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Abstract  
There are a lot of methods for rendering of shell-space geometry, represented through voxel 

texture, known for today. While the topic is well studied in terms of techniques for applying 

this geometry onto surfaces, a little attention was paid to representation of sub-pixel details of 

the geometry. Such details are prone to produce aliasing artifacts and reduce performance due 

to bad cache utilization. In this paper we solve these problems by introducing levels of detail 

for voxel textures within shell mapping technique. The main problem here is that less detailed 

levels begin to contain semi-transparent voxels on the edge of an encoded surface, which 

requires additional handling. For this we present a new approach for order independent 

transparency rendering based on depth peeling. We extend the algorithm by adding additional 

resolving pass which allows to fully utilize hardware z-buffering to reduce amount of 

overdraw. This significantly reduces cost of each subsequent peeling pass. Empirically, 3-4 of 

such passes is enough to produce good quality results in most cases. Another issue with shell 

mapping techniques is that shell geometry is constructed offline, making base surface to be 

static. By slightly modifying the method, we made the construction to be performed on-the-fly 

on GPU and be applicable for animated surfaces. 
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1. Introduction 

Simulation of small-scale features on a surface is important task in many real-time applications 

(fig.1). In garment prototyping there are knitwear, fur and other complex materials. In videogames and, 

for example, flight simulators there is often a need to render grass, forests or other plants at far distance. 

In architecture we often have surfaces with small repetitive patterns, such as fences, bricks etc. Usually 

it’s being done by simply applying 2D texture, representing such details, or by rendering lots of textured 

quads. Such approach is fast, but coarse. So, there are multiple techniques to accurately represent 

complex structure on surfaces either directly by geometry [1-3] or implicitly through volumetric 

texturing [4-6] without need to construct all of the details by hand. 

Simulation through geometry allows us to get accurate results by the cost of vertex processing and 

memory consumption. For example, to render a chainmail using geometry, we have to model each ring 

through primitives and then process all of their vertices during rasterization. The more rings we have, 

the more vertices we need to process, thus making rendering to be expensive when rings are small and 

there is too much of them. 
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Figure 1: Demonstration of our approach for small-scale details rendering 

 

In the case of implicit representation of structure through a volumetric texture, either procedural or 

as three-dimensional array of texels, detail applying becomes similar to usual texture mapping and there 

is no need to process vertices of the details themselves. Therefore, the rendering time is defined by the 

amount of pixels being rasterized and vertex count of the surface, to which details are applied. Further 

we will refer to such surface as a base surface or a base mesh as in [4]. As example, we can take only 

small voxelized piece of, again, a chainmail and repetitively apply it to the base surface as a texture, 

without need to simulate each ring separately. 

So, in theory, we can simulate repetitive volumetric structure on a surface at any scale without extra 

cost by simply adjusting its texture coordinates. But in real case, without changing texture resolution 

we will lose performance and get aliased noisy image. This is because as we scale details down, we will 

have bigger distance in texture space between neighboring pixels of the final image. It causes worse 

cache usage, when sampling the texture, and aliasing artifacts appearing, as we omit more texture data. 

This is a common problem with texture mapping and it’s being solved by using a mip map [7] – a 

set of images, representing different resolutions of the texture from high to low. In 2D case we just 

sample corresponding mip image based on the scale of texture we apply. However, this is not so trivial 

when we represent some volumetric objects through a 3D texture. In lower resolution mips we should 

take into account such phenomena, as self shadowing, view dependent partial transparency and 

increasing roughness. In this paper we focus on the problem of partial transparency appearing on the 

edges of these volumetric objects in 3D mip images (further just mips). It appears because of blending 

between transparent and opaque texels during mips downscaling process. Opaque texels represent the 

detail objects, while transparent represent empty space. 

So, our main contribution is a method to render, in general, semi-transparent details applied to a base 

surface. The approach takes its advantage from the case when semi-transparency originally comes from 

lower resolution mips of a texture representing some opaque object. With it a lot of shading calculations 

is being omitted by culling invisible parts of the details we simulate. It allows us to use mip-mapping 

for detail’s textures, thus making implicit detail representation to be scalable without extra cost and 

without strong artifacts. 

