
Real-time Rendering of Small-scale Volumetric Structure on
Animated Surfaces

Artemiy Leshonkov
1 and Vladimir Frolov

1,2

1 Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
2 Keldysh Institute of Applied Mathematics, Miusskaya sq., 4, Moscow, 125047, Russia

Abstract
There are a lot of methods for rendering of shell-space geometry, represented through voxel

texture, known for today. While the topic is well studied in terms of techniques for applying

this geometry onto surfaces, a little attention was paid to representation of sub-pixel details of

the geometry. Such details are prone to produce aliasing artifacts and reduce performance due

to bad cache utilization. In this paper we solve these problems by introducing levels of detail

for voxel textures within shell mapping technique. The main problem here is that less detailed

levels begin to contain semi-transparent voxels on the edge of an encoded surface, which

requires additional handling. For this we present a new approach for order independent

transparency rendering based on depth peeling. We extend the algorithm by adding additional

resolving pass which allows to fully utilize hardware z-buffering to reduce amount of

overdraw. This significantly reduces cost of each subsequent peeling pass. Empirically, 3-4 of

such passes is enough to produce good quality results in most cases. Another issue with shell

mapping techniques is that shell geometry is constructed offline, making base surface to be

static. By slightly modifying the method, we made the construction to be performed on-the-fly

on GPU and be applicable for animated surfaces.

Keywords 1
real-time rendering, shell mapping, levels of detail, order independent transparency

1. Introduction

Simulation of small-scale features on a surface is important task in many real-time applications

(fig.1). In garment prototyping there are knitwear, fur and other complex materials. In videogames and,

for example, flight simulators there is often a need to render grass, forests or other plants at far distance.

In architecture we often have surfaces with small repetitive patterns, such as fences, bricks etc. Usually

it’s being done by simply applying 2D texture, representing such details, or by rendering lots of textured

quads. Such approach is fast, but coarse. So, there are multiple techniques to accurately represent

complex structure on surfaces either directly by geometry [1-3] or implicitly through volumetric

texturing [4-6] without need to construct all of the details by hand.

Simulation through geometry allows us to get accurate results by the cost of vertex processing and

memory consumption. For example, to render a chainmail using geometry, we have to model each ring

through primitives and then process all of their vertices during rasterization. The more rings we have,

the more vertices we need to process, thus making rendering to be expensive when rings are small and

there is too much of them.

GraphiCon 2021: 31st International Conference on Computer Graphics and Vision, September 27-30, 2021, Nizhny Novgorod, Russia

EMAIL: artemiy.leshonkov@graphics.cs.msu.ru (A. Leshonkov); vfrolov@graphics.cs.msu.ru (V. Frolov);
ORCID: 0000-0003-2144-7250 (A. Leshonkov); 0000-0001-8829-9884 (V. Frolov);

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

Figure 1: Demonstration of our approach for small-scale details rendering

In the case of implicit representation of structure through a volumetric texture, either procedural or

as three-dimensional array of texels, detail applying becomes similar to usual texture mapping and there

is no need to process vertices of the details themselves. Therefore, the rendering time is defined by the

amount of pixels being rasterized and vertex count of the surface, to which details are applied. Further

we will refer to such surface as a base surface or a base mesh as in [4]. As example, we can take only

small voxelized piece of, again, a chainmail and repetitively apply it to the base surface as a texture,

without need to simulate each ring separately.

So, in theory, we can simulate repetitive volumetric structure on a surface at any scale without extra

cost by simply adjusting its texture coordinates. But in real case, without changing texture resolution

we will lose performance and get aliased noisy image. This is because as we scale details down, we will

have bigger distance in texture space between neighboring pixels of the final image. It causes worse

cache usage, when sampling the texture, and aliasing artifacts appearing, as we omit more texture data.

This is a common problem with texture mapping and it’s being solved by using a mip map [7] – a

set of images, representing different resolutions of the texture from high to low. In 2D case we just

sample corresponding mip image based on the scale of texture we apply. However, this is not so trivial

when we represent some volumetric objects through a 3D texture. In lower resolution mips we should

take into account such phenomena, as self shadowing, view dependent partial transparency and

increasing roughness. In this paper we focus on the problem of partial transparency appearing on the

edges of these volumetric objects in 3D mip images (further just mips). It appears because of blending

between transparent and opaque texels during mips downscaling process. Opaque texels represent the

detail objects, while transparent represent empty space.

