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Abstract  
A new class of functions - "FLOZ- functions" (Functions of LOcal Zeroing out), which makes 

it possible to form the zero domain of a scalar-valued multidimensional function of complex 

configuration by means of R-functional modelling is considered. We represent the solution of 

the inverse problem of analytical geometry for a non-convex contour construction obtained by 

V.L. Rvachev’s  mathematical apparatus of R-functions. The problems of constructing an 

algorithm for automation the proposed by V.L. Rvachev solutions are described. Presented 

arguments show the complexity of constructing an algorithm based on recursive attachment. 

The functional voxel model was created in the RANOK 2D system. An approach to the 

function of local zeroing out (FLOZ-function) construction for the general (multidimensional) 

case is described. A two-dimensional function of local zeroing out is selected for solving the 

problem of a non-convex contour constructing. It is shown that the function of local zeroing 

out allows to create the sequential algorithm of automation the non-convex contour 

construction. Examples of automation the considered problems of V.L. Rvachev to the non-

convex contour construction are given. The function of local zeroing out for three-dimensional 

space (3D FLOZ-function) is considered. An example of functional voxel modelling of a 3D 

sphere model based on a triangulated network consisted of 80 triangles is given. 
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1. Introduction 

The modeling of geometric objects with scalar-valued functions initially attracted specialists 

primarily by the fact that such an object chiefly provides the maximum computational accuracy of scalar 

values and the completeness of its differential characteristics’ representation at each point of a given 

space. Secondly, the spatial constraints imposed on a geometric object in the case of modeling by other 

approaches (such as, for example, parametric) can be removed now. In the 60s of the last century, V.L. 

Rvachev proposed a new class of functions (R-functions) [1] that allowed to carry out basic set-theoretic 

operations (intersection and union) over the domain of two scalar functions, and this opens up new 

possibilities for improving such approach to modeling.  

However, nowadays the construction of scalar-valued functions remains not an easy task that 

requires a decent mathematical background and spatial intuition, allowing you to predict the 

formulation of the expected result. In 1982, in work [2] V.L.Rvachev defines the problem of automating 

the scalar-valued function construction by the example of describing a non-convex complex contour. 

For that purpose, the R-functional modeling algorithm must provide recursion depth when identifying 

convex domains that differ in their predicate statement (positive or negative region). Let us consider 

the principle of operation of such an algorithm using a specific example analyzed in the works of V.L. 

Rvachev. 
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Figure 1 shows the circuit shown in [2] as an example. It contains fourteen vertices, where the inner 

space of the function for describing the contour must have the positive sign of scalar values. Let us 

simulate such an area according to the principle given in [2]. 

The half-plane defined by two consecutive points (𝑥𝑖, 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1) in [2] is formulated as 

Σ𝑖
2 = −𝑥(𝑦𝑖+1 − 𝑦𝑖) + 𝑦(𝑥𝑖+1 − 𝑥𝑖) − 𝑦𝑖𝑥𝑖+1 + 𝑥𝑖𝑦𝑖+1. 

 

 
Figure 1: An example of a non-convex region, considered in [2] 

 

The dashed lines complement the polygon 𝑥1𝑥2 … 𝑥14𝑥1  to a convex one with segments 𝑥2𝑥10  и 

𝑥11𝑥14. The positive half-planes of these segments Σ210
2  and Σ1114

2  (notation adopted by the author) are 

located to the left of the straight lines 𝑥2𝑥10 and 𝑥11𝑥14. In this case, the convex polygon 

𝑥1𝑥2𝑥10𝑥11𝑥14𝑥1 is defined by the conjunction formula: 

Σ1
2 ∩ Σ210

2 ∩ Σ10
2 ∩ Σ1114

2 ∩ Σ14
2 .                                                 (1) 

Embedding a convex polygonal region 𝑥10𝑥7𝑥6𝑥5𝑥2 into the resulting region leads to the 

replacement of the symbol  Σ210
2  in the formula (1) with the disjunction: 

Σ25
2 ∪ Σ5

2 ∪ Σ6
2 ∪ Σ710

2 .                                                   (2) 

