
Estimation of Optimal Number of Rays in the Bidirectional
Photon Mapping Method

Sergey Ershov1 and Alexey Voloboy1

1 Keldysh Institute of Applied Mathematics RAS, Miusskaya sq. 4. Moscow 125047, Russia

Abstract
The classic Monte-Carlo ray tracing is a powerful technique for simulating almost all effects

in ray optics, but it may be prohibitively slow for, for example, calculation of images seen by

a lens camera. Therefore, in practice there are often used its various modifications, in

particular, bi-directional stochastic ray tracing with photon maps. The well-known flaw of all

stochastic methods is their noise. The noise level, that is, the root mean square of pixel

brightness calculated during given time, depends, besides all, on the number of rays traced

from the light source and from the camera. The choice of the optimal parameters must provide

the lowest noise level in a fixed time. This article is devoted to the choice of the optimal number

of rays that minimizes the noise. It is proved that this minimal noise is in the same time

homogeneous over the image. We produce the formulae to calculate the optimal number of

rays from several coefficients which can be obtained from a bi-directional ray tracing of several

auxiliary variants. It happens that this optimum is rather wide i.e. the noise level changes with

the number of rays slowly, which allows to choose it including other factors e.g. limit this

number to save memory.

Keywords 1
realistic rendering, bi-directional Monte-Carlo ray tracing, photon maps, denoising

1. Introduction

Nowadays light simulation is widely used in realistic computer graphics and for design of new

materials and optical systems [1]. If wave effects may be neglected in simulation, then stochastic ray

tracing methods are preferable. This group of methods includes the simulation of light transport using

the Metropolis method [2] and stochastic ray tracing [3]. The classical forward Monte Carlo ray tracing

(which starts tracing from the light source) is inefficient for image generation, and therefore it is

replaced by bidirectional modifications of it [4–6]. One of the most popular methods among them is the

bidirectional stochastic ray tracing with photon maps (BDPM – Bidirectional Photon Mapping) [5, 7].

A well-known flaw of all stochastic methods is that they produce noisy results. Therefore, the noise

reduction problem always has primary importance. It is considered in many works, e.g., see [8–10].

The level of noise in BDPM mainly depends on the random scattering of the forward and backward

rays, on the choice of the vertex for their merging (or, in other words, on the vertex of the camera ray

trajectory at which luminance is estimated from photon maps), and also on the number of forward and

backward rays traced in one iteration step. The majority of studies is devoted to the first two issues

(e.g., [9–12]), and the number of rays got less attention. However, this is an important factor, and it

often happens that the number of forward rays is already redundant and its further increase only

increases the computation time but does not reduce the noise. In other cases, it may happen that the

number of forward rays is indeed critical, while the number of traced backward rays is redundant. It is

usually difficult to predict which fraction of the forward and backward rays is optimal: however, a good

choice can speed up the computations by several times.

GraphiCon 2021: 31st International Conference on Computer Graphics and Vision, September 27-30, 2021, Nizhny Novgorod, Russia

EMAIL: ersh@gin.keldysh.ru (S. Ershov); voloboy@gin.keldysh.ru (A. Voloboy)
ORCID: 0000-0002-5493-1076 (S. Ershov); 0000-0003-1252-8294 (A. Voloboy)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

In this paper, we propose a method which allows to estimate the optimal number of rays. A general

rule determining noise in the BDPM was derived in [8].

One must realize that the rate of convergence of stochastic methods like BDPM is not actually

determined the variance of the image calculated in one iteration (or another number of them), but the

variance after the fixed time of calculations. Indeed, if the variance of one iteration is decreases twice

while the time to calculate it increases tenfold, the situation obviously worsens.

Therefore, calculation of the optimum i.e. those number of camera and light paths that provide “the

best image” (or the fastest convergence) we must account for both the variance from one iteration and

the time spent on one iteration.

In this paper we produce the simple approximating law for that time and, combining it with the law

of dependence of the variance from one iteration on the number of rays, we derive the formulae for the

optimal number of rays. It happens that those distribution of camera rays per pixel that makes the noise

homogeneous is just the one which makes it minimal. This is especially convenient because eliminates

the problem of which spatial aggregate to treat as the “noise amplitude”.

