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Abstract 
In this paper we propose exemplar-based 3D texture synthesis method which unlike existing 

neural network approaches preserve structural elements in texture. The proposed approach does 

this by accounting additional image properties which stand for the preservation of the structure 

with the help of a specially constructed error function used for training neural networks. Thanks 

to the proposed solution we can apply 2D texture to any 3D model (even without texture 

coordinates) by synthesizing high quality 3D texture and using local or world space position 

of surface instead 2D texture coordinates (fig. 1). Our solution is based on introducing 3 

different error components in to the process of neural network fitting which helps to preserve 

desired properties of generated texture. The first component is for structuredness of the 

generated texture and the sample, the second component increases the diversity of the 

generated textures and the third one prevents abrupt transitions between individual pixels. 
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1. Introduction 

Textures are one of the main components of realistic image synthesis. Exemplar based texture 

synthesis is used for generating new textures of a desired resolution which has similar appearance with 

the input texture but different pixels (like different parts of the road of the wall). 

  
Figure 1: Examples of input images (in yellow squares) and synthesized 3D textures applied to 3D 
model  
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In this work we propose new method for exemplar-based 3D texture synthesis. A 3D texture can be 

thought of as a voxel grid, where each voxel contains a certain color and each plane cut in any direction 

of which is a regular 2D texture (fig. 1). 

2. Related work 

When studying existing methods of texture synthesis it is needed to consider two principal problems: 

(1) how to define similarity between exemplar and generated images and (2) how to generate the new 

texture. Most existing methods for exemplar-based texture synthesis can be divided into two categories. 

The first group of methods defines a function of the properties of the exemplar texture, and then 

tries to modify a random noise texture until property functions of generated and exemplar images 

become similar to the function of the properties of the exemplar texture. Either neural network based 

approaches and pyramidal synthesis can be attributed to that group [15]. As the pronounced properties 

of this group of methods, one can note high variability of the synthesized textures, low speed, as well 

as in many cases poor results when working with textures that have high resolution or complex structure. 

This methods ignore large details and poorly preserve structural features. Some of these shortcomings 

have been eliminated in recent works by consistently doubling the resolution of the generated textures 

[6,8]. 

The second group of methods extracts some patches from original texture and reorders them to 

generate the new texture. Typical representatives of this group of methods are per-pixel [16] and per-

patch synthesis [17, 18]. As a characteristic of this group, one can designate the high speed and 

acceptable results on texture sampling. The disadvantage of this group of methods is the low variability 

of the synthesized textures. 

2.1. Neural network sythesis 

Most existing neural-network based texture synthesis methods [1-5] uses VGG-19 [9]. Neural 

network generators first define the image property function. For this, an exemplar of texture is fed into 

the neural network, and the activation function is calculated for each layer 𝑙 of the neural network. Each 

activation function generates a certain set of filtered images - the so-called feature maps. Each layer 

with 𝑁𝑙 filers will have same amount of feature maps, each of which has a total dimension 𝑀𝑙. 

Therefore, all feature maps can be stored in matrix 𝐹𝑙 ∈ 𝑅𝑁𝑙×𝑀𝑙, where 𝐹𝑗𝑘
𝑙  – is an activation for j filter 

at spatial position 𝑘 inside layer 𝑙.  
After finding all feature maps, for each of them we can calculate the Gram matrix 𝐺𝑙 ∈ 𝑅𝑁𝑙×𝑁𝑙 : 

𝐺𝑖𝑗
𝑙 =∑𝐹𝑖𝑘

𝑙 𝐹𝑗𝑘
𝑙

𝑘

. (1) 

A set of Gram matrices {𝐺1, 𝐺2. . . , 𝐺𝐿} of neural network layers 1, 2, …, L is a possible way to 

describe the properties of an image. Then, to define the similarity function of the exemplar texture and 

the synthesized texture, we can use the following error 𝐿𝐺: 

𝐿𝐺(𝑔, 𝑠) =∑𝜔𝐺
𝑙

1

𝑁𝑙𝑀𝑙
‖𝐺𝑙(𝑔) − 𝐺𝑙(𝑠)‖

𝐹

2

𝑙

, 
(2) 

where 𝑔 и 𝑠 – generated texture and source texture respectively; 𝜔𝐺
𝑙  – contribution of each layer 𝑙 of 

neural network to the error 𝐿𝐺,  ‖ ‖𝐹 – Frobenius norm. 