So, our main contribution is a method to render, in general, semi-transparent details applied to a base

surface. The approach takes its advantage from the case when semi-transparency originally comes from

lower resolution mips of a texture representing some opaque object. With it a lot of shading calculations

is being omitted by culling invisible parts of the details we simulate. It allows us to use mip-mapping

for detail’s textures, thus making implicit detail representation to be scalable without extra cost and

without strong artifacts.

For applying a 3D texture on a base surface we use a real-time adaptation [8] of a method named

shell mapping, originally introduced in [4]. Applying is performed by constructing a shell of

tetrahedrons over the base surface and then, when rendering, tracing the texture inside each one using

sphere tracing [9]. A disadvantage here is that the shell’s tetrahedrons are constructed in preprocessing

step on CPU. It prevents from using the method on arbitrarily animated surfaces. For example, some

real-time soft body physics simulation can’t be performed on the base surface. However, the

construction process can be easily modified to be doable on-the-fly on GPU.

So, our second contribution is extension of current methods to be applicable to animated surfaces.

2. Related work

The methods for applying volumetric details onto a base surface can be roughly divided into two

main categories by way of detail’s representation: directly through geometry and implicitly through

textures.

Methods from the first category, geometry based methods, allow us to produce accurate results,

including non-repetitive structures over base mesh, directly through geometry.

Some methods construct the detail geometry in preprocessing step. Mesh quilting [1] uses synthesis

of geometry over surface from given example patch. The method eliminates distortions, produced by

texture mapping techniques. But all the generated geometry should then be stored in memory, which

makes this method inappropriate for simulating big amount of small details.

Recent investigations made it possible to transfer style of example geometry onto a basic surface

using neural networks [3]. All the generated geometry should then be stored in memory and be

processed when rendering. So, it shares the same disadvantages as the previous method.

Deferred warping [2] allows you to attach detail geometry without need to store all of it in memory.

While it’s useful for attaching mid or high scale details, it’s still suffers, as other geometric methods,

from increasing computational cost when the amount of details becomes big, while their scale becomes

small. The method focuses mostly on cloth rendering in garment prototyping applications. Also there

is an approach for cloth rendering on fiber level [8], but it’s applicable only for this specific cloth

visualization.

The common disadvantage of all of these methods is the necessity to process all of the detail

geometry, which makes them not scalable in terms of processing time: without special handling through

levels of detail, it will increase if scale of the details will decrease. Also, only [2] directly supports free

deformation of the base surface.

Methods from the second category, image based methods, allow us to easily scale and transform

details by simply adjusting texture coordinates. But their rendering process is more complicated – we

need to somehow trace objects inside the texture, which we apply onto the base surface. We will refer

to such texture as input texture.

The simplest of the methods [11, 12] use height maps to represent relief on a surface. Extension of

such methods was proposed in [13], which allow simulation of more complex surfaces. All of the

methods require storing only 2D texture and doesn’t require definition of shell space. However, they’re

limited by representing only relief details, without ability to represent random structures.

To represent such structures, shell mapping was proposed [4]. The main idea of the method is to

construct a volumetric shell of tetrahedrons over the base surface and use each tetrahedron for bijective

mapping between world and texture spaces. This way we can render each tetrahedron separately by

tracing the input texture inside it, making the method appropriate for interactive and real-time rendering

through rasterization of the tetrahedrons.

So, in [14] was proposed a method for rendering semi-transparent surface structure using shell

mapping. The big disadvantage of the method is that the constructed tetrahedrons should be sorted every

frame, which makes performance of the method to be highly dependent on the number of polygons in

the base mesh.

In [8] was proposed a real-time rendering approach for shell mapping, which doesn’t require

tetrahedrons sorting. The brief description of the method is as follows. In preprocessing step we first

make an offset surface by extruding the base surface towards vertex normals. Then corresponding

triangles of the base and the offset mesh are connected, forming “prisms” (not in their mathematical

sense). Each prism is then being split into 3 tetrahedrons, each forming an affine mapping between

world and texture spaces. Now, by rasterizing all the tetrahedrons and tracing the texture inside each

one, using affine mapping, we are getting volumetric details on the base surface. Tracing inside the

texture space is done by using sphere tracing [9]. An SDF for it is stored in a separate texture. To

discard invisible elements a depth buffer is used.