2. Expression for the noise level

Generally the number of camera rays traced through a pixel may depend on this pixel, i.e. vary across

the image. The variance of the contribution of one iteration of BDPM can be calculated individually for

each pixel and is [11, 13]

𝑉(𝑝) =
𝐶(𝑝)

𝑁𝐹𝑁𝐵(𝑝)
+
1 − 𝑁𝐹

−1

𝑁𝐵(𝑝)
𝐵(𝑝) +

(1 − 𝑁𝐵
−1(𝑝))

𝑁𝐹
𝐹(𝑝)𝐶(𝑝) ≡ ⟨⟨𝐶2⟩⟩(𝑝) − ⟨⟨𝐶⟩⟩2(𝑝)𝐵(𝑝)

≡ ⟨⟨𝐶⟩𝐹
2⟩𝐵(𝑝) − ⟨⟨𝐶⟩⟩

2(𝑝)𝐹(𝑝) ≡ ⟨⟨𝐶⟩𝐵
2 ⟩𝐹(𝑝) − ⟨⟨𝐶⟩⟩

2(𝑝)

where 𝑁𝐹 is the number of light paths per iteration, 𝑁𝐵(𝑝) is the number of camera paths through the

pixel p per iteration, 𝐶(𝑋(𝐹), 𝑋(𝐵)) is the contribution to the pixel’s luminance from merging of the light

path 𝑋(𝐹) with camera path 𝑋(𝐵), its average ⟨⟨𝐶⟩⟩ obviously equals the limiting (exact) pixel’s

luminance 𝐿(𝑝), and ⟨⋅⟩𝐹 and ⟨⋅⟩𝐵 denote the averaging over (the ensemble of) light and camera paths,

respectively.

The variance of the image obtained during time Т is obviously

𝑉𝑇(𝑝) ≡ 𝑉(𝑝)
𝜏

𝑇

where 𝜏 is the (average) time spent on one iteration. Therefore the value that determines convergence

rate and which, therefore, must be minimized to obtain the best image, is

𝑉(𝑝) ≡ 𝑉(𝑝)𝜏 (1)

Let’s estimate the average time per iteration. The iteration in BDPM consists of three successive

parts:

● BMCRT (from camera);

● FMCRT (from light source);

● “Merging” of the above sub-paths, when each light path is (attempted to) join with each camera

path.

The total iteration time is the sum of these partial timings denoted as 𝜏𝐵 , 𝜏𝐹 , 𝜏𝑚𝑒𝑟𝑔𝑒 respectively.

The time spent on the first parts is obviously linear in the number of rays. For the third part, it is linear

in the number of their pairs. The general functional form is then

𝜏𝐵 =∑

𝑝

𝛽(𝑝)𝑁𝐵(𝑝), 𝜏𝐹 = 𝛼𝑁𝐹 , 𝜏𝑚𝑒𝑟𝑔𝑒 = 𝑁𝐹∑

𝑝

𝛾(𝑝)𝑁𝐵(𝑝) (2)

where 𝛽(𝑝) has the sense of the average time spent on tracing of one camera ray through the pixel p, 𝛼

has the sense of the average time spent on tracing of one light ray and 𝛾(𝑝) is the average time spent

on “merging” one pair of light ray and one camera ray (through pixel p). This 𝛾(𝑝) can depend on the

pixel because for different pixels the camera rays go different parts of the scene where the density of

light rays (and thus the probability of the merging) is different.

Summing, we have

𝜏 = 𝜏𝐵 + 𝜏𝐹 + 𝜏𝑚𝑒𝑟𝑔𝑒 = 𝛼𝑁𝐹 +∑

𝑝

𝛽(𝑝)𝑁𝐵(𝑝) + 𝑁𝐹∑

𝑝

𝛾(𝑝)𝑁𝐵(𝑝) (3)

Substituting (3) in (1) we see that the value to be minimized to obtain the best image is

𝑉(𝑝) = (
𝐶(𝑝)

𝑁𝐹𝑁𝐵(𝑝)
+
1 − 𝑁𝐹

−1

𝑁𝐵(𝑝)
𝐵(𝑝) +

1 − 𝑁𝐵
−1(𝑝)

𝑁𝐹
𝐹(𝑝))(𝛼𝑁𝐹 +∑

𝑝

𝛽(𝑝)𝑁𝐵(𝑝)

