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Abstract  
The paper considers the task of real-time rendering of dynamic relief shadows based on ray 

casting using origin relief data - detailed height map. The solution proposed is based on looking 

for shadow rays - sun rays, whose tracks on height map are passed through heights occluding 

the light. GPU-based methods and algorithms for extracting such rays using an accelerating 

data structure - a mipmap of maximum and minimum relief heights are developed. This 

structure provides an effective acceleration of shadow rays extraction by skipping long sections 

of sun ray tracks that are not involved in relief shadowing. In algorithms developed precise 

traversing such a data structure is implemented, as well as texture filtering is taking into 

account, which allows the formation of "torn" shadow edges to be prevented. The solution 

created was implemented in software complex and a number of comparative shadow 

visualization tests was conducted. The results of the research can be used in virtual 

environment systems, video simulators, scientific visualization, educational applications, etc. 
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1. Introduction 

One of the most important tasks of modern virtual environment systems is modelling of realistic 

light-shadow appearance [1, 2], in particular, dynamic relief shadows. This is especially demanded for 

space, air and ground video simulators [3, 4], where, in order to instill right skills to trainees, dynamic 

shadows should be of high quality and rendered in real-time (at least 25 times per second). 

For such systems, an important feature of developing shadow algorithms is their reliability, i.e. the 

ability to construct correct shadows for any permissible directions of light sources, as well as the 

absence of freezes of visualization loop in case of unintentional errors in input data. 

From the point of ensuring the correctness of obtained shadows, the best results are derived by algorithms 

based on ray casting. However, this approach requires the implementation of a per pixel ray processing loop, 

that, firstly, is associated with heavy time costs, and, secondly, carries potential risks of hanging the 

visualization system (obtaining an infinite loop). In this paper, we propose algorithms of original 

implementation of GPU-accelerated ray casting, which ensure reliable real-time relief shadow visualization. 

2. Related work 

In the field of real-time shadow rendering, a significant part of researches is devoted to the 

development of shadow mapping approach. One of the most common is the method of cascaded shadow 

mapping [5] (or parallel-split shadow maps [6]), in which a number of shadow maps of the same size 

for the foreground, middle and background are created from light source position (often up to 4 splits). 

Owing to good performance/shadow quality ratio, this method is, in fact, standard for many gaming 
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applications. At the same time, the method requires careful adjustment of the shadowing algorithm for 

a target virtual scene in order to avoid the effect of "blocky" boundaries of shadows (especially 

elongated ones), as well as other undesirable artifacts (truncation of shadows, erroneous self-shading, 

etc.). To overcome these disadvantages, solutions based on percentage-closer filtering [7], nonlinear 

shadow mapping [8, 9], irregular Z-buffer shadow mapping [10], etc. were proposed. 

Second major approach is based on constructing and rendering of accurate polygonal model of 

shadow volume for each object in the scene [11-13]. Having knowledge about object geometry, shadow 

volumes allow to obtain high-quality shadows at any distance from light source. Also supporting stencil 

buffers and other required features by modern graphics cards make this approach quite attractive for 

real-time rendering. The limitation of this approach is tightly bound to its geometric advantage: to solve 

silhouette detection task, a number of restrictions on the allowable geometry representations is imposed. 

This leads to complicating data structures and degradation of scaling ability while increasing scene 

complexity. If the scene comprises extended object with intricate silhouette (as the relief), then the 

implementation of shadow volumes can easily consume the performance of the entire visualization system. 

It is important to note that both at first and second approaches, the reliability of relief shadow 

rendering will depend not only on shadow algorithm, but also on the reliability of the methods of 

constructing and rendering of a 3D relief model. These methods may contain hidden defects or 

optimizations that are invisible during the visualization of the 3D model, but revealing when shadows 

are rendered. In "Results" section we demonstrate such situation using a simple example. 

A completely different principle of shadow rendering is used in the third approach, which involves 

working directly with the primary data of 3D model, – a height map of its surface [14-15]. This approach 

is based on looking up intersections of light source rays with object height map (shadow ray casting), 

which allows physically correct shadows from objects of complex shape to obtained, independently of 

3D-model construction and visualization methods. However, brute-force ray casting implementation 

[16] including loop checking all map texels lying on ray path, is extremely time-consuming for real-

time visualization. In this regard, there arises the task of developing effective and reliable methods and 

algorithms of accelerating ray casting, which preserve the quality of origin ray casting shadows and 

ensure guaranteed completion of ray processing loops. 