So, the polygon area  𝑥1𝑥2𝑥5𝑥6𝑥7𝑥10𝑥11𝑥14𝑥1 is defined by the formula  

Σ1
2 ∩ (Σ25

2 ∪ Σ5
2 ∪ Σ6

2 ∪ Σ710
2 ) ∩ Σ10

2 ∩ Σ1114
2 ∩ Σ14

2 . 
The process of sequentially cutting out the remaining convex polygonal areas will result in the 

following: 

Σ1
2 ∩ (((Σ2

2 ∪ Σ3
2) ∩ Σ4

2) ∪ Σ5
2 ∪ Σ6

2 ∪ (Σ7
2 ∩ Σ8

2 ∩ Σ9
2)) ∩ Σ10

2 ∩ (Σ11
2 ∪ (Σ12

2 ∩ Σ13
2 )) ∩ Σ14

2 .  (3)                                                          

We will model the resulting expression in a specialized RANOK 2D system, which is provided by 

the language-oriented programming compiler for automated calculation of scalar values of the 

described function [3]. Below is the source code for describing a non-convex contour:  

RECTANGLE(0,0,25,25)  

RECTBMP(200,200)  

ARGUMENT x,y  

CONSTANT x1=4, y1=7, x2=16, y2=1, 

                      x3=14, y3=4, x4=15, y4=7, 

                      x5=12, y5=6, x6=11, y6=10, 

                      x7=13, y7=13, x8=14, y8=10, 

                      x9=17, y9=9, x10=20, y10=13, 

                      x11=14, y11=21, x12=10, y12=17, 



                      x13=8, y13=20, x14=2, y14=22 

FUNCTION w1=-x*(y2-y1)+y*(x2-x1)-y1*x2+x1*y2  

                     w2=-x*(y3-y2)+y*(x3-x2)-y2*x3+x2*y3 

                     w3=-x*(y4-y3)+y*(x4-x3)-y3*x4+x3*y4 

                     w4=-x*(y5-y4)+y*(x5-x4)-y4*x5+x4*y5 

                     w5=-x*(y6-y5)+y*(x6-x5)-y5*x6+x5*y6 

                     w6=-x*(y7-y6)+y*(x7-x6)-y6*x7+x6*y7 

                     w7=-x*(y8-y7)+y*(x8-x7)-y7*x8+x7*y8 

                     w8=-x*(y9-y8)+y*(x9-x8)-y8*x9+x8*y9 

                     w9=-x*(y10-y9)+y*(x10-x9)-y9*x10+x9*y10 

                     w10=-x*(y11-y10)+y*(x11-x10)-y10*x11+x10*y11 

                     w11=-x*(y12-y11)+y*(x12-x11)-y11*x12+x11*y12 

                     w12=-x*(y13-y12)+y*(x13-x12)-y12*x13+x12*y13 

                     w13=-x*(y14-y13)+y*(x14-x13)-y13*x14+x13*y14 

                     w14=-x*(y1-y14)+y*(x1-x14)-y14*x1+x14*y1 

w=w1&(((w2|w3)&w4)|w5|w6|(w7&w8&w9))&w10&(w11|(w12&w13))&w14 

RETURN w  

 

Figure 2 shows the result of calculating the surface of a scalar function that provides a null boundary, 

marked in red. 

 
Figure 2: Construction of the surface of a scalar function by the method of V.L. Rvachev 

 

The presented surface tends to monotonicity and smoothness throughout the entire interval of the 

range of values, despite the sharp corners of the given contour. 

The disadvantage of this approach is the complex algorithmization of recursive data processing of a 

set of contour points when automating such an algorithm. It is required to implement some "simulator" 

of nested brackets of the obtained formula, which provides recursive immersion with dynamically 

increasing depth and constantly changing number of nodes of the next nested contour. This often leads 

to the organization of additional scripts, in fact, substituting for the work of the compiler, and therefore 

does not give application efficiency. 

To get rid of the recursive construction of a complex non-convex contour, it is necessary to transform 

the algorithm into a simple sequence of computing a single logical operation (for example, an 

intersection). To do this, it is enough to construct a scalar function that calculates a zero value in a given 

limited area, and fills the rest of the area with positive values. Such a function should provide generality 

with the multidimensional space, forming its own class - the Function of Local Zeroing out  (FLOZ-

function).  