Thus, to synthesize a new texture, we need to minimize the specified error 𝐿𝐺 between exemplar 

texture and the random noise texture. This can be achieved by applying gradient descent to the noise 

texture while calculating the gradients using backpropagation of errors. 

  



   

 

   

 

2.2. 3D texture synthesis  
2.2.1. 3D texture generator concept 

A similar approach to the two-dimensional case is used in the synthesis of three-dimensional textures 

[10-14]. The algorithm can be described as follows: we have a certain texture generator based on 

convolutional neural networks and which depends on a fixed set of parameters 𝜃. Three-dimensional 

white noise of several different resolutions 𝐾 is fed to this generator, and the resolution of the 

synthesized texture will depend on the resolution of the supplied noise. Passing noise through itself, the 

generator will produce a three-dimensional texture of the specified resolution.  

During training the generated texture will be divided into all possible planes along the three 

directions of the coordinate axes, and using some function that describes the properties of the image, it 

will calculate the error between the planes representing generated 3D texture and the exemplar textures 

we have. Setting the necessary parameters of the generator 𝜃 to generate a high-quality texture will be 

done using gradient descent and back propagation of the error similar to the two-dimensional case. 

2.2.2. Generator architecture 

The generator architecture is shown in fig. 2. It is a sequence of convolutional blocks, upscaling 

blocks, and concatenation blocks:  

 A convolution block is a sequence of 3 convolutional layers, the first two of which have 3x3x3 

kernels, and the last - 1x1x1. This is followed by the batch normalization layer [20] and the Relu 

activation function [21]. Thus, after this layer, the size of the texture is reduced by 4. 

 The upscale block doubles 3D texture resolution (each voxel will be copied 8 times). 

 The concatenation block performs batch normalization and then concatenates our textures into 

channels. If the textures are Are different in size then they are cropped to a smallest size. 

 
Figure 2: Architecture of a neural network generator of three-dimensional textures: ↑ – upscale block,  
- convolutional block, ∨ – concatenation block, ⋆ – convolutional layer. At the top of each cube - its 
spatial size, at the bottom - the number of channels. Our scheme is similar to [10]. Please refer to fig.2 
in [10] to see original image in full resolution.  

 



   

 

   

 

Starting at the smallest scale, the input noise is processed by a set of convolutions, followed by an 

upscaling block to reach the next scale. It is then combined with independent noise of the same size, 

which is also pre-passed through the convolutional block. This process is repeated 𝐾 times before the 

final single convolution layer, which yields three channels to obtain a colored texture. The parameters 

that the generator will learn weights of convolutional kernels and their biases, as well as weights, biases, 

mean-variance of batch normalization layers. 

2.2.3. Parameters fitting 

As already mentioned, to calculate the similarity between the three-dimensional texture obtained by 

the generator and the exemplar texture we have, the first one will be divided into all possible planes in 

all directions of the coordinate axes. Then the error can be written as:  

𝐿(𝑔, 𝑠) = ∑
1

𝑁𝑑
∑ 𝐿2(𝑔𝑑,𝑛, 𝑠)

𝑁𝑑−1

𝑛=0

𝐷

𝑑=1

; 

 

(3) 

 

𝐿2(𝑔𝑑,𝑛, 𝑠) = 𝐿𝐺(𝑔𝑑,𝑛, 𝑠), 
 

(4) 

where 𝑑 – means axis (x, y or z) in which 2D texture was split, 𝑁𝑑 – number of planes for axis d in 

which the texture was split, 𝑔𝑑,𝑛 – 𝑛-th plane in the d direction of the coordinate axis of the synthesized 

three-dimensional texture and 𝐿2 – is an error implying the difference between two-dimensional texture 

exemplars. For calculation of activation maps that are required by our error function, we use the same 

neural network as in VGG-19 paper. 