For applying a 3D texture on a base surface we use a real-time adaptation [8] of a method named 

shell mapping, originally introduced in [4]. Applying is performed by constructing a shell of 

tetrahedrons over the base surface and then, when rendering, tracing the texture inside each one using 

sphere tracing [9]. A disadvantage here is that the shell’s tetrahedrons are constructed in preprocessing 

step on CPU. It prevents from using the method on arbitrarily animated surfaces. For example, some 

real-time soft body physics simulation can’t be performed on the base surface. However, the 

construction process can be easily modified to be doable on-the-fly on GPU. 

So, our second contribution is extension of current methods to be applicable to animated surfaces. 

 

 



2. Related work 

The methods for applying volumetric details onto a base surface can be roughly divided into two 

main categories by way of detail’s representation: directly through geometry and implicitly through 

textures. 

Methods from the first category, geometry based methods, allow us to produce accurate results, 

including non-repetitive structures over base mesh, directly through geometry. 

Some methods construct the detail geometry in preprocessing step. Mesh quilting [1] uses synthesis 

of geometry over surface from given example patch. The method eliminates distortions, produced by 

texture mapping techniques. But all the generated geometry should then be stored in memory, which 

makes this method inappropriate for simulating big amount of small details. 

Recent investigations made it possible to transfer style of example geometry onto a basic surface 

using neural networks [3]. All the generated geometry should then be stored in memory and be 

processed when rendering. So, it shares the same disadvantages as the previous method. 

Deferred warping [2] allows you to attach detail geometry without need to store all of it in memory. 

While it’s useful for attaching mid or high scale details, it’s still suffers, as other geometric methods, 

from increasing computational cost when the amount of details becomes big, while their scale becomes 

small. The method focuses mostly on cloth rendering in garment prototyping applications.  Also there 

is an approach for cloth rendering on fiber level [8], but it’s applicable only for this specific cloth 

visualization. 

The common disadvantage of all of these methods is the necessity to process all of the detail 

geometry, which makes them not scalable in terms of processing time: without special handling through 

levels of detail, it will increase if scale of the details will decrease. Also, only [2] directly supports free 

deformation of the base surface. 

Methods from the second category, image based methods, allow us to easily scale and transform 

details by simply adjusting texture coordinates. But their rendering process is more complicated – we 

need to somehow trace objects inside the texture, which we apply onto the base surface. We will refer 

to such texture as input texture. 

The simplest of the methods [11, 12] use height maps to represent relief on a surface. Extension of 

such methods was proposed in [13], which allow simulation of more complex surfaces. All of the 

methods require storing only 2D texture and doesn’t require definition of shell space. However, they’re 

limited by representing only relief details, without ability to represent random structures. 

To represent such structures, shell mapping was proposed [4]. The main idea of the method is to 

construct a volumetric shell of tetrahedrons over the base surface and use each tetrahedron for bijective 

mapping between world and texture spaces. This way we can render each tetrahedron separately by 

tracing the input texture inside it, making the method appropriate for interactive and real-time rendering 

through rasterization of the tetrahedrons. 

So, in [14] was proposed a method for rendering semi-transparent surface structure using shell 

mapping. The big disadvantage of the method is that the constructed tetrahedrons should be sorted every 

frame, which makes performance of the method to be highly dependent on the number of polygons in 

the base mesh. 

In [8] was proposed a real-time rendering approach for shell mapping, which doesn’t require 

tetrahedrons sorting. The brief description of the method is as follows. In preprocessing step we first 

make an offset surface by extruding the base surface towards vertex normals. Then corresponding 

triangles of the base and the offset mesh are connected, forming “prisms” (not in their mathematical 

sense). Each prism is then being split into 3 tetrahedrons, each forming an affine mapping between 

world and texture spaces. Now, by rasterizing all the tetrahedrons and tracing the texture inside each 

one, using affine mapping, we are getting volumetric details on the base surface. Tracing inside the 

texture space is done by using sphere tracing [9]. An SDF for it is stored in a separate texture.  To 

discard invisible elements a depth buffer is used. 