2. Function of Local Zeroing out (FLOZ-function) 

FLOZ-function – a multidimensional function that acquires zero for a local neighborhood defined 

by vertices on the range of positive values. 

A local neighborhood of a FLOZ-function should be understood as a simple geometric figure, the 

number of vertices which corresponds to the dimension of the FLOZ space (Fig. 3). For example, in 

𝑥𝑂𝑦 space it is a segment defined by two points, in 𝑂𝑥𝑦𝑧 space it is a triangle, etc. 

 The neighborhood is defined by a local function:  

𝐿(𝑋𝑚) = 𝑛1𝑥1 + ⋯ 𝑛𝑚−1𝑥𝑚−1 + 𝑛𝑚 = 0.      (4) 

A local function is understood as a linear polynomial whose coefficients are local geometric 

characteristics 𝑛𝑖, obtained by normalizing the coefficients 𝑎𝑖 from the equation: 

|

𝑥1 … 𝑥𝑚 1

𝑥1
1 … 𝑥𝑚

1 1
⋮

𝑥1
𝑛

⋱
…

⋮
𝑥𝑚

𝑛
⋮
1

| = 𝑎1𝑥1 + ⋯ + 𝑎𝑚𝑥𝑚 + 𝑎𝑚+1 = 0,   so 

𝑛𝑖 =
𝑎𝑖

√𝑎1
2+⋯+𝑎𝑚+1

2
.        (5) 

 
Figure 3: Local neighborhood of a FLOZ-function 

 

The area (volume) of an n-dimensional neighborhood of FLOZ-function can be formulated in terms 

of the norm √𝑎1
2 + ⋯ + 𝑎𝑚

2  as: 

 𝑉𝑓𝑙
𝑛 =

√𝑎1
2 + ⋯ + 𝑎𝑚

2

(𝑚 − 1)!
.                                                 (6) 

Successively replacing the coordinates of one of the control points 𝑥𝑖
𝑗
  of the determinant with the 

coordinates of the considered point of the space 𝑃𝑘(𝑋𝑚), 𝑥𝑖 ∈ 𝑋𝑚, we obtain n terms of the 

neighborhood.. 

Statement: The sum of the folded neighborhoods ∑ 𝑉𝑃𝑘𝑋𝑚

𝑚𝑚
𝑖=0 , obtained in turn by successive 

replacement of control points with a point 𝑃𝑘 is equal to 𝑉𝑓𝑙
𝑚 if 𝑃𝑘 belongs to the local neighborhood of 

FLOZ. Then the function of local zeroing out (FLOZ-function) in general form can be written as: 

𝐹𝑙𝑜𝑧(𝑋𝑚) = ∑ 𝑉𝑃𝑖(𝑋𝑚)
𝑚

𝑚

𝑖=0

− 𝑉𝑓𝑙
𝑚 = 0.                                              (𝟕) 

 

We will show how FLOZ-functions work using the examples of the implementation of simple spaces 

 𝐸2 and 𝐸3. 

 

1. The space 𝐸2, that is, the two vertices define a line segment. The equation of a straight line to which 

the segment belongs can be written in such form: 

 

|
𝑥 𝑦 1
𝑥1

𝑥2

𝑦1

𝑦2

1
1

| = (𝑦1 − 𝑦2)𝑥 − (𝑥1 − 𝑥2)𝑦 + (𝑥1𝑦2 − 𝑦1𝑥2) = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3 = 0. (8) 

 



In turn, the length of the segment according to the general formulation 𝑉𝑓𝑙
𝑛 can be written as 

𝑉𝑓𝑙
2 =

√𝑎1
2 + 𝑎2

2

(2 − 1)!
= √(𝑦1 − 𝑦2)2 + (𝑥1 − 𝑥2)2 = 𝑑.                             (9) 

In this case 

𝑉𝑃1

2 = √(𝑦 − 𝑦2)2 + (𝑥 − 𝑥2)2 = 𝑑1 и  𝑉𝑃2

2 = √(𝑦1 − 𝑦)2 + (𝑥1 − 𝑥)2 = 𝑑2, а 

 

𝑭𝒍𝒐𝒛(𝑿𝟐) = 𝑑1 + 𝑑2 − 𝑑 = 0.                                        (10) 
 

Figure 4 clearly demonstrates the principle of operation of a two-dimensional FLOZ-function. 

