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Abstract
This work focuses on multi-class labeling and segmentation of electron microscopy data. The well-known
and state-of-the-art EPFL open dataset has been labeled for 6 classes (instead of 1) and a multi-class
version of the U-Net was trained. The new labeled classes are mitochondrion together with its border,
mitochondrion’s border (separately), membrane, PSD, axon, vesicle. Our labeling results are available on
GitHub. Our study showed that the quality of segmentation is affected by the presence of a sufficient
number of specific features that distinguish the selected classes and the representation of these features
in the training dataset. With 6-classes segmentation, mitochondria were segmented with the Dice index
of 0.94, which is higher than with 5-classes (without mitochondrial boundaries) segmentation (Dice
index of 0.892).
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1. Introduction

Information about the anatomy and connectivity of neurons can provide new insights into the
relation between the brain’s structure and its function [1]. Such information may also provide
insights into the physical underpinnings of common serious disorders of brain function such as
mental illnesses and learning disorders, which at present have no physical trace. Furthermore,
information about the individual strength of synapses or the number of connections between
two cells has important implications for computational neuroscience and theoretical analysis of
neural networks [2].
Microscopy plays an indispensable role in biomedical research. Advanced technologies of

microscopy like electron microscopy have opened up new eyesight for biomedical researchers.
The image resolution is very high, which is why a cubic millimeter of brain tissue can take
up more than 1000 terabytes. The resulting images are analyzed to identify individual cells.
Segmentation is usually done by biologists manually. Processing one experiment takes up to
six months of manual work.

Since the proposedmethod for segmentation of neural membranes using deep neural networks
(DNN) [3], many DNN-based methods have been developed, such as U-Net [4], which is one of
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the most successful in the field of biomedical data segmentation. The main idea of U-Net is to
include local and more extensive contextual information (global context) from the input image.
Based on this concept, a variety of DNN architectures have been proposed for volume data.
A similar idea is used by the deep contextual network [5], emphasizing the importance of

capturing a sufficient receptive field. Both networks are based on fully convolutional networks
[6], and feature maps obtained in the middle layer are propagated directly to deep layers using
a skip connection. Drozdzal et al. have also experimentally shown that the skip connection
is essential for the segmentation of nerve cells [7]. Further research has developed deeper
networks [8, 9] and mechanisms that take into account correlation in three-dimensional space.
Xiao et al. [9] proposed a 3D U-Net with residual blocks. On the task of segmentation of
mitochondria, they received the quality jaccard = 91.8%.

The next step was the use of three-dimensional convolutions in neural networks. V-Net[10],
3D U-Net[11], DeepMedic[12], HighRes3DNet[13] are different architectures using 3D convolu-
tions.

In parallel with the development of three-dimensional architectures, methods of preprocessing
input data and post-processing of segmentation results obtained by neural networks were
proposed. Preprocessing and post-processing increases the neural networks segmentation
quality about 5-9% each [14, 15, 16]. For example, Manca ŽerovnikMekuč et al. [17] used contrast
enhancement based on the adaptive gamma correction with weight distribution (AGCWD) [18].

One of the limitations of 3D CNN is the significantly increased number of training parameters
with a 3D convolution kernel, which leads to high computational costs and high GPU memory
consumption.
Therefore, architectures that use 3D convolutions have been replaced by architectures that

reduce the number of training parameters, adjusting the balance between the quality of networks
with 3D convolutions and the speed of training two-dimensional convolutions.

Low-rank factorization of convolutional kernels [19, 20, 21] and hierarchical convolution
(HVEC)[22] are the simple alternative to 3D convolution for exploring 3D spatial context.

Biological and medical data is characterized by a small amount of labeled data. And the
publicly available electron microscopy data as a whole are presented in only a few volumes due
to the laboriousness of preparing a tissue for an electron microscope and due to the need for
post-processing of the obtained images. The laboriousness of annotation results in even fewer
public labeled electron microscopy datasets.
We found eight publicly available electron microscopy data, six labeled in only 1 class

(mitochondrion or membranes). And only in two volumes several classes are marked. Therefore,
the vast majority of neural networks in electron microscopy are trained for only two classes.
Therefore, it is important to create multi-class markup and examine the results of multi-class
architectures using this markup.