+ 𝑁𝐹∑

𝑝

𝛾(𝑝)𝑁𝐵(𝑝))

Usually the number of rays is much greater than 1, so we can neglect the terms 𝑁𝐵
−1(𝑝) и 𝑁𝐹

−1:

𝑉(𝑝) = (
1

𝑁𝐵(𝑝)
(
𝐶(𝑝)

𝑁𝐹
+ 𝐵(𝑝)) +

𝐹(𝑝)

𝑁𝐹
)(𝛼𝑁𝐹 +∑

𝑝

𝛽(𝑝)𝑁𝐵(𝑝) + 𝑁𝐹∑

𝑝

𝛾(𝑝)𝑁𝐵(𝑝))

3. Minimization of noise

Usually the noise is not homogeneous over the image, i.e. it depends on the pixel. It is not very

convenient because it is difficult to decide, which is better to have less noise on the floor yet stronger

in the ceiling or vice versa? Therefore usually we use a single measure of noise, e.g. the maximum over

the image, which better corresponds to the visual perception of “noisy” or “clear” images.

Therefore, what we need to minimize is 𝑉(𝑝) .
It happens that (it will be so should 𝑁𝐵(𝑝) be continuous instead of integers) in this case the noise

is homogeneous i.e.

𝑉(𝑝) = 𝑉(𝑝) ≡ 𝑉

Indeed, let us suppose the opposite: that in some pixel 𝑝∗ the noise is below the maximum i.e.

𝑉(𝑝∗) < 𝑉(𝑝) . Now let us decrease (infinitesimally as now we treated it as a continuous parameter!)

𝑁𝐵(𝑝∗). Obviously, in all the other pixels but 𝑝∗ the noise will decrease after it because of decrease of

the time spent on one iteration 𝜏:

𝛿𝑉(𝑝) = 𝑉(𝑝)
𝛿𝜏

𝜏

while 𝑉(𝑝) for these pixels won’t change. In the same time in pixel 𝑝∗ the change of noise level will be

𝛿𝑉(𝑝∗) = −
1

𝑁𝐵
2(𝑝∗)

(
𝐶(𝑝∗)

𝑁𝐹
+ 𝐵(𝑝∗)) 𝜏𝛿𝑁𝐵(𝑝∗) + 𝑉(𝑝∗)

𝛿𝜏

𝜏

In view of our supposition 𝑉(𝑝∗) < 𝑉(𝑝) the maximum is achieved outside 𝑝∗ where for each pixel

𝛿𝑉(𝑝) = 𝑉(𝑝)
𝛿𝜏

𝜏
. Therefore, 𝛿𝑉(𝑝) = 𝑉(𝑝) and

𝛿𝑉(𝑝) − 𝛿𝑉(𝑝∗) = (𝑉(𝑝) − 𝑉(𝑝∗))
𝛿𝜏

𝜏
+

1

𝑁𝐵
2(𝑝∗)

(
𝐶(𝑝∗)

𝑁𝐹
+ 𝐵(𝑝∗)) 𝜏𝛿𝑁𝐵(𝑝∗)

By supposition, 𝑉(𝑝) − 𝑉(𝑝∗) > 0 and since 𝛿𝑁𝐵(𝑝∗) < 0, 𝛿𝜏 < 0, then

𝛿𝑉(𝑝) − 𝛿𝑉(𝑝∗) < 0

In other words, after our change 𝑉(𝑝) − 𝑉(𝑝) decreases, i.e. the distribution of noise becomes

more homogeneous. Simultaneously the maximum of noise decreases i.e. we approach the optimum.

Therefore, if the distribution of noise is not homogeneous, then varying the number of camera rays

(through those pixels where the noise is below the maximum) we can make it more optimal (smaller).

In other words, an inhomogeneous distribution cannot be the optimal (since it admits improvement).

Therefore, the optimal noise distribution is homogeneous.

In fact the limitation that 𝑁𝐵(𝑝) must be integer distort this simple solution, but in case 𝑁𝐵(𝑝) is

large enough, the effect must be weak. One may not though hope to reach the homogeneous distribution

with small number of camera rays, so it is better to have it large enough so that it be at least 3 in the

“worse” pixels (recall that the roundoff error is below half unit!).