The authors of the research [17] parallelize on the GPU execution of ray processing loops using the 

CUDA hardware-software architecture, however, implemented uniform sampling of height map along 

the ray can lead to missing some texels and loss of shadow quality. In [18], the task of relief mapping 

based on ray casting is considered, where looking up ray - height map intersections is accelerated by 

means of pre-calculated cone map. A significant limitation is great increase of cone map construction 

time depending on height map size (about 15 minutes for 5122 and about 8 hours for 10242 [19]). The 

paper [19] describes the task of real-time visualization of dynamic height maps based on ray casting 

accelerated using a maximum mipmaps calculated "on the fly" on the GPU. The authors of the work 

[20] extended these ideas of ray casting acceleration to shadow rendering, proposing own 

implementation algorithm. As the authors mention, their algorithm suffers from insufficient accuracy 

leading to appearing fake shadows and missed terrain parts, which has to be compensated by adding 

some pre-displacement to terrain vertices. 

Our work takes its origins from our earlier researches on ray casting implementation [21, 22]. Based 

on the experience gained, in this work, a core of our shadow ray casting system was developed – a 

reliable and accurate algorithm of traversing height map texels along the ray, adapted for the GPU. The 

key features of the algorithm are original "transit points" method for accurate height map sampling, 

which prevents texel missing (and potential loss of shadow information), as well as performs an 

incremental integer transition from texel to texel, which ensures guaranteed progress along the ray and 

prevents freezes of ray processing loop due to machine error in the representation of real numbers. An 

important advantage of our algorithm over [16] is no dependency from steps of previous iterations, 

which allows current step along the ray to be effectively and accurately changed.  

During the development of shadow ray casting acceleration method, we, regardless studies [19, 20], 

logically came up to a data structure similar to maximum mipmap [19], where not only maximum 

heights are stored, but minimum heights too, as well as improved construction method is used, 

providing better stitching the mipmap with height map. Checking maximum heights allow large parts 

of height map, not involving in shadow formation, to be effectively skipped, while checking minimum 

heights allow ray processing to be earlier completed with shadow formation. If ray casting algorithm 



contains any inaccuracies or errors, the second check will give fake shadows that are immediately 

noticeable on the image. This unique property of our accelerating data structure allowed many 

inaccuracies of ray-casting algorithm to be identified and fixed, and, ultimately, a reliable shadow ray 

casting system performing entirely on the GPU, to be created. The proposed solution is implemented in 

C++ using the GLSL shading language and the OpenGL graphics library. 

3. Our definitions and models 

First, we will describe definitions of detailed height map, shadow ray and shadow coefficient, as 

well as some necessary mathematical background, used in our solution. 

Detailed height map. Let there be relief section (for simplicity - a unit square), where the height 

above sea level for each point is known. Height map is a single-channel 2m × 2m  texture, where height 

values (in grayscale), sampled by the step of 1 / (2m - 1), are written. Figure 1 shows an example of 

constructing 4 × 4 height map. In our work height values are extracted from map by means of bilinear 

interpolation [23]. So, for an arbitrary height map point with texture coordinates s, t ∈ [0, 1], the 

following height expression can be written  

ℎ(𝑠, 𝑡) = (ℎ𝑖,𝑗(1 − 𝑠) + ℎ𝑖,𝑗+1𝑠)(1 − 𝑡) + (ℎ𝑖+1,𝑗(1 − 𝑠) + ℎ𝑖+1,𝑗+1𝑠)𝑡, (1) 

where ℎ𝑖,𝑗, ℎ𝑖,𝑗+1, ℎ𝑖+1,𝑗, ℎ𝑖+1,𝑗+1 are height values of four nearest texels forming a square around the 

point under consideration (see Figure 1). As it can be seen, interpolated height values will be the closer 

to origin heights, the higher is m detail degree of height map. Height maps with m close to screen 

resolution (Full HD, 4K) will be referred to as detailed ones (m = 10,..., 12). 

 
Figure 1: Constructing relief height map 

 

In this paper, detailed height maps of relatively small terrain areas are considered, so that for shadow 

construction task the curvature of sea level surface can be neglected, i.e. considered as flat. An example 

is the Puget Sound height map [24], being mentioned in many papers related to terrain modeling. 

Shadow ray. Let there be relief model given by height map and the normal n to sea level surface, 

as well as infinite light source (the sun) given by direction s to the sun (unit vector). The coordinates of 

vectors s and n are set in relief model Object Coordinate System (OCS). Let's choose some two points 

A and B of relief model, lying in the same plane with vectors s and n, and determine the shadow at point 

A caused by the relief from point B (see Figure 2a). Denote by bshadow boolean flag of shadow presence 

at point A (0 - no, 1 - yes). Cast the ray v from point A to point B. Figure 2a shows that the point A will 

be in the shadow, if the vector s is directed no higher than the ray v. Define this using mixed product p 

[25] of the following vectors 

𝑝 = 𝒓 ∙ (𝒗 × 𝒔), (2) 
where r = s × n is unit vector, complementing vectors s and n to the right triple. Then the expression 

of bshadow flag can be written as 

𝑏𝑠ℎ𝑎𝑑𝑜𝑤 = {
1, 𝑖𝑓 𝑝 ≤ 0 𝑎𝑛𝑑 (𝒔 ∙ 𝒏) ≠ 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