2. Materials and methods

2.1. Open datasets

This section provides information on public datasets. Themost widely used datasets for assessing
mitochondrial segmentation have been provided by Lucchi et al. [23] and Xiao et al. [9].



Mouse neuropil. The mouse neuropil dataset [24] includes 400 images with a size of 4096 ×
4096 with a resolution of 10 × 10 × 50 nm / voxel. A subset of 70 images with a size of 700 × 700
was selected from the dataset and marked up by experts.

Mouse cerebral cortex dataset. Also known as AC4 dataset. The entire mouse cortical
dataset is a stack of 1,850 images of 4096 × 4096 pixels with a resolution of 3 × 3 × 30 nm /
voxel. The images were compressed 2x in x - y, and two subsets of 1024 × 1024 × 100 pixels
were cropped out and used in the ISBI 2013 EM Challenge [25] as a training and testing set. For
the training sample, 100 images were provided 2D and 3D marked by experts.
EPFL dataset (Lucchi dataset [23]). The dataset is a 5x5x5 μm section taken from the

CA1 hippocampus region of the brain, which corresponds to a volume of 1065x2048x1536. The
resolution of each voxel (vx) is approximately 5x5x5 nm. Mitochondria were annotated in two
parts of the dataset. Each chunk consists 1024x768x165 image stack.
Lucchi ++ Mitochondrial Segmentation Dataset.
This dataset is based on the hippocampal EPFL dataset [23]. The difference lies in the more

accurate mitochondrial markings, in which the senior biologist manually corrected the markings
of the mitochondrial membranes using his own annotation software along with 2 neuroscientists.
Kasthuri ++ Somatosensory Cortex. Contains annotations of the mitochondria of the

3-cylinder volume of the mouse cortex Kasthuri et al. The tissue is a dense mammalian neuropil
from layers 4 and 5 of the primary somatosensory cortex S1, obtained using serial sectional elec-
tron microscopy (ssEM). In this data, membrane inconsistencies in mitochondrial segmentation
masks were corrected by experts similar to the Lucchi ++ dataset. The dimensions of the stack
are 1463 × 1613 × 85vx and 1334 × 1553 × 75vx with a resolution of 3 × 3 × 30 nm per voxel.
chm-supplemental data. Contains SBEM training data of the suprachiasmatic nucleus

(SCN) of one 3-month-old mouse (images and labels of mitochondria, lysosomes, nuclei, isotropic
nuclei and nucleoli). This dataset was used by Perez et al. [26].
UroCell [17]. The open volumetric EM dataset is the first of the urothelial cells. The

tissue samples was taken from urinary bladders of 6–8 weeks old healthy male C57BL/6J
mice. The dataset consists of 1056 consecutive layers of 1366 × 1180 pixels. Voxel sizes in
the dataset are approximately x = 16 nm, y = 16 nm, z = 15 nm — nearly isotropic resolution
in all three directions. Intracellular compartments (mitochondria and endolysosomes) are
manually labeled in 5 sub-volumes of 256 × 256 × 256 voxels. To increase variability, the selected
annotated sub-volumes are taken from different parts of the entire volume and are therefore
varied in terms of contrast, brightness, artifacts and content. The data is located on GitHub:
https://github.com/MancaZerovnikMekuc/UroCell.
ISBI 2012 dataset [25]. The dataset is a set of 30 slices from the sequential transmission

electron microscopy dataset of the ventral nerve circuit of the first stage larva of Drosophila,
which was used in a competition held at the ISBI 2012. The competition task was to find the
membranes of nerve cells. Membranes are marked in the images. The imaged volume measures
2 × 2 × 1.5 µ, with a resolution of 4 × 4 × 50 nm/pixel. The result resolution is the 4 × 4 nm per
pixel.
You can see that six labeled open datasets in only 1 class. And only in two volumes several

classes are marked. Therefore, the vast majority of neural networks in electron microscopy are
trained for only two classes (object and background).