So we should estimate the number of camera rays that yields a homogeneous distribution of noise.

For the sake of simplicity let us consider the case when
1

𝑁𝐹
𝐹(𝑝) is negligible (as compared to the other

noise components) which for the case of BDD>0 is if not always then very frequently. Then

𝑉(𝑝) =
1

𝑁𝐵(𝑝)
(
𝐶(𝑝)

𝑁𝐹
+ 𝐵(𝑝))(𝛼𝑁𝐹 +∑

𝑝

𝛽(𝑝)𝑁𝐵(𝑝) + 𝑁𝐹∑

𝑝

𝛾(𝑝)𝑁𝐵(𝑝)) (4)

and one can see that the homogeneous distribution of noise is achieved when

𝑁𝐵(𝑝) = 𝑐𝑜𝑛𝑠𝑡 × (
𝐶(𝑝)

𝑁𝐹
+ 𝐵(𝑝)) = (

𝐶(𝑝)

𝑁𝐹
+ 𝐵(𝑝))

𝑁𝐵

𝐵 +
𝐶
𝑁𝐹

 (5)

where 𝑛𝑥, 𝑛𝑦 denote the image size in pixels and

𝐵 ≡
1

𝑛𝑥𝑛𝑦
∑

𝑝

𝐵(𝑝), 𝐶 ≡
1

𝑛𝑥𝑛𝑦
∑

𝑝

𝐶(𝑝)

Now we have just two free parameters: 𝑁𝐹 and the scale factor 𝑁𝐵 for the number of camera rays

(notice the actual average number of camera rays per pixel will deviate from it because of rounding)

which must be varies to minimize the (now homogeneous!) noise.

4. The optimal 𝑵𝑭 and 𝑵𝑩

Substituting (5) in (4) and writing 𝑉 instead of 𝑉(𝑝) because now the noise is homogeneous, one

has

𝑉 = 𝛼�̂�
1

𝑁𝐵
+ 𝛼�̂�

𝑁𝐹
𝑁𝐵
+
1

𝑁𝐹
𝛽�̂� + 𝑁𝐹𝛾�̂� + 𝛽�̂� + 𝛾�̂�

where the overhat denotes the sum:

𝑓 ≡∑

𝑝

𝑓(𝑝)

One easily finds that for the given 𝑁𝐵, minimum in 𝑁𝐹 is achieved for

𝑁𝐹 = √

𝛽�̂�

𝛼𝐵
𝑁𝐵
+ 𝛾�̂�

 (6)

Denoting

𝜂 ≡ √
𝛼𝐵

𝑁𝐵
+ 𝛾�̂�

we can write this minimum as

𝑉 = (𝜂2 − 𝛾�̂�)

(

𝐶

𝐵
+
√𝛽�̂�

𝜂

)

 + 𝜂√𝛽�̂� +
𝛾�̂�√𝛽�̂�

𝜂
+ 𝛽�̂� + 𝛾�̂� =

𝐶

𝐵
𝜂2 + 2𝜂√𝛽�̂� −

𝐶𝛾�̂�

𝐵
+ 𝛽�̂� + 𝛾�̂�

Obviously, this is a monotone increasing function of 𝜂 and thus a monotone decreasing function of

𝑁𝐵. Therefor there is no extremum in 𝑁𝐵 and formally the greater this value, the better. However too

many rays per pixels is bad as concerning memory etc. Therefore it is reasonable to take such 𝑁𝐵 that

the noise is only (1 + 𝜖), where 𝜖 is a small number, times the limiting noise value for 𝑁𝐵 → ∞ i.e.

𝐶

𝐵
𝜂2 + 2𝜂√𝛽�̂� −

𝐶

𝐵
𝛾�̂� + 𝛽�̂� + 𝛾�̂� = (1 + 𝜖) (2√𝛾�̂�√𝛽�̂� + 𝛽�̂� + 𝛾�̂�)

or

𝐶

𝐵
𝜂2 + 2𝜂√𝛽�̂� − (

𝐶

𝐵
𝛾�̂� + 𝜖(𝛽�̂� + 𝛾�̂�) + 2(1 + 𝜖)√𝛾�̂�√𝛽�̂�) = 0

which is achieved for

𝜂 =

−√𝛽�̂� + √𝛽�̂� +
𝐶
𝐵 (
𝐶
𝐵 𝛾�̂� + 𝜖(𝛽�̂� + 𝛾�̂�) + 2

(1 + 𝜖)√𝛾�̂�√𝛽�̂�)