3. Proposed method  

Using just a single Gram matrix to calculate the similarity between two-dimensional samples of 

textures is not an optimal approach since the Gram matrix itself poorly represents such aspects of the 

texture as the presence of structure, smooth inter-pixel transitions, and many others. For this reason, the 

existing exemplar-based methods [10, 11] of three-dimensional synthesis poorly work for input textures 

with complex structure: the resulting texture looks “broken”. 

To solve these problems of the two-dimensional synthesis, in [2] it was proposed to generate a 

texture only not using the Gram matrix, but also a combination of several error components; moreover, 

an approach that allows preserving the structure of synthesized textures was presented in [3, 4, 8]. We 

have further developed idea from [2] to solve 3D synthesis problems and added three additional error 

components to train the generator proposed in [10]: using the first component, we have compared the 

structuredness of the generated texture and the sample. In fact, this error is the autocorrelation of feature 

maps of the given layers of the neural network, multiplied by the coefficient: 

 

𝐿𝐶(𝑔𝑑,𝑛, 𝑠) =∑
1

𝐻𝑙𝑊𝑙
‖𝑅𝑙(𝑔𝑑,𝑛) − 𝑅𝑙(𝑠)‖

𝐹

2

𝑙

; 
(5) 

 

𝑅𝑖,𝑗
𝑙,𝑛 =∑𝑤𝑖,𝑗

𝑙 𝐹𝑛,(𝑞,𝑚)
𝑙 𝐹𝑛,(𝑞−𝑖,𝑚−𝑗)

𝑙

𝑞,𝑚

; (6) 

 

𝑤𝑖,𝑗
𝑙 =

1

(𝐻𝑙 − |𝑖|)(𝑊𝑙 − |𝑗|)
; 𝑖 ∈ [

−𝐻𝑙

2
,
𝐻𝑙

2
] ; 𝑗 ∈ [

−𝑊𝑙

2
,
𝑊𝑙

2
], 

(7) 

where 𝐻𝑙 и 𝑊𝑙 – spatial sizes of feature maps 𝐹𝑙 (𝐻𝑙 ∗ 𝑊𝑙 = 𝑀𝑙. Also for coefficient 𝑤𝑙 Gauss window 

could be used. The second introduced component of the error function increases the diversity of the 

generated textures and is the usual difference between feature maps:  



   

 

   

 

𝐿𝐷(𝑔𝑑,𝑛, 𝑠) =∑‖𝐹𝑙(𝑔𝑑,𝑛) − 𝐹𝑙(𝑠)‖
𝐹

2

𝑙

. (8) 

 

The third component prevents abrupt transitions between individual pixels and is some kind of anti-

aliasing: 

𝐿𝑆(𝑔𝑑,𝑛, 𝑠) =∑‖𝑆𝑙(𝑔𝑑,𝑛) − 𝑆𝑙(𝑠)‖
𝐹

2

𝑙

; (9) 

 

𝑆𝑖,𝑗
𝑙,𝑛 =

1

2𝜎
𝑙𝑜𝑔 ∑ 𝑒𝑥𝑝(−𝜎(𝐹𝑛,(𝑖,𝑗)

𝑙 − 𝐹𝑛,(𝛿𝑖,𝛿𝑗)
𝑙 )

2
)

𝛿𝑖,𝛿𝑗

, 
(10) 

where 𝜎 – is a parameter of and algorithm. 