https://github.com/MancaZerovnikMekuc/UroCell


2.2. Dataset

The initial data was obtained from the site https://www.epfl.ch/labs/cvlab/data/data-em/ and
are called “EPFL dataset” or “Lucchi mitochondrial segmentation dataset”. This data originally
contains masks only for mitochondria. Therefore, for the analysis and evaluation of multiclass
segmentation algorithms, we manually labeled 14 layers (1024x768) for the following classes:

1. Mitochondrion together with the border
2. Mitochondrion’s border
3. Membranes
4. PSD
5. Axon sheaths
6. Vesicles

Precise marking of 1 layer by hand took about 5 hours. Our markup of the EPFL dataset is
available at https://github.com/GraphLabEMproj/unet. We plan to continue working on the
markup and mark up both of the available volumes. You can see an example of the image patch
markup in Figure 1.

a) b) c) d) e) f)

Figure 1: An example of our image markup: a) original image, b) membranes, c) mitochondrion with
borders, d) mitochondrion’s borders, e) PSD, f) vesicles

2.3. Network architecture

U-Net is considered one of the standard CNN architectures for image segmentation tasks. The
architecture consists of a constricting path to capture the global context and a symmetrical
expanding path that allows precise localization. For the basis of the neural network, the U-
Net project was taken https://github.com/zhixuhao/unet. In the original project, U-Net was
used for the binary classification of membranes. In our research, we use U-Net for multi-class
segmentation. We forked the original repository, all changes in the code and our markup of the
Lucci data is available at https://github.com/GraphLabEMproj/unet.

Following the author of the code https://github.com/zhixuhao/unet in U-Net implementation,
there are differences from the classical U-Net network [4]:

• The network input is an image reduced to the size 256x256x1.
• The network output is 256x256x𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠, where 𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 is the number of classes.
• The sigmoid activation function ensures that the mask is in the range [0, 1].

Also, we added batch normalization after each convolution and the ReLU activation layers.

https://www.epfl.ch/labs/cvlab/data/data-em/
https://github.com/GraphLabEMproj/unet
https://github.com/zhixuhao/unet
https://github.com/GraphLabEMproj/unet
https://github.com/zhixuhao/unet


3. Experiments and results

3.1. Evaluation criteria

For evaluation, we use the Dice similarity coefficient (DSC) and Jaccard index, both commonly
used in the field of medical image segmentation. If we define TP to be the number of true
positive voxels (correctly identified target class), FP the number of false positive voxels (target
class identified on background), FN the number of false negative voxels (missed target) and TN
the number of true negative voxels (correctly classified background), we can define the metrics
as follows. The Dice similarity coefficient measures the similarity between annotations and
predictions and is defined as:

𝐷𝑆𝐶 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

The Jaccard index measures the same as Dice coefficient:

𝐽𝐴𝐶 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

The Dice values, like Jaccard’s, range from zero to one. Unlike Jaccard, the corresponding
difference function is not a correct distance metric, since it does not satisfy the triangle inequality.
Jaccard and Dice are equivalent in the sense that one can be expressed through one another:

𝐷𝑆𝐶 =
2𝐽𝐴𝐶

1 + 𝐽𝐴𝐶

Since in our study we consider multi-class segmentation, we are interested in multi-class metrics.
Since the Jaccard distance (or Dice) compares 2 sets, in the case of a multiclass classification,
the result will be a vector of Jaccard (or Dice) distances for each class. When training a neural
network, a function that returns a scalar value is used to calculate the error. Therefore, for
multiclass segmentation, it is necessary to convolve the distance vector. To convolve a vector
into a scalar we use linear convolution:

𝑊𝑠𝑐𝑎𝑙𝑎𝑟 =
𝑁
∑
𝑖=1

𝜆𝑖𝑊𝑖, 𝜆𝑖 ⩾ 0,
𝑁
∑
𝑖=1

𝜆𝑖 = 1

where 𝜆𝑖 is the weight coefficient, and𝑊𝑖 is the value of the distance coefficient for the 𝑖-th class.
𝑊𝑠𝑐𝑎𝑙𝑎𝑟 - scalar value or convolution of the distance vector. 𝑁 is the number of classes.

