
An Approach to Comparing Multidimensional Geometric Objects 
 

Igor Seleznev 
1, Evgeniy Konopatskiy 

1, Olga Voronova 
1, Oksana Shevchuk 

1 and Andrey 

Bezditnyi 
2 

 
1 Donbas National Academy of Civil Engineering and Architecture, Derzhavina Street, 2, Makeevka, 286123, 

Ukraine 
2 Sevastopol branch of «Plekhanov Russian University of Economics», Vakulenchuk Street, 29, Sevastopol, 

299053, Russian Federation 

 

Abstract  
The paper proposes an approach to the comparison of multidimensional geometric objects, 

which is used to assess the variational geometric models of multifactor processes and 

phenomena obtained using the geometric theory of multidimensional interpolation. The 

proposed approach consists of two stages, the first of which consists in the discretization of 

multidimensional geometric objects in the form of a set of discretely given points, and the 

second is in comparing the obtained discrete point sets using a criterion that is essentially 

similar to the coefficient of determination. In this case, one of the discrete point sets is taken 

as a reference for comparison with another point set. For a correct comparison of 

multidimensional geometric models in the form of point equations, which are reduced to a 

system of parametric equations, it is necessary to perform interconnection of parameters. A 

computational experiment was carried out on the example of comparing geometric models of 

the physical and mechanical properties of fine-grained concrete. It showed the possibility of 

using the proposed approach for comparing multidimensional geometric objects and the 

reliability of the results obtained in comparison with scientific visualization methods. On the 

same example, it was found that for an accurate comparison of the investigated geometric 

models of the physical and mechanical properties of fine-grained concrete, it is enough to 

discretize 100 points. A further increase in the set of discrete points of the compared geometric 

objects has no significant effect on the criterion for assessing their similarity. 
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1. Introduction 

During the development of the geometric theory of multidimensional interpolation [1-3], it was 

found that the geometric models of multifactor processes obtained using multidimensional interpolation 

are characterized by variability. It is a consequence of the multiplicity of choice of reference lines in 

the process of developing a geometric process modeling scheme. Along with the variability of 

geometric models of the same process, the problem arose of choosing the optimal model from the 

available set of variations. The difficulty of this choice lies in the fact that all possible variations of 

geometric interpolants fully satisfy the initial experimental and statistical data, but have different 

curvatures between the interpolation nodal points. The solution to this problem led to the need to 

compare geometric objects with each other. It turned out that this issue is poorly researched not only in 

point calculation [4-5]. The authors managed to find a fairly large array of works [6-7] devoted to the 
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development of curve matching tools (maximum information coefficient, Frechet distance, Dynamic 

Time Warping, etc.), which are used in many applied fields of science and technology, such as time 

analysis series, speech recognition, signature verification, etc. All these methods are focused on 

matching one-parameter sets of points – lines and have no generalization to multidimensional space, 

which could be used to match multi-parameter sets of points. In works [8-9], an approach is proposed 

to compare three-dimensional geometric objects (human and mannequin bodies) using stochastic 

methods, using form functions. Many articles are devoted to the comparison of 2D and 3D geometric 

objects based on various approaches, which include the use of: generate specific distance histograms 

that define a measure of the geometric similarity of the inspected objects [10], a probabilistic method 

to evaluate 3D surfaces is presented [11], graph matching technique to measure the distance between 

these graphs [12], Hausdorff distance (HD) and the accumulated distance difference (ADD) [13], graph 

similarity into PPM and similarity measurement based on Topological Relationship Distribution (TRD) 

feature [14], a probability distribution function (PDF) produced from spatial disposition of 3D 

keypoints, keypoints which are stable on object surface and invariant to pose changes [15], a method of 

sequential application of global descriptors, allowing the first stage to produce a "rough" screening of 

obviously different objects, and then to apply more accurate algorithms on a significantly reduced object 

base [16]. Also, there are a number of review articles devoted to research on the problem of comparing 

2D and 3D geometric objects [17]. However, from the works considered, it is not clear whether the 

proposed method has a generalization to a multidimensional space and whether it can be adapted for 

use in point calculus. 