 
Figure 4: Two-dimensional FLOZ 

 

Let us show that the α-system of  V.L. Rvachev's function [2] allows two FLOZ-functions to be 

connected correctly. 

The intersection function in complete form is written as 

𝑅𝛼
∩ =

1

1 − 𝛼
(𝑥 + 𝑦 − √𝑥2 + 𝑦2 − 2𝛼𝑥𝑦).                                      (11) 

Since the coefficient 𝛼 does not affect the zero boundary and the sign of the function value in any 

way, we will remove it from the reasoning by assigning a zero value to 𝛼. We will obtain 

𝑅0
∩ = 𝑥 + 𝑦 − √𝑥2 + 𝑦2.                                             (12) 

It is necessary to make sure that there is at least one zero value of the function-arguments  𝑅0
∩ = 0. 

If we substitute 𝑦 = 0, into the expression, then we get 

𝑅0
∩ = 𝑥 − √𝑥2 = 0.                                                   (13) 

A similar result is expected for 𝑥 = 0. This means that when the function  𝑅0
∩ works with floz-

functions, the zero values on both neighborhoods are preserved. For positive FLOZes  𝑥 + 𝑦 >

√𝑥2 + 𝑦2. This follows from the right-angled triangle rule. Hence, we can conclude that it is the R-

intersection function 𝑅𝛼
∩ that can correctly connect two FLOZes on the positive range of values while 

preserving their basic property of zeroing a given local neighborhood. 

Figure 5 shows the procedure for the intersection of two given floz-functions on the considered area. 

 
Figure 5: The procedure of the intersection of two FLOZ-functions. 

 

2. The space 𝐸3, i.e. three vertices define a triangle. The equation of the plane for the given vertices 

will be written 

|

𝑥 𝑦 𝑧 1
𝑥1
𝑥2

𝑥3

𝑦1
𝑦2

𝑦3

𝑧1 1
𝑧2

𝑧3

1
1

| = 𝑎1
𝑆𝑥 + 𝑎2

𝑆𝑦 + 𝑎3
𝑆𝑧 + 𝑎4

𝑆 = 0,                        (14) 

Hence the area of the triangular element from the given vertices 



𝑉𝑓𝑙
3 =

√𝑎1
𝑆2

+ 𝑎2
𝑆2

+ 𝑎3
𝑆2

(3 − 1)!
=

√𝑎1
𝑆2

+ 𝑎2
𝑆2

+ 𝑎3
𝑆2

2
= 𝑆∆.                       (15) 

Three equations of the plane, specified by brute-force search or exhaustive search through pairs of 

vertices with one current point 𝑃𝑘(𝑋3) to determine the coefficients and areas, can be written as: 

|

𝑥 𝑦 𝑧 1
𝑥
𝑥2

𝑥3

𝑦
𝑦2

𝑦3

𝑧 1
𝑧2

𝑧3

1
1

| = 𝑎1
𝑆1𝑥 + 𝑎2

𝑆1𝑦 + 𝑎3
𝑆1𝑧 + 𝑎4

𝑆1 = 0,                         (16) 

 

𝑉𝑃1

3 =
√𝑎1

𝑆1
2

+ 𝑎2
𝑆1

2
+ 𝑎3

𝑆1
2

(3 − 1)!
=

√𝑎1
𝑆1

2
+ 𝑎2

𝑆1
2

+ 𝑎3
𝑆1

2

2
= 𝑆1,                      (17) 

 

|

𝑥 𝑦 𝑧 1
𝑥1
𝑥
𝑥3

𝑦1
𝑦
𝑦3

𝑧1 1
𝑧
𝑧3

1
1

| = 𝑎1
𝑆2𝑥 + 𝑎2

𝑆2𝑦 + 𝑎3
𝑆2𝑧 + 𝑎4

𝑆2 = 0,                       (18) 

 

