k triangles), but featuring a variety of material models 

- Lambertian, perfect mirror, glossy GGX and a blended material – GGX and Lambertian BRDF mixed 

with respect to a procedural noise texture mask. 

Initially we didn’t plan to generate single kernel version because for offline ray tracing applications 

it’s not the best option due to significant performance degradation when adding new materials and light 

source models. We didn’t even plan to generate GLSL code using our generator for logic, opposite we 

plan to replace specific parts of the algorithm (for example, ray tracing) via separate kernel calls. 

Interaction via DRAM seems to be natural and common for GPU programs, but it turned out that this 

approach is rather limited. First, clspv has only basic support for hardware features in shaders. Second, 

for relatively simple code base single kernel variant can be significantly better because less data is 

transferred to DRAM from chip (fig. 2). Nevertheless, our GPU v2 implementation almost caught up 

with the most flexible/stable variant of RTX via callable shaders (first row in fig. 2). This one seems to 

be a wavefront path tracing approach implemented by Nvidia inside RTX pipeline and it’s not cross-

platform. Thus, our further studies were related to a question: can we get the same performance as a 

solution based on callable shaders within the multiple-kernels framework by, for example, regrouping 

threads on material sampling to avoid branch divergence and high register pressure.     

 



 
Figure 2: Comparison of performance in millions of paths per second between different variants; 
1024x1024; RTX2080. Raygen “single”-kernel variant implements all material models inside ray 
generation shader, many closest hit kernels variants perform computations for different material 
models inside different closest hit shaders and many callable kernels – inside different callable shaders 
invoked from ray generation shader. The last 4 rows is GPU v2 (ray query, with different tailing 
variants) and GPU v1.  

4.3. Performance analysis and asynchronous compute for multiple kernel 

A problem of multiple kernel approach is that data which passes between kernels is stored in DRAM. 

Actually, if the size of the intermediate data is not large and it can fit into L2 cache, the work load of 

DRAM significantly decreases which we analyzed via Nvidia Nsight tool. Unfortunately, we cannot 

significantly reduce the number of active threads because barriers between kernels lead to a frequent 

situation when a previous kernel is still computing in a few threads, but the new one can’t be launched. 

So, for arbitrary tile size there is a tradeoff between L2 hit rate and amount of required memory and 

DRAM throughput for multiple kernel approach (fig. 3, blue lines).  

In fact, for multiple kernel approach we should try to reduce tile size because less memory will be 

required for intermediate data and DRAM workload will be reduced. This usually means more complex 

stuff can be done efficiently in future. To do this efficiently we have to get new independent work to 

GPU as previous kernel finishes execution. Thus, we decided to submit new work from independent 

queue using asynchronous compute in Vulkan (fig. 3, orange lines). Let’s say we have 1024x1024 

image and we have split it into tiles with the size of 256x256 pixels. We can process the whole image 

tile by tile, or we can, for example, process two 256x256 tiles asynchronously. For fair comparison we 

should take tile size twice as big for single queue as it is for two queues (for example, 512x256 for a 

single queue and 256x256 for two queues) so the actual buffer size would be the same. Even then, 

having two asynchronous queues shows ~10-12% better performance in the best cases on Nvidia GPU 

and up to 16% on AMD (fig. 3) over tile-by-tile approach. It can be seen from fig. 4 and 5 that AMD 

hardware implements asynchronous compute significantly better than Nvidia.  

Asynchronous tile-based approach implementation does not require many modifications to the code 

– we need to create additional queue from a different queue family, record command buffers for each 

tile using alternating queues (each tile launches the same kernels as described in 4.2) and submit the 

commands in a multithreaded fashion (so we won’t block on fence synchronization on the CPU). Note 

that the number of executed command buffers depends linearly on the number of tiles. 
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Figure 3: Measurements for (left) RTX 2080 with hardware accelerated ray tracing 
(VK_KHR_ray_query, GPU v2) and (right) AMD Vega 10 without it (GPUv1), 8 samples per pixel, ray 
tracing depth = 6, total image resolution 1024x1024. DRAM throughput decreases linearly from 90% 
(1024x1024) to 10% (for 128x128) and even less for smaller tile size. This is not shown on the image. 
Asynchronous compute (orange lines) shows significant performance increase over simple multiple 
kernel approach.  

Although rendering without splitting the image into tiles for this simple scene is still slightly faster, 

the difference is not essential (1-2%) and we’ve got significantly better HW metrics for units for 

proposed tiled rendering (table 3). So, with more complex materials tile splitting may actually become 

a better option. At the same time our approach reduces memory required for intermediate data up to 8-

16 times, depending on the tile size. This can be especially important for MCMC methods (Metropolis 

Light Transport) where large vectors are stored for each thread.  

Table 3 
Nvidia RTX 2080, Nsight Graphics Metrics 

Metric No tiles One 512x256 Tile Two 256x256 tiles  

VRAM throughput 48.9% 35.3% 23.8% 

L2 hit rate 23.1% 28.9% 48.7% 

L2 hit rate from L1 21.7% 28.4% 47.9% 

CS Warp can't launch 
(register limited) 31.6% 15.4% 6.3% 

Average time 35 ms 43 ms 39 ms 
 

Figure 4: Nsight Graphics GPU trace for RTX2080. Path tracing with asynchronous compute queues 
from different queue families. An asynchronous compute queue on Nvidia (top part of the image) runs 
like a “background” task. It can be seen that 8 submits from the main queue (bottom part of the image) 
takes same time than single submit to async compute queue. 
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Figure 5: Radeon GPU Profiler frame capture for Vega 10. Path tracing with asynchronous compute 
queues from different queue families. Unlike Nvidia, the workload floats freely between 2 queues.  

5. Conclusions 

We proposed a solution capable of alleviating the difficulties of porting a computationally intensive 

algorithm to the GPU using source-to-source translation of ordinary C++ code to C++ with necessary 

Vulkan API calls and shader code (OpenCL C or GLSL). During the code generation process different 

optimizations can be applied to create several implementations depending on the problem specifics 

and/or available hardware. This way we are able to increase GPU developers’ productivity by 

generating code using Vulkan (which can be quite verbose) and applying complex optimizations 

automatically to achieve maximum performance. We have shown that generated code could be 

connected to hand written adding hardware accelerated ray tracing. Finally, using the proposed solution 

and asynchronous compute in Vulkan we made a performance study for path tracing via multiple kernel 

approach and proposed an improvement for it which reduces required memory for intermediate data by 

an order of magnitude and uses GPU memory units in a more efficient way (table 3). 
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