As previous methods use tetrahedral representation of the shell, which causes texture distortions due 

to affine mapping, smooth and curved shell mapping [5] was developed to eliminate them by the cost 

of rendering time. 



All of the methods, however, don’t take into account possible levels of detail for the input texture 

through mip mapping. Another general disadvantage of the methods is that shell construction is done 

in the preprocessing step, which prevents using arbitrary animations on the base surface. 

In [6] was proposed a different approach for rendering shell space textures. Instead of tracing a 

texture inside prisms, it searches areas of intersection between planes facing towards camera and shell 

prisms, then render these areas from back to front. Such a method is capable of drawing semi-

transparent details, thus allowing usage of levels of detail for volumetric textures. However, as we have 

to draw all of the areas without discarding invisible parts, there is significant overdraw, especially when 

the surface to be textured is big, as we have to cover all of the space by these planes. 

3. Proposed methods 

As was said in the introduction, we use real-time adaptation of shell mapping [8] as a method for 

applying details, represented through volumetric texture, to a base surface. Note, that there is no strict 

dependency on this method and the proposed algorithm for semi-transparent details rendering can be 

also used with smooth and curved shell mapping [5].  

First, we describe our approach for rendering shells with levels of detail, where semi-transparent 

parts appear in downscaled mips. For this we proposed an algorithm for order independent transparency 

based on depth peeling [15]. The main point of the method is to discard invisible parts with hardware 

z-test, thus reducing rendering time each pass. This is archived by splitting each pass into multiple steps, 

which also minimizes amount of expensive lighting calculations. 

After that we describe the proposed approach for shell geometry construction. By simplifying prism 

pattern defining process, we make the tetrahedrons or prisms to be constructible on GPU. To optimize 

memory and time consumption it’s being done in two stages – first for vertex transformations and 

second for shell construction and calculation of intersections with tetrahedrons planes, which is needed 

for further ray tracing when performing rendering. 

3.1. Shell rendering with levels of detail 

Construction of level of detail for volumetric textures involves appearance of semi-transparent parts 

on the edges of the surface, encoded in a texture. To render them, we need to implement order 

independent transparency, as sorting of tetrahedrons is too expensive. Especially, first K semi-

transparent layers need to be found to get a stable and good quality result. So techniques with linked 

list construction [16], with transmittance approximation [17] or stochastic transparency [18] aren’t 

appropriate. An accepted method is depth peeling, introduced in [15]. It has different more advanced 

variants, such as [19, 20]. All of the approaches for depth peeling, though, have the following 

disadvantages. 

 Culling of parts, which are on or in front of the last rendered layer, is performed within shader 

instead of with hardware depth test. It involves discard operations, which depend on texture reads. 

This, first, makes each pass more expensive. Second, all of the geometry should be re-rendered every 

pass, even parts, which are from already rendered layers. 

 Lighting for a current layer is conditionally done in the same draw call with depth finding. So, 

a very high wave divergence appears when performing fragment shading stage, especially when we 

have discards in a shader (in our case we discard pixels for which there are no intersections with the 

implicit surface). It causes the hardware to perform both lighting and layer depth finding, instead of 

something one, most of the time. 

These disadvantages make every depth peeling pass equally expensive due to bad hardware 

utilization. So the idea of our method is to utilize hardware depth test to cull as much pixels as possible. 

This way we can avoid a lot of unnecessary GPU work. 

Basically, our algorithm is a modification of depth peeling technique, where we render transparent 

layers one by one until we reach the last layer or exceed maximum amount of layers. This maximum is 

a user defined parameter. Each rendering pass we render one new transparency layer and blend it with 



previously rendered ones. The key difference is that we utilize hardware z-buffer for culling already 

rendered or invisible parts but not the slow software culling inside shaders. 

Each pass is performed in 4 steps. First step is for finding new layer depth, as in depth peeling, but 

without shading. We move shading into a separate step to minimize amount of lighting calculations and 

to perform them only for visible pixels. Two more steps are intermediate steps, which are used to 

construct and update the depth buffer based on current layer’s depth, found on the first step, and 

opaqueness info, updated on the shading step. We can write the maximum depth value into the depth 

buffer to cull these pixels in subsequent passes. This way a lot of pixels will be culled because every 

mip-level represents some opaque surface and has transparent parts only on the edges. So usually the 

first rendered layer will be already opaque for most of the pixels and all the pixels behind them from 

subsequent layers will be invisible. 