𝐶
𝐵

=

−√𝛽�̂� + (√𝛽�̂� +
𝐶
𝐵
√𝛾�̂�)√1 + 𝜖

𝐶
𝐵

𝛽�̂� + 𝛾�̂� + 2√𝛾�̂�√𝛽�̂�

(√𝛽�̂� +
𝐶
𝐵
√𝛾�̂�)

2

𝐶
𝐵

≈ √𝛾�̂� +
𝜖

2

𝛽�̂� + 𝛾�̂� + 2√𝛾�̂�√𝛽�̂�

√𝛽�̂� +
𝐶
𝐵
√𝛾�̂�

(We naturally discarded the negative root) or

𝑁𝐵 =
𝛼�̂�

𝜂2 − 𝛾�̂�
=

𝛼𝐵

(

 −

√𝛽�̂� + √𝛽�̂� +
𝐶
𝐵 (
𝐶
𝐵 𝛾�̂� + 𝜖(𝛽�̂� + 𝛾�̂�) + 2(1 + 𝜖)

√𝛾�̂�√𝛽�̂�)

𝐶
𝐵

)

2

− 𝛾�̂�

≈
1

𝜖

𝛼𝐵 (√𝛽�̂� +
𝐶
𝐵
√𝛾�̂�)

√𝛾�̂� (𝛽�̂� + 𝛾�̂� + 2√𝛾�̂�√𝛽�̂�)

(7)

Substituting it in (6) we obtain the optimal number of the light (forward) rays:

𝑁𝐹 =
√𝛽�̂�

𝜂
≈ √

𝛽�̂�

𝛾�̂�
 (8)

5. How to estimate the timings

The value of 𝛼, i.e. time spent on average on one light (forward) ray is rather easy to measure. We

trace some large number of FMCRT rays 𝑁𝐹, measure the time spent and divide it by 𝑁𝐹.

But 𝛽(𝑝) and 𝛾(𝑝) are more difficult to obtain. In principle, we can perform a series of BMCRT

simulations for single pixel each, tracing a large number of rays through this pixel and then dividing

the time spent by their number. This is expensive, though, because for an accurate measurement of time

requires that it be at least milliseconds, while there usually is millions of pixels.

The value of 𝛾(𝑝) also can be measured straightforwardly, but this is even more difficult.

Happily, we do not need all this because the expressions (7) and (8) include 𝛽(𝑝) and 𝛾(𝑝) only in

the following combinations

∑

𝑝

𝛽(𝑝)𝐵(𝑝), ∑

𝑝

𝛾(𝑝)𝐵(𝑝), ∑

𝑝

𝛽(𝑝)𝐶(𝑝), ∑

𝑝

𝛾(𝑝)𝐶(𝑝)

By definition, the two former are BMCRT time and merging time when there are 𝐵(𝑝) camera rays

per pixel and one FMCRT ray. The two latter are for 𝐶(𝑝) camera rays per pixel.

These values can be measured easily just by doing a few iterations of bi-directional ray tracing for

some specially chosen 𝑁𝐵(𝑝)and some (more or less arbitrary) medium 𝑁𝐹 about, say, 10000.

Namely, let us take 𝑁𝐵(𝑝) = 𝑛𝐵 × 𝐵(𝑝) where the constant 𝑛𝐵 is chosen so that the average number

of rays per pixels be about, say, 10. Then we measure the time spent on the backward ray tracing 𝜏𝐵,

on the forward ray tracing 𝜏𝐹 and time spent on merging the paths 𝜏𝐶. In view of (2),

𝛼 =
𝜏𝐹
𝑁𝐹
,∑

𝑝

𝛽(𝑝)𝐵(𝑝) =
𝜏𝐵
𝑛𝐵
,∑

𝑝

𝛾(𝑝)𝐵(𝑝) =
𝜏𝑚𝑒𝑟𝑔𝑒

𝑛𝐵𝑁𝐹

Similarly, choosing 𝑁𝐵(𝑝) = 𝑛𝐶 × 𝐶(𝑝) we can measure the two remaining sums.