𝑉𝑃1

3 =
√𝑎1

𝑆2
2

+ 𝑎2
𝑆2

2
+ 𝑎3

𝑆2
2

(3 − 1)!
=

√𝑎1
𝑆2

2
+ 𝑎2

𝑆2
2

+ 𝑎3
𝑆2

2

2
= 𝑆2,                      (19) 

 

|

𝑥 𝑦 𝑧 1
𝑥1
𝑥2

𝑥

𝑦1
𝑦2

𝑦

𝑧1 1
𝑧2

𝑧
1
1

| = 𝑎1
𝑆3𝑥 + 𝑎2

𝑆3𝑦 + 𝑎3
𝑆3𝑧 + 𝑎4

𝑆3 = 0,                        (20) 

 

𝑉𝑃1

3 =
√𝑎1

𝑆3
2

+ 𝑎2
𝑆3

2
+ 𝑎3

𝑆3
2

(3 − 1)!
=

√𝑎1
𝑆3

2
+ 𝑎2

𝑆3
2

+ 𝑎3
𝑆3

2

2
= 𝑆3,                     (21) 

 

𝑭𝒍𝒐𝒛(𝑿𝟑) = 𝑆1 + 𝑆2 + 𝑆3 − 𝑆∆ = 0.                                      (22) 

 
Figure 6 demonstrates the principle of FLOZ-function modeling by three vertices in the space  𝐸3. 

By analogy with a two-dimensional space, a triangular FLOZ is modeled in the RANOK 3D system, 

described in a specialized FORTU language [3]: 

 

ARGUMENT X,Y,Z; 

CONSTANT X1=1., Y1=0., Z1=1.;  

                    X2=-1., Y2=1., Z2=-1.; 

                    X3=-1., Y3=-1., Z3=-1.; 

                     A=Y1*(Z2-Z3)-Y2*(Z1-Z3)+Y3*(Z1-Z2); 

                     B=-(X1*(Z2-Z3)-X2*(Z1-Z3)+X3*(Z1-Z2)); 

                     C=X1*(Y2-Y3)-X2*(Y1-Y3)+X3*(Y1-Y2); 

                     S=1./2.*SQRT(A*A+B*B+C*C); 

VARIABLE AA=Y*(Z2-Z3)-Y2*(Z-Z3)+Y3*(Z-Z2); 

                   BB=-(X*(Z2-Z3)-X2*(Z-Z3)+X3*(Z-Z2)); 

                   CC=X*(Y2-Y3)-X2*(Y-Y3)+X3*(Y-Y2); 

                   S1=1./2.*SQRT(AA*AA+BB*BB+CC*CC); 

                   AA=Y1*(Z-Z3)-Y*(Z1-Z3)+Y3*(Z1-Z); 

                   BB=-(X1*(Z-Z3)-X*(Z1-Z3)+X3*(Z1-Z)); 

                   CC=X1*(Y-Y3)-X*(Y1-Y3)+X3*(Y1-Y); 

VARIABLE S2=1./2.*SQRT(AA*AA+BB*BB+CC*CC); 



                   AA=Y1*(Z2-Z)-Y2*(Z1-Z)+Y*(Z1-Z2); 

                   BB=-(X1*(Z2-Z)-X2*(Z1-Z)+X*(Z1-Z2)); 

                   CC=X1*(Y2-Y)-X2*(Y1-Y)+X*(Y1-Y2); 

VARIABLE S3=1./2.*SQRT(AA*AA+BB*BB+CC*CC); 

VARIABLE SS=S1+S2+S3-S; 

RETURN SS; 

 
Figure 6: FLOZ in the space  𝐸3. 

 

Figure 7 displays the result of visualization of zero values of one FLOZ in a given 3D space (obtained 

in the RANOK 3D system). 

 
Figure 7: Three-dimensional FLOZ made in the RANOK 3D system  

 

Figure 8 shows an example of a "flozation" of a triangulated mesh describing a three-dimensional 

object "sphere", consisting of 80 triangles. 