As previous methods use tetrahedral representation of the shell, which causes texture distortions due

to affine mapping, smooth and curved shell mapping [5] was developed to eliminate them by the cost

of rendering time.

All of the methods, however, don’t take into account possible levels of detail for the input texture

through mip mapping. Another general disadvantage of the methods is that shell construction is done

in the preprocessing step, which prevents using arbitrary animations on the base surface.

In [6] was proposed a different approach for rendering shell space textures. Instead of tracing a

texture inside prisms, it searches areas of intersection between planes facing towards camera and shell

prisms, then render these areas from back to front. Such a method is capable of drawing semi-

transparent details, thus allowing usage of levels of detail for volumetric textures. However, as we have

to draw all of the areas without discarding invisible parts, there is significant overdraw, especially when

the surface to be textured is big, as we have to cover all of the space by these planes.

3. Proposed methods

As was said in the introduction, we use real-time adaptation of shell mapping [8] as a method for

applying details, represented through volumetric texture, to a base surface. Note, that there is no strict

dependency on this method and the proposed algorithm for semi-transparent details rendering can be

also used with smooth and curved shell mapping [5].

First, we describe our approach for rendering shells with levels of detail, where semi-transparent

parts appear in downscaled mips. For this we proposed an algorithm for order independent transparency

based on depth peeling [15]. The main point of the method is to discard invisible parts with hardware

z-test, thus reducing rendering time each pass. This is archived by splitting each pass into multiple steps,

which also minimizes amount of expensive lighting calculations.

After that we describe the proposed approach for shell geometry construction. By simplifying prism

pattern defining process, we make the tetrahedrons or prisms to be constructible on GPU. To optimize

memory and time consumption it’s being done in two stages – first for vertex transformations and

second for shell construction and calculation of intersections with tetrahedrons planes, which is needed

for further ray tracing when performing rendering.

3.1. Shell rendering with levels of detail

Construction of level of detail for volumetric textures involves appearance of semi-transparent parts

on the edges of the surface, encoded in a texture. To render them, we need to implement order

independent transparency, as sorting of tetrahedrons is too expensive. Especially, first K semi-

transparent layers need to be found to get a stable and good quality result. So techniques with linked

list construction [16], with transmittance approximation [17] or stochastic transparency [18] aren’t

appropriate. An accepted method is depth peeling, introduced in [15]. It has different more advanced

variants, such as [19, 20]. All of the approaches for depth peeling, though, have the following

disadvantages.

 Culling of parts, which are on or in front of the last rendered layer, is performed within shader

instead of with hardware depth test. It involves discard operations, which depend on texture reads.

This, first, makes each pass more expensive. Second, all of the geometry should be re-rendered every

pass, even parts, which are from already rendered layers.

 Lighting for a current layer is conditionally done in the same draw call with depth finding. So,

a very high wave divergence appears when performing fragment shading stage, especially when we

have discards in a shader (in our case we discard pixels for which there are no intersections with the

implicit surface). It causes the hardware to perform both lighting and layer depth finding, instead of

something one, most of the time.

These disadvantages make every depth peeling pass equally expensive due to bad hardware

utilization. So the idea of our method is to utilize hardware depth test to cull as much pixels as possible.

This way we can avoid a lot of unnecessary GPU work.

Basically, our algorithm is a modification of depth peeling technique, where we render transparent

layers one by one until we reach the last layer or exceed maximum amount of layers. This maximum is

a user defined parameter. Each rendering pass we render one new transparency layer and blend it with

previously rendered ones. The key difference is that we utilize hardware z-buffer for culling already

rendered or invisible parts but not the slow software culling inside shaders.

