
Shot Boundary Detection Method Based on a New
Extensive Dataset and Mixed Features
Alexander Gushchin1, Anastasia Antsiferova1 and Dmitriy Vatolin1

1Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow, 119991, Russia

Abstract
Shot boundary detection in video is one of the key stages of video data processing. A new method for
shot boundary detection based on several video features, such as color histograms and object boundaries,
has been proposed. The developed algorithm was tested on the open BBC Planet Earth [1] and RAI [2]
datasets, and the MSU CC datasets, based on videos used in the video codec comparison conducted at
MSU, as well as videos from the IBM set, were also plotted. The total dataset for algorithm development
and testing exceeded the known TRECVID datasets. Based on the test results, the proposed algorithm
for scene change detection outperformed its counterparts with a final F-score of 0.9794.
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1. Introduction

One of the basic steps in video processing is video scene splitting. For example, scene cutting is
a necessary step in video annotation and indexing [3], keyframe searching [4], and automatic
video format changing [5]. Existing algorithms have achieved high accuracy in detecting
transitions between scenes in general cases, but still make mistakes in detecting complex
transitions (Fig. 1).

Figure 1: Examples of flashes which cause errors in shot boundary detection.
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Also, existing algorithms have been developed based on open data sets that may contain
errors. For example, when analyzing one of the most popular BBC [1] datasets, several frame
inaccuracies were found in the markup of transitions: for example, in the From Pole to Pole video,
the first scene ends at 632 frames, but the second begins at 650 frames. Since the algorithm must
specify the frame number with the scene change, such errors have been corrected to work more
accurately. Thus, the challenges of creating a method for quickly and accurately partitioning
video into scenes, as well as creating a volumetric data set with accurate partitioning, are
relevant.

Since different definitions for scene transitions are found in the literature (for example, the
definition of a scene varies – it can be defined as a gluing of two perspectives or a semantic part
of a movie), the following are the basic definitions that will be used in this work. In this paper,
we have relied on the definitions given in the formal statement of the problem formulated by the
authors in [6]. The basic element of video is a frame, frames are combined into scenes (shots),
and scenes are combined into semantic scenes. A scene—is a continuous stretch of video, shot
with a single camera, without stitches or interruptions. A semantic scene is a sequence of scenes
with the same semantics. The task of the shot boundary detector is to indicate all the frames in
which a scene change has occurred. In most cases, the content within a scene changes gradually,
and at the boundaries there is montage gluing, so this task is trivial for humans. Scene changes
themselves are divided into two types – abrupt and gradual. Abrupt changes in scenes - the
momentary transition from a frame of one scene to a frame of the next. This can be dissolve
(the gradual appearance of a new scene on top of the previous one), fade (a gradual transition
to a black frame and back) or wipe. Examples of such transitions are shown in Fig. 2.

Most shot boundary detection algorithms work in 2 steps:

• Calculating the value of the frame difference metric or metrics
• Setting the threshold for frame classification. Also at this stage, machine learning is often

used for automatic classification.
• An additional step can be filtering frames for false positive detections.

The purpose of this work was to create a new method for shot boundary detection and
compare it with existing methods on a new large volume of data. The paper is further structured
as follows:

• In section 2, an overview of algorithms from the field is given, as well as datasets to
compare them

• Section 3 gives a detailed overview of the proposed approach to solve the problem at hand
• Section 4 contains the results of testing the open algorithms and comparing them with

the proposed method
• Section 5 contains conclusions and further plans.

2. Related work

In one of the most detailed works devoted to the analysis of [7] shot boundary detection
algorithms, the authors considered their drawbacks as ways to improve them. The main



Figure 2: Examples of scene changes.

drawbacks include the slow speed of operation, as well as errors in cases of flashes, fast camera
movement, etc.

In most existing methods, the first step is the calculation of features for frames. One of the
frequently used is the frame similarity metric for finding the degree of difference between
frames. As the scene changes, the value of this metric will increase, while inside the scene
it is close to zero. The most popular techniques are: calculation of color histograms [7], [8],
boundary gradients [9] [10] [11], geometric transformations [12] [13], motion vectors [14] [15].
One of the simplest methods of constructing this metric is a pixel-by-pixel comparison of frames
[7]. Other difference metrics are also calculated between frames — for example, [16] uses L*a*b*
space and the formula for the distance between colors in it.

The construction of color histograms was used, for example, in [7], [8]. Histograms can be
computed both for RGB and other color spaces (HSV, YCbCr, L*a*b*). With this approach, the
algorithm is less sensitive to motion within the frame, but may produce many false positives for
scenes with flashes and rapid light changes. The use of boundary gradients partially solves the
problem of false positives when the camera or objects move within the frame, allowing you to use
frame boundary matching without relying on lighting. Such a technique was used in [9] and [10].
In [11], the authors used object boundaries within frames to construct a histogram of directional
gradients. The histograms for different levels of the resolution pyramid are concatenated. This
approach allowed the authors to obtain the characteristics of object boundaries in the frame at
different levels.