6. Results

We use the famous Cornell Box with an isotropic point light source slightly below the center of the

ceiling. All scene surfaces are gray Lambert with albedo kd=50%. Both direct and indirect illumination

was taken from photon maps. “Diffuse depth” i.e. the maximal allowed number of diffuse events for

camera ray [11] was BDD=1. Scene image is shown in Figure 1.

Figure 1: Camera image of the test scene.

There are two variants which differ in the radius of integration sphere R: “large” one equals 0.0083

of the scene size, and the “small” is 0.0015 of the scene size. Naturally, one can expect that smaller

radius requires more FMCRT rays.

Calculation of �̂� and �̂� was done by the usual bi-MCRT, using radius 0.0083 of the scene size,

10000 iteration had been done with 𝑁𝐹 = 10000 light paths and 𝑁𝐵(𝑝) = 25 camera rays per pixel.

The matrices 𝐵(𝑝) and 𝐶(𝑝) were calculated as described in [13]. The sums are presented in Table 1.

Table 1
Averages of the BMCRT term and cross-term for the two test variants

 R = 0.0083 of scene size R = 0.0015 of scene size

𝐵 16.47 16.47
𝐶 2599 80556

Calculation of time-related terms was done like described in Section 5 for 10000 light paths and

average of 50 camera paths per pixel. Obviously the pure BMCRT and FMCRT terms are independent

of radius. Since measurement of time is not very accurate (because of loading by background processes,

adaptive changing of CPU clock etc), the figures are rounded (Table 2).

Table 2
Time-related sums for the two test variants

 R = 0.0083 of scene size R = 0.0015 of scene size

𝛼 6.35∙10–7 6.35∙10–7

𝛽�̂� 1.75 1.75

𝛽�̂� 247 9000

𝛾�̂� 3.3∙10–5 1.3∙10–6

𝛾�̂� 5.7∙10–3 6.5∙10–3

Approximation of the iteration time (3) for the number of camera rays given by (5) becomes

𝜏 = 𝛼𝑁𝐹 +𝑁𝐵
𝛽�̂� + 𝑁𝐹(𝛽�̂� + 𝛾�̂�) + 𝑁𝐹

2𝛾�̂�

𝐶 + 𝑁𝐹𝐵
 (9)

Tables 3 and 4 presents comparison of this approximation of the real iteration time with the

coefficients taken from Table 2.

Table 3
Iteration time for radius = 0.0083 of scene size. The first number is real value, the second one is
calculated according to (9).

 𝑁𝐵 = 5 𝑁𝐵 = 50

𝑁𝐹 = 1000 0.71 vs 0.53 5.3 vs 5.3
𝑁𝐹 = 3000 0.79 vs 0.56 5.5 vs 5.6
𝑁𝐹 = 10000 0.86 vs 0.63 6.3 vs 6.3

Table 4
Iteration time for radius – 0.0015 of scene size. The first number is real value, the second is from (9).

 𝑁𝐵 = 5 𝑁𝐵 = 50

𝑁𝐹 = 10000 0.78 vs 0.54 5.3 vs 5.4
𝑁𝐹 = 60000 0.82 vs 0.56 5.85 vs 5.6
𝑁𝐹 = 200000 0.98 vs 0.61 6.3 vs 6.1

One can see that approximation is quite good for large 𝑁𝐵 but not for small 𝑁𝐵. Mainly this is

because (9) did not include rounding of the number of camera rays which increase 𝑁𝐵(𝑝) and thus the

real run time is larger. Finally the optimal numbers of rays are in Table 5.

REMARK. Rather large times are because we did not optimized the calculations and did not use

SIMD and even multithreading.