Each pass is performed in 4 steps. First step is for finding new layer depth, as in depth peeling, but

without shading. We move shading into a separate step to minimize amount of lighting calculations and

to perform them only for visible pixels. Two more steps are intermediate steps, which are used to

construct and update the depth buffer based on current layer’s depth, found on the first step, and

opaqueness info, updated on the shading step. We can write the maximum depth value into the depth

buffer to cull these pixels in subsequent passes. This way a lot of pixels will be culled because every

mip-level represents some opaque surface and has transparent parts only on the edges. So usually the

first rendered layer will be already opaque for most of the pixels and all the pixels behind them from

subsequent layers will be invisible.

Figure 2: Schematic example of our OIT approach. Here we have 4 objects (thick vertical lines) with
semi-transparent parts on edges and depth from previously rendered scene (grey triangle). Each pass
4 steps are performed: finding depth of a new layer, converting it into a z-buffer with regard to existing
scene depth, rendering the layer, extending the z-buffer with regard to accumulated transparency.
Left side of each image corresponds to the near plane and right to the far. Red color represents the
z-buffer constructed or used for culling on each step. Green color denotes parts, for which fragment
shader is being executed. Note that lighting operations are performed only for fragments, which
impact on the final image

The detailed description of each step within a pass is following (schematic example of them is shown

at Figure 2).

1. Layer depth finding. On this step the depth of a new layer is being searched. It’s being done

by setting previous layer depth as z-buffer with read-only mode. As in original depth peeling, the

nearest depth is being written as output color with ‘min’ blending function. The problem here is that

we have to search intersection with the encoded surface to determine whether the fragment should

be discarded or not. Without it we’d have transparent parts occupying each layer and the algorithm

would require way more passes to produce a correct image.

2. Depth conversion #1. This full-screen step is used for several purposes. First, it converts the

found depth of a new layer into z-buffer by changing fragment depth in the shader. Note that we

can’t just copy a texture into hardware z-buffer and should do this trick because of hardware

restrictions. Second, we compare depth of a new layer with the previous scene’s depth: if the layer’s

depth is greater than one from the previous scene, the layer’s fragment should be culled and a value,

corresponding to far culling plane (z_max), be written into z-buffer as all layers behind will also

have greater depth.

3. Layer shading. On this step shading is performed for the new layer. The step is performed

with z-function set to ‘equal’. This allows to perform expensive lighting computations without

overdraw. Also we can use here hardware alpha-blending with the previously rendered layers.

4. Depth conversion #2. This step is the same as #1, except that we additionally perform the

opaqueness test as follows. The accumulated opaqueness is being checked if it’s greater than some

user-defined threshold (we use 0.95 here). If so, we write z_max into z-buffer as all subsequent

layers we treat as invisible in this case and can cull them.

Although depth resolving pass isn’t really cheap as it’s performed in full-screen, it adds only

constant cost. At the same time, every pass require less and less time, which compensates the cost of

additional full-screen pass. Also, empirically results show, that 3-4 passes are enough in many cases.

For example, you can see on Figure 3 that after the second pass there are almost no changes in the

resulting image. Also you can see there, how rendering time is reduced with each subsequent pass.

Figure 3: Example of rendering process with our method. On the top images green color highlights
pixels, which pass depth test at the lighting step. On the bottom images corresponding results are
shown

3.2. Construction of shell geometry on-the-fly

In [4, 5, 8, 14] shell construction is performed during preprocess step. The consistency between

prisms is archived by maintaining correct edge patterns between adjacent prisms. It’s done by randomly

assigning them first and then correcting inconsistencies. However this makes the whole process to be

data dependent and thus non-parallelizable.

But there is a way simpler approach. As we have indexes of every vertex on a base mesh, they can

be used to determine directions of edges, which split sides of the prisms. An edge is rising, if it goes

from vertex of the base mesh with lower index to a vertex with higher index, and falling otherwise. This

method doesn’t require any work to assign patterns to the prisms and guarantee their consistency

between each other. Also it’s data independent, so the tetrahedrons can be constructed in parallel for

each face of the base mesh. And thus, allowing implementation on GPU in compute shaders as follows.

To reduce computing time and memory usage, the process is split into two steps. On the first step

the base mesh S is transformed into St as it would be in vertex shader, then an additional offset surface

S't is constructed by shifting vertices of St toward vertex normals at some predefined distance. All of

the data produced is stored into a buffer for vertex data. On the second step shell tetrahedrons with all

necessary data are constructed as in [8] with determining edge directions as described above. The stage

is performed per face. The results are stored into separate buffer for shell data. To connect these two

buffers for access from vertex shader, a third buffer, which stores indexes of vertex data for each

tetrahedron, is being constructed. Scheme of the method is depictured below in Figure 4.