The motion vectors were used in the following works: [17] [14] [15]. By using them, the
scene change detection algorithm can be adapted to the movement within the scene, the camera
movement or the appearance of a large object in the frame. Vectors take longer to compute
than approaches based on color or border histograms, but they can be used together with fast
computable metrics and achieve high accuracy (for example, if we consider motion vectors before
comparing frame boundaries). Also one of the popular techniques is geometric transformations
of frames – Contourlet, Fourier transform [12], Walsh Hadamard [13]. These methods are



sensitive to frame motion and resolution, which can seriously increase the running time of the
algorithm. The authors from [Contourlet] used an improved contourlet, which is not sensitive to
the problems mentioned above. Rarer ways of constructing metrics include SIFT, SURF, entropy
[18] [19]. They can give comparable accuracy, but require more computational resources.

Many of the methods described above can be applied not to the whole image, but to a part of
it. In this approach frame is divided into blocks (overlapping or not) and metric is calculated
for each block. Vector of such metrics can be concatenated, histograms (including cumulative
ones) [10]) or use statistics (e.g., expectation and variance). Partitioning into blocks allows the
algorithm to be less susceptible to changes in certain parts of the scene (e.g., rapid movement of
objects or flashes). Thus, using a combination of features based on different characteristics of
video and individual frames allows to achieve higher detection accuracy, reduce the number of
false positives, but increases the runtime of the algorithm.

After calculation of frame similarity metrics, each frame is classified into one of three cate-
gories: abrupt scene change (cut), gradual scene change (dissolve, vipe, fade in or fade out, no
scene change. Since the algorithm needs to analyze all frames, which is a resource-intensive
task, some authors use video preprocessing: they select, using additional fast algorithms, the
segments where scene changes are supposedly present and further process only those segments.
This approach assumes that no scene changes occur on frames that are not in these segments.
There are three main approaches to classification: classification by threshold, adaptive threshold,
and machine learning. Threshold (or a set of thresholds) is the simplest way to classify. The
values of a metric or metrics are compared to a predetermined threshold and a decision is made
as to whether a class belongs to a certain class. This approach is rarely used, as it is more
advantageous to select thresholds for each individual video based on its features. The adaptive
threshold does not have this disadvantage and can not only change depending on video [10], but
also depending on metrics values in some neighborhood of the frame [20]. Thus, the threshold
is adjusted not for the whole video, but for a particular scene. Recently, due to the development
of machine learning algorithms, they are increasingly used for classification: SVM[21], bagged
tree classifier[11], k nearest neighbors, neural networks. The authors of [22] have analyzed the
techniques used— according to their research, SVM showed the best results.

Certain video artifacts significantly complicate the detection algorithms–for example, flashes
and camera/object motion. Some of them can be eliminated at preprocessing stage — for example,
separate metrics for flashes [23] are introduced.

2.1. Existing datasets and benchmarks

In most papers on scene-shift detection methods, the authors compare the performance of
algorithms on the dataset used in the TRECVID competition. This is one of the most famous
and extensive comparisons of shot boundary detection methods, which has been conducted
annually for 7 years. It tested 57 algorithms using different sets of marked videos. After the
end of each competition, articles were released analyzing the participants’ solutions and their
results (e.g., [22]). The dataset included mostly documentaries and television shows. There are
also a number of articles comparing shot boundary detection methods (e.g., [7]).

We requested access to the TRECVID dataset, but unfortunately, due to Covid-19, the authors
were unable to provide it. (The vendor agreement requires sending the dataset on DVDs, and



the authors can’t do shipments at this time.) An alternative to this dataset is the use of public
datasets. There are several datasets at the moment – their comparison is given in the Table 1.
The BBC Planet Earth dataset consists of documentaries, RAI — from 10 randomly selected
segments of the broadcast of the television channel RAI scuola. These are mostly talk shows and
documentaries. Clipshots includes 20 categories of videos (sports, animals, amateur ...) collected
from youtube and weibo. The TRECVid dataset most commonly used for method testing is a
collection of 7 datasets that have been selected from different video categories. Unfortunately,
the size of the available datasets is inferior to the TRECVID set. In this paper, a new dataset
was created to train and test a new method for scene change detection (Table 1).

Table 1
Sizes of datasets used to analyze metrics and create a new SBD method. MSU CC and OS VSD datasets
were manually marked up.

Dataset name Length (minutes) Scene changes

Rai [2] 93 985
BBC Planet

Earth [1]
539 4844

MSU CC 39 274
OS VSD 954 6871

TRECVID 2007 360 2317

3. Proposed method

3.1. Marking up a new dataset

To create an algorithm for detecting scene shifts, a set of OS VSD [24] data was collected using
Yandex.Toloka [25]. The creation of a dataset is divided into several steps:

• A few algorithms configured in a way to maximize the completeness of the results was
running on all videos

• A list of potential scene changes was created by combining the results of all algorithms
• Each potential scene change was cut from the original video as a short video sequence of

40 frames long
• Yandex.toloka was used to show peoples all these sequences for markup

– For each video segment, observers indicated whether there was a scene change in it
– Each video segment was shown at least 5 different people, if the results were

not unambiguous the number of observers increased until an agreement between
observers was reached

This resulted in an additional 19 videos with a total duration of 965 minutes surpassing the
existing TRECVID. The table above shows other comparative characteristics of this set.