Traditionally, the method of scientific visualization is used to compare geometric objects - 

overlapping. However, it is only suitable for comparing one- and two-parameter geometric objects. At 

the same time, even a comparison of two-parameter geometric objects encounters a number of 

difficulties and the need to use an interactive three-dimensional environment to visualize the 

comparison results. Comparison of multiparameter geometric objects belonging to a multidimensional 

space causes a number of practically unrealizable problems associated with the complexity of 

visualizing geometric objects in multidimensional space. Therefore, it becomes necessary to develop a 

criterion for assessing the similarity of geometric objects, which could numerically characterize the 

degree of their coincidence with each other, taking into account the prospective use in multidimensional 

space. 

2. Evaluation of the similarity of multidimensional geometric objects in point 
calculus 

One of the features of the point calculus is that all geometric objects in the point calculus are 

represented by an organized set of points, which are defined using the current point. The current point 

fills the space with its movement, thereby forming a geometric object. The current parameter is 

responsible for the movement of the current point, which is an invariant of parallel projection and in 

most cases varies from 0 to 1. Continuous change of the current parameter within the specified limits 

forms a continuous geometric object. However, if you fix a number of values of the current parameter, 

then you can select a series of fixed points that belong to the modeled geometric object. When there are 

a lot of such points, they can characterize the geometric model with high accuracy. This feature of the 

point calculus is proposed to be used to compare several geometric objects, taking into account the 

generalization to a multidimensional affine space. A multidimensional geometric object in general form 

is determined by the following point equation: 
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where iA  are the initial points, the coordinates of which, in accordance with the geometric theory of 

multidimensional interpolation [1-3], correspond to the initial experimental and statistical data; 

 , , ,...ip u v w are the continuous functions of parameters; 

, , ,...u v w  are the current parameters of the point equation, which in most cases change from 0 to 1; 

m  is the number of origin points. 



Passing from a point equation to a system of the same type of parametric equations, which are 

projections of a geometric object on the axis of the global coordinate system, we obtain: 
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It is important to highlight one subtlety. The degree of coincidence of multidimensional geometric 

objects is determined by the degree of coincidence in all its coordinates. If geometric objects are 

explicitly specified by equations (for example, a surface  ,z f x y ), then by setting the same values 

of the variables x  and y , it is possible to estimate the degree of coincidence of the surfaces by 

comparing the corresponding values of the coordinate z . In our case, there is a system of parametric 

equations for which the same values of the parameters can give different coordinates of points that do 

not correspond to each other. Therefore, for a correct comparison of multidimensional geometric objects 

in point calculus, it is imperative to correlate the parameters of point equations. In some cases, with a 

uniform distribution of the initial experimental-statistical data, we can use the special properties of 

curves passing through predetermined points, obtained on the basis of Bernstein polynomials, to pass 

from a system of parametric equations to an explicit equation. However, the uniform distribution of the 

initial experimental and statistical data is a special case and is not always possible in engineering and 

scientific practice. On the other hand, if there is such a possibility, then when compiling an experiment 

planning matrix, it is better to use a regular multidimensional network of experimental points, which 

will greatly facilitate further mathematical processing and analysis of the data obtained. 

As noted above, if you continuously change the values of the current parameters in the point equation 

(1) from 0 to 1, then we get a continuous multidimensional geometric object. But if the values of the 

parameters are taken with any step, then we get a set of discrete points that belong to this geometric 

object. For example, for a line that characterizes a one-factor process, using a step of 0.1 for the 

parameter u , we get a set consisting of 11 discrete points. If this step is used for a surface that 

characterizes a two-factor process, then we get a set consisting of 121 discrete points, etc. Comparing 

the obtained sets of discrete points, one can estimate their similarity. Of course, the more points a set 

consists of, the more accurately the degree of similarity can be estimated. But if two geometric objects 

have very similar shape and position, then for any number of points, the similarity will be very high. 

For this, one of the statistical criteria can be used, the most popular of which is the coefficient of 

determination in engineering practice. 

The coefficient of determination is usually used to estimate the accuracy of a geometric model 

obtained using multivariate approximation. It is the ratio of the sum of squared regression residuals to 

the total variance: 
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The coefficient of determination, which is determined by formula (2), can be used as a criterion for 

assessing the similarity of multidimensional geometric objects. The values of one point, set (selected as 

a reference) are accepted only as actual values, and another as calculated ones. Similarly, other 

statistical criteria for assessing similarity can be adapted to compare multidimensional geometric 

objects. 