Figure 4: Schematic example of shell construction in two steps. On the first step the base mesh S is
transformed into St, after what offset surface S’t is constructed by shifting vertices of St towards their
normals. On the second step shell tetrahedrons (or only prisms) are constructed. For preserving
consistency between prism sides, direction of splitting edge is determined based on base vertex
indexes

4. Results

The proposed method was tested on multiple scenes against shell mapping without texture mips,

both using tetrahedral representation of the shell. Additionally on a single scene it was tested against

simple instancing without using levels of detail for instanced geometry. Testing was done on a PC with

NVidia GeForce RTX 2080 GPU.

Averaged performance results are shown in Figure 5. As we can see, the basic method is faster on

smaller sizes, as cache is better utilized and we need to perform rendering only once. But with texture

size increasing its performance significantly reduces, as cache hit rate becomes lower. At the same time

the proposed method almost saves it’s speed and outperforms the basic one on bigger sizes.

Figure 5: Performance comparison between our method with texture LODs, and basic shell mapping
without them. We put here average FPS results between 3 scenes, shown on Figure 6, with different
rendering resolutions: 800x800 (left) and 2560x1600 (right)

Visual appearance is shown on Figure 6. We can see the main advantage of the method: using levels

of detail gives anti-aliased results almost comparable to super-sampled ones, while having good

performance. Although some color altering can be noticed. First, there is darkening on parts, where

surface is nearly perpendicular to view projection plane – in that case a lot of prisms meets in the view

direction. It appears because the OIT approach doesn’t handle all the layers. For the screenshots we

used 4 layers. Second, some color altering appears because we use simple linear downscaling for mips

construction, which, as discussed before, isn’t correct. Especially in our case, transparency should be

constructed anisotropically. For example, when the texture represents some plane, it should be opaque

when the view direction is perpendicular to that plane, and almost transparent, when it’s parallel. There

is some research about correct handling of downscaled volumetric textures [21, 22], but it focuses on

offline rendering. So adopting it to real-time is a topic for future work.

Figure 6: Visual comparison between our method, described in section 3, which uses texture LODs,
and basic shell mapping without them on different scenes. To see the difference, we took small parts
of the resulting images. For basic approach we produced pictures with 1 and 64 samples per pixel. The
second gives true anti-aliasing at cost of 64x slower rendering time and is used as ground truth here

5. Conclusion

We described a method for rendering small-scale features on polygonal meshes, which is archived

by constructing levels of detail for volumetric textures and handling their partial transparency. For latter

a method for order independent transparency, based on depth peeling, was proposed. It utilizes the fact,

that we render opaque details, and, with use of hardware depth test for culling, allows to reduce amount

of fragment shader invocations each subsequent pass. We used very basic lighting calculation here, so

performance gain can be more when some advanced methods will be used, as there is no overdraw

when performing it. To make the technique applicable for animated surfaces, we proposed a way to

construct the shell on-the-fly on GPU. This way it can be easily embedded and used with existing

rendering pipelines.

Some topics are left untouched though. First, simple mip-map construction with linear downscaling

doesn’t produce correct results in case of 3D textures, especially on very low-scale mips. Second, we

still have to rasterize all of the tetrahedrons each pass. Even though we perform culling with z-test, the

rasterization and vertex processing work should be done before that. With modern hardware, which

introduced hardware ray tracing, it’s it possibly will be more efficient to trace shell geometry instead

of rasterizing it. So, both of the problems are the topics for the future work.

6. References

[1] K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo, H. Y. Shum, Mesh quilting for

geometric texture synthesis, in: ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, 2006, 690–697.

doi:10.1145/1179352.1141942.

[2] M. Knuth, J. Bender, M. Goesele, A. Kuijper, Deferred Warping, IEEE Computer Graphics and

Applications, 37 (6) (2017) 76–87. doi:10.1109/MCG.2016.41.