In this work, the linear convolution Dice coefficients with weight coefficients 𝜆𝑖 equal to 1/𝑁
is used for the error function.

Two metrics used in ISBI 2012 are: Maximal foreground-restricted Rand score after thinning
(𝑉𝑟𝑎𝑛𝑑) and maximal foreground-restricted information theoretic score after thinning (𝑉𝑖𝑛𝑓 𝑜). For
a detailed description of the metrics, please refer to [25].
Also, for membrane detection used metric Rand error (RE): 1 — the maximal F-score of the

foreground restricted rand index (Rand 1971), a measure of similarity between two clusters or
segmentations. For the EM segmentation evaluation, the zero component of the original labels
(background pixels of the ground truth) is excluded.



Table 1
Evaluation of the results

Label
Class number

6 5 binary
Jaccard Dice Jaccard Dice Jaccard Dice

mitochondrion 0.887 0.940 0.806 0.892 0.913 0.954
mitochondrial borders 0.673 0.805 - - - -

membranes 0.681 0.810 0.737 0.849 - -

PSD 0.729 0.843 0.625 0.769 - -

vesicles 0.618 0.764 0.616 0.762 - -

axon 0.773 0.872 0.825 0.904 - -

3.2. Experiments

We cut marked up 7 slices into 256x256 images, and obtain as the result 301 patches. The data
augmentation was used for model training. In the training set, were used 266 patches, and 35 in
the verification set, the batch size was equal to 7. We test the model on 1 slice (12 patches). We
used random sub-sampling cross-validation. We use Adam as an optimizer with a learning rate
set to 10−4. Each training experiment was run for 100 epochs. Experiment’s learning curves
you can see in Figure 2.
Experiment 1. Segmentation classes (5): mitochondrion together with the border, mem-

branes, PSD, axon sheaths, vesicles.
Experiment 2. Segmentation classes (6): mitochondrion together with the borders, mito-

chondrion’s border, membranes, PSD, axon, vesicles.
Added 1 more class of mitochondrial borders.
Experiment 3. Segmentation class: Mitochondrion together with the border. Segmentation

into class 1 mitochondrion is used.

a) b) c)

Figure 2: Experiment’s learning curves: a) 5-class learning curve, b) 6-class learning curve, c) binary
mitochondrial segmentation learning curve

As we can see from the comparison table (See table 1), multi-class segmentation of mitochon-
dria is not much inferior in quality to binary segmentation.

The mitochondrial border class is a subclass of “mitochondrion” and further emphasizing the



border improves the segmentation results of the unifying class.
Of all classes, vesicles show the worst results due to their small size and due to single vesicles

that can be confused with noise (Figure 3). Perhaps the use of three-dimensional convolutions
will smooth this effect. Possibly combining adjacent vesicles into a ”vesicle region” will improve
the results.
The network was trained in unbalanced classes, because the size of the compartments and

their occurrence in the layer differ tens of times.
Despite the fact that the smallest in area classes are PSD and axons, their recognition is higher

than that of vesicles.

a) b) c) d)

Figure 3: Images: a) original vesicles, b) ground truth, c) ground truth and 5-class prediction, d) ground
truth and 6-class prediction

4. Discussion

In the discussion section, we present two tables: Table 2: “Comparison mitochondrion segmen-
tation results” and Table 3: “Comparison membrane segmentation results”. We have placed here
the most illustrative results on the segmentation of two classes: mitochondria and membranes
using binary and multiclass models.