3. Computational experiment on the example of comparing geometric models 
of physical and mechanical properties of fine-grained concrete 

An example of variational geometric modeling of the dependence of the physical and mechanical 

properties of fine-grained concrete on the composition of the combined aggregate is given, to study the 

effect of the composition of the combined aggregate in the form of open-hearth slag (OHS), granulated 

blast furnace slag (GBFS) and burnt rock (BR) on the strength concrete Rst. We will use the proposed 

approach to assess the similarity of the obtained geometric models, the variational geometric schemes 

of which are shown in Fig. 1. 

 

 
Figure 1: Variational schemes of geometric modeling of the physical and mechanical properties of 
fine-grained concrete from the composition of the combined aggregate 

 

The first geometric model (Fig. 1a) is described by the following system of parametric equations: 
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The first geometric model (Fig. 1b) is described by a similar system of parametric equations: 
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As a result of an analytical comparison of these two geometric models, it was found that both 

response surfaces pass through 10 initial points and can be considered reliable simulation results. But a 

comparison of the same models by the method of scientific visualization showed that they are quite 

close, but differ from each other in the zones highlighted in red (Fig. 2). 

Taking into account the peculiarities of geometric schemes for modeling the physical and 

mechanical properties of fine-grained concrete in the form of two-parameter response surfaces (Fig. 1), 

which in the plan have the shape of a triangle, it is necessary to correlate the parameters of the systems 

of parametric equations: 
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Figure 2: Comparison of variational geometric models by the superposition method 

 

As a result, the system of parametric equations of the first geometric model (Fig.1a) takes the 

following form: 
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Next, we will investigate the effect of the discretization of geometric objects on the criterion for 

assessing similarity. To do this, we will calculate the criterion for assessing the similarity of geometric 

objects for different sizes of a network of discrete points belonging to the modeled geometric object. 

The research results are shown in Fig. 3. 

 

 
Figure 3: Analysis of the influence of discretization points on the criterion for assessing the similarity 
of geometric objects 
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As can be seen from Fig. 3, the high level of similarity of geometric objects obtained by the method 

of superimposing response surfaces is fully confirmed. It should be noted that for a specific example, 

after 100 sampled points, the values of the similarity assessment criterion are aligned and no longer 

significantly changes, remaining within 2 0,956R  . 

4. Conclusion 

The criterion for assessing the similarity of multidimensional geometric objects, akin to the 

coefficient of determination from regression analysis, is, on the one hand, a universal tool for comparing 

multidimensional geometric objects, on the other hand, it has all the disadvantages inherent in the 

coefficient of determination. For example, the coefficient of determination provides for comparison 

with the averaged value of the reference variable; therefore, the accuracy of its estimation decreases 

with a significant scatter of the values of the variable taken as the reference one. And when it is 

generalized to a multidimensional space, if there is a significant difference in the order of values on 

each numerical axis of the data, it can give unsatisfactory results. This leads to the need for additional 

research to develop a criterion for assessing the similarity of geometric objects more adapted to the 

multidimensional space (for example, it can be one of the statistical criteria: the chi-square test, the 

Kolmogorov-Smirnov test, the Cramer-Mises test, the Bhattachary test, the Kullback divergence -

Leibler, Jensen-Shannon divergence, Hamman coefficient, Jackard coefficient, etc.). At the same time, 

the proposed approach, which is based on the discretization of geometric objects for their comparison 

both explicitly and parametrically, regardless of the choice of the evaluation criterion, can find wide 

application in scientific research in various fields of science and technology. 

The proposed approach to comparing multidimensional geometric objects based on the similarity 

criterion, akin to the coefficient of determination from regression analysis, can find a worthy place in a 

number of existing and innovative approaches not only in multidimensional geometry, but also in 

decision making theory. If we consider a multiparameter geometric object of a multidimensional space 

as a graphic display of a multi-factor process, then the proposed one can be used to compare many 

processes and phenomena in science and technology. It can also be an effective tool for comparing the 

reference (exact) solution with the numerical solution of partial differential equations by approximating 

the desired solution by geometric objects with predetermined differential properties [18-19]. Another 

area of practical application of the proposed method can be a comparison of geometric bodies obtained 

in point calculus [20]. 
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