[3] A. Hertz, R. Hanocka, R. Giryes, D. Cohen-Or, Deep geometric texture synthesis, ACM

Transactions on Graphics, 39 (4) (2020) 1–11. doi:10.1145/3386569.3392471

[4] S. D. Porumbescu, B. Budge, L. Feng, K. I. Joy, Shell maps, ACM Transactions on Graphics, 24

(3) (2005) 626–633. doi:10.1145/1073204.1073239.

[5] S. Jeschke, S. Mantler, M. Wimmer, J. Kautz, S. Pattanaik, Interactive smooth and curved shell

mapping, in: Proceedings of the 18th Eurographics conference on Rendering Techniques

(EGSR'07), Eurographics Association, Goslar, DEU, 2007, 351–360.

[6] P. Decaudin, F. Neyret, Volumetric billboards, in: Computer Graphics Forum, 28(8) (2009) 2079–

2089. doi:10.1111/j.1467-8659.2009.01354.x.

[7] L. Williams, Pyramidal parametrics, in: Proceedings of the 10th annual conference on Computer

graphics and interactive techniques (SIGGRAPH '83), Association for Computing Machinery,

New York, NY, USA, 1983, 1–11. doi: 10.1145/800059.801126.

[8] N. Ritsche, Real-time shell space rendering of volumetric geometry, in: Proceedings - GRAPHITE

2006: 4th International Conference on Computer Graphics and Interactive Techniques in

Australasia and Southeast Asia, 1(212) (2006) 265–274. doi:10.1145/1174429.1174477.

[9] J. C. Hart, Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces,

The Visual Computer, 12(10) (1996) 527-545.

[10] K. Wu, C. Yuksel, Real-time fiber-level cloth rendering, in: Proceedings - I3D 2017: 21st ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2017,

doi:10.1145/3023368.3023372.

[11] M. McGuire, M. McGuire, Steep Parallax Mapping, I3D 2005 Poster, 2005. URL:

http://www.cs.brown.edu/research/graphics/games/SteepParallax/index.html.

[12] N. Tatarchuk, Dynamic parallax occlusion mapping with approximate soft shadows, in:

Proceedings of the Symposium on Interactive 3D Graphics, March, 2006, 63–70.

doi:10.1145/1111411.1111423.

[13] X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, H.-Y. Shum, Generalized displacement maps, in:

Eurographics Symposium on Rendering, January, 2004, 227–233.

doi:10.2312/EGWR/EGSR04/227-233.

[14] J.-F. Dufort, L. Leblanc, P. Poulin, Interactive Rendering of Meso-Structure Surface Details using

Semi-Transparent 3D Textures, in: Proceedings of Vision, Modeling, and Visualization, 2005,

399–406.

[15] C. Everitt, Interactive order-independent transparency, 2001.

[16] P. Barta, B. Kovács, Order Independent Transparency with Per-Pixel Linked Lists, The 15th

Central European Seminar on Computer Graphics, 2011. doi:10.1.1.309.4525.

[17] M. McGuire, L. Bavoil, Weighted Blended Order-Independent Transparency, Journal of Computer

Graphics Techniques, 2(2), (2013) 122–141. URL: http://jcgt.org/published/0002/02/09/.

[18] E. Enderton, E. Sintorn, P. Shirley, D. Luebke, Stochastic transparency, in: IEEE transactions on

visualization and computer graphics, 17(8) (2010) 1036-1047. doi: 10.1145/1730804.1730830.

[19] L. Bavoil, K. Myers, Order Independent Transparency with Dual Depth Peeling, Image Rochester

NY, 107 (2008) 22020–22025.

[20] F. Liu, M. C. Huang, X. H. Liu, E. H. Wu, Efficient depth peeling via bucket sort, in: Proceedings

of the SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2009, 51–57.

[21] S. Zhao, L. Wu, F. Durand, R. Ramamoorthi, Downsampling scattering parameters for rendering

anisotropic media, ACM Transactions on Graphics, 35(6) (2016) 1–11.

doi:10.1145/2980179.2980228.

[22] G. Loubet, F. Neyret, A new microflake model with microscopic self-shadowing for accurate

volume downsampling, in: Computer Graphics Forum, 37(2) (2018) 111–121.

doi:10.1111/cgf.13346.