 
Figure 8: Flozation with 80 triangles on the surface of a sphere 



3. Flozation of a complex non-convex contour 

Let's return to the problem of a non-convex contour constructing. Taking into account the obtained 

properties of the local intersection of FLOZes, we can talk about the possibility of organizing a 

sequential algorithm for the “flozation” of the contour. As a result of the formulated R-functional 

construction, we obtain a surface of positive scalar values, where a non-convex contour defined by a 

set of two-dimensional FLOZes belongs to zero values. Figure 9 shows the order of forming the surface 

of the function in the process of step-by-step adding of the missing FLOZes. Below there is an example 

of the implementation of the R-functional structure in the RANOK 2D system: 

RECTANGLE(0,0,25,25)  

RECTBMP(200,200)  

ARGUMENT x,y  

CONSTANT x1=4, y1=7, x2=16, y2=1 

                      x3=14, y3=4, x4=15, y4=7 

                      x5=12, y5=6, x6=11, y6=10 

                      x7=13, y7=13, x8=14, y8=10 

                      x9=17, y9=9, x10=20, y10=13 

                      x11=14, y11=21, x12=10, y12=17 

                      x13=8, y13=20, x14=2, y14=22 

FUNCTION s1=((x-x1)^2+(y-y1)^2)^0.5 

                     s2=((x2-x)^2+(y2-y)^2)^0.5  

              w1=s1+s2-((x2-x1)^2+(y2-y1)^2)^0.5 

                     s1=((x-x2)^2+(y-y2)^2)^0.5 

                     s2=((x3-x)^2+(y3-y)^2)^0.5  

               w2=s1+s2-((x3-x2)^2+(y3-y2)^2)^0.5 

                     s1=((x-x3)^2+(y-y3)^2)^0.5 

                     s2=((x4-x)^2+(y4-y)^2)^0.5  

               w3=s1+s2-((x4-x3)^2+(y4-y3)^2)^0.5 

                     s1=((x-x4)^2+(y-y4)^2)^0.5 

                     s2=((x5-x)^2+(y5-y)^2)^0.5  

               w4=s1+s2-((x5-x4)^2+(y5-y4)^2)^0.5 

                     s1=((x-x5)^2+(y-y5)^2)^0.5 

                     s2=((x6-x)^2+(y6-y)^2)^0.5  

               w5=s1+s2-((x6-x5)^2+(y6-y5)^2)^0.5 

                     s1=((x-x6)^2+(y-y6)^2)^0.5 

                     s2=((x7-x)^2+(y7-y)^2)^0.5  

               w6=s1+s2-((x7-x6)^2+(y7-y6)^2)^0.5 

                     s1=((x-x7)^2+(y-y7)^2)^0.5 

                     s2=((x8-x)^2+(y8-y)^2)^0.5  

               w7=s1+s2-((x8-x7)^2+(y8-y7)^2)^0.5 

                     s1=((x-x8)^2+(y-y8)^2)^0.5 

                     s2=((x9-x)^2+(y9-y)^2)^0.5  

               w8=s1+s2-((x9-x8)^2+(y9-y8)^2)^0.5 

                     s1=((x-x9)^2+(y-y9)^2)^0.5 

                     s2=((x10-x)^2+(y10-y)^2)^0.5  

               w9=s1+s2-((x10-x9)^2+(y10-y9)^2)^0.5 

                     s1=((x-x10)^2+(y-y10)^2)^0.5 

                     s2=((x11-x)^2+(y11-y)^2)^0.5  

               w10=s1+s2-((x11-x10)^2+(y11-y10)^2)^0.5 

                     s1=((x-x11)^2+(y-y11)^2)^0.5 

                     s2=((x12-x)^2+(y12-y)^2)^0.5  

               w11=s1+s2-((x12-x11)^2+(y12-y11)^2)^0.5 

                      s1=((x-x12)^2+(y-y12)^2)^0.5 

                      s2=((x13-x)^2+(y13-y)^2)^0.5  



               w12=s1+s2-((x13-x12)^2+(y13-y12)^2)^0.5 

                       s1=((x-x13)^2+(y-y13)^2)^0.5 

                       s2=((x14-x)^2+(y14-y)^2)^0.5  

                w13=s1+s2-((x14-x13)^2+(y14-y13)^2)^0.5 

                       s1=((x-x14)^2+(y-y14)^2)^0.5 

                       s2=((x1-x)^2+(y1-y)^2)^0.5  

                w14=s1+s2-((x1-x14)^2+(y1-y14)^2)^0.5 

w=w1&w2&w3&w4&w5&w6&w7&w8&w9&w10&w11&w12&w13&w14 

RETURN w.   