3.2. Base features

Methods that have shown high accuracy in existing comparisons were used as base features for
the new algorithm. To analyze them, a newly created OS VSD dataset was used, on which these
methods were compared.

In the first step, the proposed algorithm uses several metrics to describe frame differences.
These metrics are built on a boundary gradient, a frame color histogram to describe frame
differences. This approach allows to take into account several factors possible when changing
scenes and to get more information about the frames being compared. On the second stage, lgbm
algorithm is applied to these metrics for classification. It was chosen as a result of experiments
with different machine learning techniques.

First, let us describe the features that our algorithm relies on.

• Metrics proposed in [26]

– These metrics use the average value and standard deviation of the brightnesses of
the pixels in the block of frames.

• Cumulative color histogram metric

– It is based on [10]. First, the Sobel operator is applied to the frames to find the
edges, the trapezoidal smoothing function is applied, and the cumulative histogram
of frame blocks is calculated.

• Metric proposed in the Max Remain repository[27]

– It calculates the difference between color histograms of two consecutive frames
and builds the difference between them. The output is a vector of length 3 * 𝑛, 𝑛—
number of columns in histogram.

• Histogram of edges of objects in the frame

– At the beginning we apply Sobel operator to find the edges, divide the frame into 100
non-overlapping blocks, build a histogram of edges and compare it with neighboring
frames. A threshold is applied to cut off blocks which are different in neighboring
frames.

• Metric proposed in the aysebilgegunduz[28] repository

– metric is the distance bhattacharyya between histograms of consecutive frames.

• Metric proposed in the PyScene algorithm[29]

The [30] features were also tested, but were discarded during the experiments due to their
low accuracy compared to the other metrics.

3.3. Training

As a training dataset were selected 19 videos on video hosting youtube.com total duration of
26 minutes (38917 frames) . Also 2 videos from BBC Planet Earth set were added with total
duration of 96 minutes (144700 frames). Thus, the training dataset consisted of 21 videos of 122
minutes duration (183617 frames). There were 917 abrupt scene changes and 54 gradual scene



changes. The test dataset consisted of 9 videos taken from the BBC Planet Earth dataset and
10 videos and the RAI dataset. The total test dataset consisted of 563 minutes of video (804883
frames), with 4510 sharp and 348 gradual scene changes. Linear and logistic regression, SVM,
K-means, LGBM, and random forest were tried as a learning algorithm. The LGBM algorithm
showed the best results, and its parameters were chosen using crossvalidation. The graph of
the contribution of the features in the final model can be seen in Fig. 3.

Figure 3: Feature importance.

Figure 4: The metric value from the article [26] on a random segment of the video from the test dataset.
Blue line is metric value, vertical lines are frames with scene change.



4. Results

The accuracy of the algorithm was measured on a test dataset, and a comparison with coun-
terparts was made. The F1 score metric was used to measure the accuracy and recall of the
found scene changes. Table 2 shows the scores obtained: the proposed algorithm outperformed
popular methods in terms of accuracy.

Table 2
Average F1 score for the proposed methods and widely used and popular shot boundary detection
methods on BBC Planet Earth and RAI datasets.

Method Speed (FPS) F score Precision Recall

Proposed 31 0.9794 0.9784 0.9803
VQMT[31] 308 0.9476 0.9352 0.9604

FFmpeg[32] 165 0.9448 0.9307 0.9594
PyScene[29] 321 0.9526 0.9467 0.9586

Table 3
F1 score for the proposed methods and widely used and popular shot boundary detection methods on
OS VSD dataset.

Method Speed (FPS) F score Precision Recall

Proposed 31 0.8316 0.8212 0.8423
VQMT[31] 203 0.7379 0.7523 0.7241

FFmpeg[32] 104 0.7464 0.7571 0.7361
PyScene[29] 214 0.7560 0.7782 0.7351

The efficiency of the used metrics was also analyzed. Fig. 5 shows the values of metrics pairs
on each frame of training dataset. Different colors indicate the presence and absence of scene
changes. From the illustration we can see that many pairs of metrics make a clear classification,
for example, a pair of metrics from [26].

Fig. 4 shows an example of the [26] metric, which has the largest contribution to the accuracy
of the model, on a segment of video from the test set. It can be seen that on the frames with
scene changes the metric takes large values, easily separable from the rest.

5. Conclusion and future work

In this paper, we proposed a new method for determining scene changes based on different
metrics. The algorithm was tested on BBC Planet Earth and RAI datasets; its accuracy was
0.9784 and completeness was 0.9803. The proposed method outperformed its counterparts in



Figure 5: Metrics values on frames from the training dataset. Blue dots–frames without scene changes,
green–frames with scene changes

the F1-score metric. At the moment the speed of the algorithm is slower than analogues, as it
uses a larger number of features. In the further development of the project it is planned to speed
up the proposed method, as well as to analyze the performance of the methods in complex cases
for classification.
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