Table 2
Comparison mitochondrion segmentation results

Method Classes Article Dataset Jaccard Dice

Cheng et al. (3D) [27] 1 M. Yuan et al [22] EPFL 0.889 0.941
3D U-Net [11] 1 M. Yuan et al [22] EPFL 0.878 0.935
Cheng et al. (2D) [27] 1 M. Yuan et al [22] EPFL 0.865 0.928
U-Net [4] 1 M. Yuan et al [22] EPFL 0.844 0.915
U-Net 6 ours EPFL 0.83 0.906
V-Net 2 M. Žerovnik Mekuč et al [17] UroCell - 0.898
U-Net 5 ours EPFL 0.812 0.895
U-Net 1 ours EPFL 0.789 0.880
HighRes3DNet 2 M. Žerovnik Mekuč et al [17] UroCell - 0.883
HighRes3DNet 1 M. Žerovnik Mekuč et al [17] UroCell - 0.862
Lucchi et al. [28] 1 M. Yuan et al [22] EPFL 0.755 0.86
U-Net 2 M. Žerovnik Mekuč et al [17] UroCell - 0.855



a)

b)

c)

Figure 4: Mitochondrial segmentation problem: a) prediction 5-class mitochondria, b) original image,
c) ground truth

We test our models on full test EPFL volume and use this values instead of Table 1 results.
We cannot directly compare the results from the table 2 because our models were trained on a
significantly reduced version of the EPFL dataset. But we can put forward several hypotheses
that need to be tested. The worst results were obtained in the layers containing the axon, parts
of the mitochondria cut by the border of the image, fuzzy membranes (Figure 4). The network
confused the axon inner region with the mitochondria. We assume the causes are 1) the small
number of axons represented in the training dataset; 2) we marked only the boundaries of the
axon without the inner region, relying on their brightness as a sufficient feature.
When we added the “mitochondrion’s border” class, the recognition of mitochondria in

the 6-class model increased from 0.895 to 0.906 (Table 2), while the recognition of the border



decreased from 0.849 to 0.81 (Table 1). But it was the only one negative issue only. It means
that it is possible to pick up classes to get segmentation comparable to the segmentation of a
binary model. A multi-class 3D model gives an increase in accuracy as well as a binary model.

Table 3
Comparison membrane segmentation results

Method Classes Article Dataset Jaccard Dice Rand Error 𝑉𝑟𝑎𝑛𝑑
U-Net 5 ours EPFL 0.737 0.849 0.134 0.992
FusionNet 1 Quan et al. [29] ISBI 2012 - - - 0.978
𝑀2𝐹𝐶𝑁 1 Shen et al. [30] ISBI 2012 - - - 0.978
U-Net 6 ours EPFL 0.681 0.81 0.267 0.952
U-Net 1 Ronneberger et al. [4] ISBI 2012 - - 0.0382 0.973
Drozdzal et al 1 Drozdzal et al. [7] ISBI 2012 - - - 0.969

Table 3 presents the results for two different datasets (EPFL and ISBI 2012) but one membrane
class. And if you visually compare the two datasets, you can see that the ISBN 2012 has much
more noise in the data, it is worse aligned in brightness and there are more membranes cut
defects. The EPFL dataset quality allows to see that the membrane consists of two adjacent
boundaries of different cells.

5. Conclusion

In this paper, we presented a new multi-class labels for the state-of-the-art EPFL dataset,
which includes such classes as mitochondrion including the borders, mitochondrial boundaries,
membranes, PSD, axon, vesicles.

We present the results of a multi-class segmentation of brain electron microscopy data using
slightly modified U-Net with tiling data-layers onto the 256x256 fragments saving the initial
resolution. The Dice index of mitochondrial segmentation from the network into 5 classes
showed 0.82 instead of 0.954 for binary recognition.
The research has shown that increasing the number of classes does not necessarily have a

negative impact on the quality of segmentation. The quality of segmentation is affected by
the presence of a sufficient number of specific features that distinguish the selected classes
and the representation of these features in the training dataset. With 6-class segmentation,
mitochondria were segmented with a Dice index of 0.94, which is higher than with 5-class
segmentation (0.892).
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