 
Figure 2: Schematic example of our OIT approach. Here we have 4 objects (thick vertical lines) with 
semi-transparent parts on edges and depth from previously rendered scene (grey triangle). Each pass 
4 steps are performed: finding depth of a new layer, converting it into a z-buffer with regard to existing 
scene depth, rendering the layer, extending the z-buffer with regard to accumulated transparency. 
Left side of each image corresponds to the near plane and right to the far. Red color represents the 
z-buffer constructed or used for culling on each step. Green color denotes parts, for which fragment 
shader is being executed. Note that lighting operations are performed only for fragments, which 
impact on the final image 

 

The detailed description of each step within a pass is following (schematic example of them is shown 

at Figure 2). 

1. Layer depth finding. On this step the depth of a new layer is being searched. It’s being done 

by setting previous layer depth as z-buffer with read-only mode. As in original depth peeling, the 

nearest depth is being written as output color with ‘min’ blending function. The problem here is that 

we have to search intersection with the encoded surface to determine whether the fragment should 

be discarded or not. Without it we’d have transparent parts occupying each layer and the algorithm 

would require way more passes to produce a correct image. 

2. Depth conversion #1. This full-screen step is used for several purposes. First, it converts the 

found depth of a new layer into z-buffer by changing fragment depth in the shader.  Note that we 

can’t just copy a texture into hardware z-buffer and should do this trick because of hardware 

restrictions. Second, we compare depth of a new layer with the previous scene’s depth: if the layer’s 



depth is greater than one from the previous scene, the layer’s fragment should be culled and a value, 

corresponding to far culling plane (z_max), be written into z-buffer as all layers behind will also 

have greater depth. 

3. Layer shading. On this step shading is performed for the new layer. The step is performed 

with z-function set to ‘equal’. This allows to perform expensive lighting computations without 

overdraw. Also we can use here hardware alpha-blending with the previously rendered layers. 

4. Depth conversion #2. This step is the same as #1, except that we additionally perform the 

opaqueness test as follows. The accumulated opaqueness is being checked if it’s greater than some 

user-defined threshold (we use 0.95 here). If so, we write z_max into z-buffer as all subsequent 

layers we treat as invisible in this case and can cull them. 

 

Although depth resolving pass isn’t really cheap as it’s performed in full-screen, it adds only 

constant cost. At the same time, every pass require less and less time, which compensates the cost of 

additional full-screen pass. Also, empirically results show, that 3-4 passes are enough in many cases. 

For example, you can see on Figure 3 that after the second pass there are almost no changes in the 

resulting image. Also you can see there, how rendering time is reduced with each subsequent pass. 

 

 
Figure 3: Example of rendering process with our method. On the top images green color highlights 
pixels, which pass depth test at the lighting step. On the bottom images corresponding results are 
shown 

3.2. Construction of shell geometry on-the-fly 

In [4, 5, 8, 14] shell construction is performed during preprocess step. The consistency between 

prisms is archived by maintaining correct edge patterns between adjacent prisms. It’s done by randomly 

assigning them first and then correcting inconsistencies. However this makes the whole process to be 

data dependent and thus non-parallelizable. 

But there is a way simpler approach. As we have indexes of every vertex on a base mesh, they can 

be used to determine directions of edges, which split sides of the prisms. An edge is rising, if it goes 

from vertex of the base mesh with lower index to a vertex with higher index, and falling otherwise. This 

method doesn’t require any work to assign patterns to the prisms and guarantee their consistency 

between each other. Also it’s data independent, so the tetrahedrons can be constructed in parallel for 

each face of the base mesh. And thus, allowing implementation on GPU in compute shaders as follows. 