Table 5
The number of rays for the two test variants

 R = 0.0083 of scene size R = 0.0015 of scene size

𝑁𝐵 for 𝜖 = 0.1 0.115 3.26

𝑁𝐵 for 𝜖 = 0.01 1.6 43.7

𝑁𝐹 for 𝑁𝐵 = 5 2653 51153

𝑁𝐹 for 𝑁𝐵 = 50 2727 77224

Obviously, the small estimates for 𝑁𝐵 is rather absurd since it yields less than one ray per pixel

everywhere. Small 𝑁𝐵(𝑝) results in strong rounding and the error of rounding which can reach ±0.5 is

a serious distortion when 𝑁𝐵(𝑝) is about 3. So we used 𝑁𝐵 = 5 as the low bound. As explained above,

there is no formal optimum i.e. the greater the better, but too large values result in unjustified memory

consumption. So for we adopted 𝑁𝐵 = 50 for the high bound. The distribution of 𝑁𝐵(𝑝) for low and

high bounds is presented in Figure 2. The effect of this distortion is maximal where 𝑁𝐵(𝑝) is small, i.e.

in the blue image areas, mainly the ceiling and the small box. Later we shall see that it is these areas

where the noise deviates from the mean value.

Figure 2: The distribution of 𝑁𝐵(𝑝) for larger radius, 𝑁𝐹 = 3000 and 𝑁𝐵 = 5 (left) and for 𝑁𝐵 = 50

(right). The actual average is 5.6 and 54, respectively, because rounding to integers increases the
values as compared to (5).

Table 6

Noise invariant √𝑉 for the test variant with larger radius of integration sphere = 0.0083 of scene size

 𝑁𝐵 = 5 𝑁𝐵 = 50

𝑁𝐹 = 1000

walls: 1.75; ceiling: 1.8; small box: 0.6

walls: 1.4; ceiling: 1.4; small box: 1.4

𝑁𝐹 = 3000

walls: 1.7; ceiling: 1.1; small box: 0.37

walls: 1.4; ceiling: 1.4; small box: 1.0

𝑁𝐹 = 10000

walls: 1.6; ceiling: 0.7; small box: 0.22

walls: 1.45; ceiling: 1.5; small box: 0.6

As explained in Section 2, what determines the speed of convergence is the product (1) of the

variance in one iteration and 𝜏 is time per iteration. We produce its root √𝑉 (notice it relates to the

absolute (not relative!) stochastic error) and visualize it in Table 6 (for larger radius of integration

sphere) and Table 7 (for smaller radius). According to toolbar the red color corresponds to value 2,

yellow color to 1 and blue color to 0. The middle row is for 𝑁𝐹 close to optimal.

One can see that the noise image roughly has three distinct areas: walls of the main box, ceiling and

the small box, the noise being nearly homogeneous throughout each area. The corresponding values are

printed below each image for quantitative comparison.

The areas where the noise considerably deviates from the mean level coincide with areas where

𝑁𝐵(𝑝) is below 3 or 5, see Figure 2. Meanwhile prediction of noise level (4) itself is quite good as it

can be seen from comparison of images in Figure 3, so the inhomogeneity is due to the deviation of the

integer 𝑁𝐵(𝑝) from the continuous values (5):

Figure 3: The distribution of √𝑉(𝑝) for 𝑁𝐵 = 50 and 𝑁𝐹 = 3000: actual (left) and prediction (4) (right).

Table 7

Noise invariant √𝑉 for the test variant with larger radius of integration sphere = 0.0015 of scene size

 𝑁𝐵 = 5 𝑁𝐵 = 50

𝑁𝐹 = 10000

walls: 1.85; ceiling: 3.0; small box: 1.0

walls: 1.7; ceiling: 1.7; small box: 1.6

𝑁𝐹 = 60000

walls: 1.7; ceiling: 1.3; small box: 0.45

walls: 1.44; ceiling: 1.44; small box: 1.2

𝑁𝐹 = 200000

walls: 1.8; ceiling: 0.9; small box: 0.3

walls: 1.47; ceiling: 1.46; small box: 0.75

The situation is qualitatively similar to the case of larger radius (Table 6). Again one sees the same

three distinct areas: walls of the main box, ceiling and the small box, the noise being nearly

homogeneous throughout each area. The corresponding values are printed below each image for

quantitative comparison. Again the areas where the noise level deviates from mean are those where

𝑁𝐵(𝑝) is below 2 or 3 (cf. Figure 2) and so rounding to integers deviated them from (5).

7. Conclusion

From comparison of the calculated variants one can see that

1. Noise is the more homogeneous the larger the 𝑁𝐵 (natural: because of the rounding 𝑁𝐵(𝑝)

becomes less essential) and the larger the ratio 𝑁𝐵/𝑁𝐹 (which looks strange).