 

Therefore, final difference between two 2D exemplars is: 

 

𝐿2(𝑔𝑑,𝑛, 𝑠) = 𝛼𝐿𝐺(𝑔𝑑,𝑛, 𝑠) + 𝛽𝐿𝐶(𝑔𝑑,𝑛, 𝑠) + 𝜂𝐿𝐷(𝑔𝑑,𝑛, 𝑠) + 𝛾𝐿𝑆(𝑔𝑑,𝑛, 𝑠), (11) 

 

The values of the coefficients for the weights of the individual elements of the error function are 

given in Table 1. 

 

Table 1 
Parameter values, used by us for texture synthesis 

Loss type Layer names Layer weights Loss weight Miscellaneous 

𝐿𝐺 Relu11, Relu21, 

Relu31, Relu41, 

Relu51 

0.2, 0.2, 0.2, 0.2, 

0.2 
𝛼=0.5 - 

𝐿𝐶 Pool2 1 𝛽=0.5*1e-6 - 

𝐿𝐷 Pool2 1 𝜂=-1*1e-4 - 

𝐿𝑆 Relu11 1 𝛾=-1*1e-3 𝜎=1e-3 

 

4. Experimental evaluation and comparison 

To test and compare the proposed method, the following two groups of textures were used:  

1. Textures were selected in the first group (Fig. 3,4) in order to find out how high-quality and 

original the textures synthesized by the generator, and also whether a proposed error components 

interferes with the synthesis. The textures were chosen, consisting of a monochrome background 

with some chaotic picture on top of it. These textures were chosen with the idea that the generator 

should work reasonably on this type of textures due to its simplicity, but the result may be too similar 

to the original texture or differ in random outbursts of colors atypical for this texture. 

2. Textures were selected in the second group (Fig. 5,6) in order to test the generator's ability to 

preserve structure. We take textures with repeating patterns with a small number of colors used and 

without sharp gradient transitions. Such textures were chosen in order to exclude the influence on 

the synthesis of characteristics not related to the structural organization of the texture. 

 

 

 



   

 

   

 

 

 

 
Figure 3: The first group of textures for comparison: from left to right - base method [10] (central 
plane from generated 3D texture), sample texture, proposed method (central plane from generated 
3D texture) 

  

  



   

 

   

 

  
Figure 4: The first group of textures for comparison: from left to right - base method [10] (generated 
3D texture), sample texture, proposed method (generated 3D texture) 

 

 

 

 
Figure 5: The second group of textures for comparison: from left to right - base method [10] (central 
plane from generated 3D texture), sample texture, proposed method (central plane from generated 
3D texture) 

 



   

 

   

 

 

 
Figure 6: The second group of textures for comparison: from left to right - base method [10] 
(generated 3D texture), sample texture, proposed method (generated 3D texture) 

 

Finally, we have performed visual comparison of our method to [11] at figures 7 and 8. 

Unfortunately, we were not able to run their implementation due to version conflicts of libraries, either 

we didn’t find original texture in desired resolution. Therefore, our comparison is not strict but shows 

that both methods preserve details well. 

 
Figure 7: Visual comparison of [11] (left) and our method (right). Input texture is shown in bottom left 
corners in white box. In both cases texture structure is preserved well. Input texture size is 256x256. 
 



   

 

   

 

 
Figure 8: Visual comparison of [11] (left) and our method (right). In both cases texture structure is 
preserved well. Input texture size is 256x256. 

5. Conclusions 

It can be seen from fig. 3-6 that the proposed method was able to show better results than it is base 

version [10]. Like [10], it works well with textures from the first group - the images obtained by the 

generator are new textures without any color outliers. Additional error components not only did 

preserve the stability of the synthesis, but also helped to broaden the already wide variety of generated 

textures, as well as improved the sharpness of pixel transitions (fig. 3, 4). If we look at the results of the 

second group, it can be seen that the proposed method preserves the structure better in textures 

containing structural patterns (fig. 5, 6). Thus, introducing additional components to the error helped to 

overcome the fundamental problem of poor preservation of structuredness inherent to the group of 

methods to which neural network synthesis belongs, and in the problem of synthesizing three-

dimensional textures. 
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