 
Figure 9: Implementation of the non-convex contour flozation sequence 

 

There is a significant increase in computational operations, which negatively affects the running 

time of the algorithm. The time period in comparison with the recursive algorithm increases by two 

orders of magnitude. Thus, avoiding recursive complexity, we get exponentially increasing time for 

each added flozation step. This problem is typical for R-functional modeling in general, since the design 

of calculations is based on the structural attachment of functions. This problem can be avoided only by 

sequentially saving intermediate calculated values in a given function area at each step of the R-

functional set-theoretic operation. In the process of flozation, this is expressed by the construction of 

the next FLOZ. 



Let us consider one of the methods of computer modeling of the analytical function area, which 

allows us to fulfill the task. 

4. The method of the functional voxel modeling 

The essence of the method is described extensively in the works [3-7]. The idea is that the domain 

of the m-dimensional function 𝑓(𝑋𝑚) can be represented on a computer by the domain of local functions 

at each point of such a domain  

𝑛1𝑥1 + ⋯ 𝑛𝑚+1𝑥𝑚+1 + 𝑛𝑚+2 = 0    (23) 

In this case, the local geometric characteristics 𝑛𝑖 are represented by a set of 𝑚 + 2 voxel images of 

dimension m. This allows you to replace a complex mathematical expression with such a graphical 

representation. In this case, the local function at a single point is capable of combining the main part of 

the properties of the replaced complex mathematical expression, greatly simplifying the calculations. 

For example, we represent a function of the form 

𝑧 = (𝑥 − 1)𝑒−[𝑥2+(𝑦+1)2] + 10(0,2𝑥 − 𝑥3 − 𝑦5)𝑒−(𝑥2+𝑦2) + 𝑒−
(𝑥2+𝑦2)

3 ;    (24) 

on a computer by images (Fig. 10). 

 

 
С1   С2   С3   С4  

Figure 10: An example of a computer representation of a function 𝑧 
 

The local function takes the form: 

𝑛1𝑥 + 𝑛2𝑦 + 𝑛3𝑧 − 𝑛4 = 0,      (25) 

 where   

𝑛𝑖 =
2𝐶𝑖−𝑃

𝑃
,        (26) 

 

𝑃 = 256  – the number of the palette intensity gradation. This means that the function 𝑧 takes the 

form 

𝑧 =
𝑛4

𝑛3
−

𝑛1

𝑛3
𝑥 −

𝑛2

𝑛3
𝑦.      (27) 

To implement the phased flozation shown in Figure 9, it is sufficient to calculate by expression (27) 

the value of 𝑧 for the intersected regions 𝑧1 and  𝑧2. Then, to carry out the R-intersection: 𝑧 = 𝑧1 +

𝑧2 − √(𝑧1)2 + (𝑧2)2. Repeating this calculation for two more neighbour points of the M-image, we 

obtain the minimal spatial triangle, which plane can also be expressed by equation (25). 

Expressing the numerical information through the intensity gradation of the monochrome palette 

𝐶𝑖 =
(𝑛𝑖+1)𝑃

2
, где 𝑃 = 256    (28) 

we will obtain four M-images, fixing a new stage of flozation. Figure 11 shows an example of the 

proposed FV-approach implementation to stepwise flozation. Unlike FVR-modeling, where the 

calculation is performed for one point of the image, here the R-function is recalculated three times and 

an additional calculations generate new components  𝑛𝑖.  

At the same time, I would like to note a significant reduction in the operating time of the algorithm 

with the same technical characteristics of the computer. The time spent on calculating the contour is 

now no more than 30 seconds, which is approximately 2 seconds for each performed flozation step for 

an image resolution of 400x400 pixel. In this case, the main advantage is achieved: the running time of 



the algorithm increases linearly and depends on the number of FLOZes, as well as the resolution of M-

images used for the computer representation of the functional-voxel model. 

 
Figure 11: An example of nonconvex contour flozation using the FV-approach. 
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