2. The noise for the most of the area is not sensitive to the 𝑁𝐵 and 𝑁𝐹. In other words, the optimum

is “very wide” and deviating from it even threefold does not change the mean noise level much. This

is good in many aspects because in real simulation of complex scenes it may be difficult to find the

exact values of the number of rays (as they use coefficients that must be ray-traced themselves).

Also time per iteration is difficult to measure as it is a random value and additionally it may have

regular trends because of repeating caching etc.

3. The areas where the noise considerably deviates from the mean level coincide with areas where

𝑁𝐵(𝑝) is below 2 or 3, see Figure 2. Therefore it is reasonable to choose 𝑁𝐵 (which all the same

does not have a precise optimum value) large enough so that 𝑁𝐵(𝑝) exceeds, say, 3 in the most of

the image.

This paper operates the absolute noise, while sometimes it is better to work with the relative noise

(divided by the luminance in this pixel). Our approach can be easily adapted to this case as well.

8. Acknowledgements

We should like to thank Elissey Birukov for his help with computations.

9. References

[1] D. Zhdanov, V. Galaktionov, A. Voloboy, A. Zhdanov, A. Garbul, I. Potemin, V. Sokolov,

Photorealistic rendering of images formed by augmented reality optical systems, Programming and

Computer Software 44 (2018) 213–224. doi:10.1134/S0361768818040126.

[2] M. Sik, J. Krivanek, Survey of Markov Chain Monte Carlo methods in light transport simulation,

IEEE Transactions on Visualization and Computer Graphics 26(4) (2018) 1821–1840.

[3] M. Pharr, G. Humphreys, Physically Based Rendering. Second Edition: From Theory To

Implementation, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2010.

[4] N. Dodik, Implementing probabilistic connections for bidirectional path tracing in the Mitsuba

Renderer 2017 URL: https://www.cg.tuwien.ac.at/research/publications/2017/dodik-2017-pcbpt

[5] H.W. Jensen, P. Christensen, High quality rendering using ray tracing and photon mapping, in:

ACM SIGGRAPH 2007 Courses, ser. SIGGRAPH ’07. ACM, New York, NY, USA, 2007.

doi:10.1145/1281500.1281593

[6] E. Veach, A dissertation: Robust Monte-Carlo methods for light transport simulation, 1997. URL:

http://graphics.stanford.edu/papers/veach_thesis/thesis.pdf

[7] J. Vorba, Bidirectional photon mapping, in:Proceedings of CESCG 2011: The 15th Central

European Seminar on Computer Graphics. Prague: Charles University, 2011, pp. 25–32. URL:

https://cgg.mff.cuni.cz/~jaroslav/papers/2011-bdpm/vorba2011-bdpm.pdf

[8] S.V. Ershov, D.D. Zhdanov, A.G. Voloboy, Estimation of noise in calculation of scattering

medium luminance by MCRT, Mathematica Montisnigri 45 (2019) 60–73.

doi:10.20948/mathmontis-2019-45-5

[9] I. Georgiev, J. Krivánek, T. Davidovic, P. Slusallek, Light transport simulation with vertex

connection and merging, ACM Trans. Graph., 31(6) (2012) 192:1–192:10.

doi:10.1145/2366145.2366211

[10] T. Hachisuka, J. Pantaleoni, H.W. Jensen, A path space extension for robust light transport

simulation, ACM Trans. Graph., 31(6) (2012) 191:1–191:10.

[11] S.V. Ershov, A.G. Voloboy, Calculation of MIS weights for bidirectional path tracing with photon

maps in presence of direct illumination, Mathematica Montisnigri 48 (2020) 86–102.

doi:10.20948/mathmontis-2020-48-8

[12] M. Sbert, V. Havran, and L. Szirmay-Kalos, Multiple importance sampling revisited: breaking the

bounds, EURASIP Journal on Advances in Signal Processing, 15 (2018) 1–15.

[13] S.V. Ershov, E.D. Birukov, A.G. Voloboy, V.A. Galaktionov, Noise Dependence on the Number

of Rays in Bidirectional Stochastic Ray Tracing with Photon Maps, Programming and Computer

Software 47(3) (2021) 194-200. doi:10.1134/S036176882103004X