To reduce computing time and memory usage, the process is split into two steps. On the first step 

the base mesh S is transformed into St as it would be in vertex shader, then an additional offset surface 

S't is constructed by shifting vertices of St toward vertex normals at some predefined distance. All of 

the data produced is stored into a buffer for vertex data. On the second step shell tetrahedrons with all 

necessary data are constructed as in [8] with determining edge directions as described above. The stage 

is performed per face. The results are stored into separate buffer for shell data. To connect these two 



buffers for access from vertex shader, a third buffer, which stores indexes of vertex data for each 

tetrahedron, is being constructed. Scheme of the method is depictured below in Figure 4. 

 
Figure 4: Schematic example of shell construction in two steps. On the first step the base mesh S is 
transformed into St, after what offset surface S’t is constructed by shifting vertices of St towards their 
normals. On the second step shell tetrahedrons (or only prisms) are constructed. For preserving 
consistency between prism sides, direction of splitting edge is determined based on base vertex 
indexes 

4. Results 

The proposed method was tested on multiple scenes against shell mapping without texture mips, 

both using tetrahedral representation of the shell. Additionally on a single scene it was tested against 

simple instancing without using levels of detail for instanced geometry. Testing was done on a PC with 

NVidia GeForce RTX 2080 GPU. 

Averaged performance results are shown in Figure 5. As we can see, the basic method is faster on 

smaller sizes, as cache is better utilized and we need to perform rendering only once. But with texture 

size increasing its performance significantly reduces, as cache hit rate becomes lower. At the same time 

the proposed method almost saves it’s speed and outperforms the basic one on bigger sizes. 

 
Figure 5: Performance comparison between our method with texture LODs, and basic shell mapping 
without them. We put here average FPS results between 3 scenes, shown on Figure 6, with different 
rendering resolutions: 800x800 (left) and 2560x1600 (right) 

 

Visual appearance is shown on Figure 6. We can see the main advantage of the method: using levels 

of detail gives anti-aliased results almost comparable to super-sampled ones, while having good 

performance. Although some color altering can be noticed. First, there is darkening on parts, where 

surface is nearly perpendicular to view projection plane – in that case a lot of prisms meets in the view 

direction. It appears because the OIT approach doesn’t handle all the layers. For the screenshots we 



used 4 layers. Second, some color altering appears because we use simple linear downscaling for mips 

construction, which, as discussed before, isn’t correct. Especially in our case, transparency should be 

constructed anisotropically. For example, when the texture represents some plane, it should be opaque 

when the view direction is perpendicular to that plane, and almost transparent, when it’s parallel. There 

is some research about correct handling of downscaled volumetric textures [21, 22], but it focuses on 

offline rendering. So adopting it to real-time is a topic for future work. 

 
Figure 6: Visual comparison between our method, described in section 3, which uses texture LODs, 
and basic shell mapping without them on different scenes. To see the difference, we took small parts 
of the resulting images. For basic approach we produced pictures with 1 and 64 samples per pixel. The 
second gives true anti-aliasing at cost of 64x slower rendering time and is used as ground truth here 

5. Conclusion 

We described a method for rendering small-scale features on polygonal meshes, which is archived 

by constructing levels of detail for volumetric textures and handling their partial transparency. For latter 

a method for order independent transparency, based on depth peeling, was proposed. It utilizes the fact, 

that we render opaque details, and, with use of hardware depth test for culling, allows to reduce amount 

of fragment shader invocations each subsequent pass. We used very basic lighting calculation here, so 



performance gain can be more when some advanced methods will be used, as there is no overdraw 

when performing it. To make the technique applicable for animated surfaces, we proposed a way to 

construct the shell on-the-fly on GPU. This way it can be easily embedded and used with existing 

rendering pipelines. 

Some topics are left untouched though. First, simple mip-map construction with linear downscaling 

doesn’t produce correct results in case of 3D textures, especially on very low-scale mips. Second, we 

still have to rasterize all of the tetrahedrons each pass. Even though we perform culling with z-test, the 

rasterization and vertex processing work should be done before that. With modern hardware, which 

introduced hardware ray tracing, it’s it possibly will be more efficient to trace shell geometry instead 

of rasterizing it. So, both of the problems are the topics for the future work. 
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