(3) 

If bshadow is 1, then v is shadow ray. 
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Shadow coefficient. Let the point A is in shadow (bshadow is 1). Introduce kshadow ∈ [kdark, kbright] - 

shadow coefficient of the point A, where kdark corresponds to the darkest shadow, and kbright - to the 

brightest one, and kdark, kbright ∈ [0, 1]. Define kshadow as cos(α) (see Fig. 2a) reduced to the range [kdark, kbright]: 

𝑘𝑠ℎ𝑎𝑑𝑜𝑤 = 𝑘𝑑𝑎𝑟𝑘 + (𝑘𝑏𝑟𝑖𝑔ℎ𝑡 − 𝑘𝑑𝑎𝑟𝑘)(𝒔 ∙ 𝒏). (4) 

Figure 2b shows a plot of kshadow(𝛼) with kdark = 0.05, kbright = 0.4. As it can be seen from the plot, shadows 

become darker as the sun approaches the horizon (𝛼 → 𝜋 2⁄ ), and, conversely, shadows are brighter, when 

the sun is at zenith (𝛼 → 0), what is explained by the contribution of ambient light. Note, that thresholds 

kdark and kbright are specified based on brightness range used for virtual scene rendering. This is especially 

actual for modern visualization systems, where rendering is performed in high dynamic range [26]. 

 
Figure 2: Determination of the shadow at point A, (a) and the plot of shadow coefficient kshadow(𝛼), (b) 

4. Proposed solution 

Consider the task of constructing shadows on the image of relief 3D model, synthesized at 

visualization stage. Let’s choose an arbitrary pixel of this image. Chosen pixel corresponds to some 

point P of relief model and point P’ on height map. Denote by s’ the track of sun ray drawn from the 

point P’ (in texture space), and by T - the set of texels intersected by the track s’ (see Figure 3). Each 

Ti,jth texel has corresponded interpolated point Pi,j of relief model (honestly, each (i, j)th section of the 

track s’ has corresponded interpolated curve on relief model, however, this can be neglected on detailed 

height map). Denote by vi,j the ray casted from point P to point Pi,j. As it can be seen, the point P will 

be in the shadow, if at least one of all vi,jth rays is shadow ray. Then to solve the task, every pixel of 

relief image, having vi,jth shadow ray, should be extracted, and its brightness decreased by kshadow times. 
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Figure 3: «Footprint» of sun ray track    Figure 4: Transit points 
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In this work, pixels of relief image that to be shadowed, are extracted completely on the GPU, in 

parallel, independently of each other using developed fragment shader. This shader checks the texels of 

the "footprint" of the track s' either until the first Ti,jth pixel having shadow ray vi,jth will be detected, 

or until the "footprint" will end. This checking includes the following steps: (a) extracting height value 

from the Ti,jth texel; (b) constructing vi,jth ray and checking its belonging to shadow rays, and (c) moving 

to the next Ti,jth texel. Step (b) can be found in the previous Section, so we focus on steps (a) and (c). 

To avoid the formation of "torn" shadow edges, we extract height value from the Ti,jth texel using 

bilinear interpolation (see Eq. (1)) and take each sampling point Ps  as the average of two transit points: 

input point Pin and output point Pout of the track s' in the Ti,jth texel (see Figure 4). As it can be seen 

from the figure, the point Pout of the Ti,jth texel will be the point Pin for the Ti+1,jth texel, thus, when 

checking each Ti,jth texel, it is enough to calculate only one transit point Pout. Denote by u unit vector 

of track s’ direction, then coordinates of the point Pout can be written in parametric form Pout = Pin + ut. 

The calculation of t parameter, as well as shifts (ioffset, joffset) of next texel along the track (step (c)), are 

implemented in developed algorithm A1. 

Algorithm A1 

1. Write texture coordinates array K for 4 corners of Ti,jth texel: 

K[4] = { {s0, t0}, {s0 + ds, t0}, {s0, t0 + dt}, {s0 + ds, t0 + dt} },  

where ds = 1.0 / w, dt = 1.0 / h, and w, h are height map width and height (in texels). 

2. If (|ux| ≤ 𝜀) and (|uy| ≤ 𝜀), then  // 𝜀 - machine error of real numbers.  

t = -1; (ioffset, joffset) = (0, 0); exit the algorithm. 

3. Calculate the number ncorn of the corner of Ti,jth texel, which is intersected by track s’: 

ncorn = b0 + 2b1, where b0, b1 are boolean flags, b0 = (|ux| ≥ 0), b1 = (|uy| ≥ 0). 

4. Write the difference dP = K[ncorn] - Pin. 

5. If (|ux| ≤ 𝜀), then: t = |dPy|/|uy|; (ioffset, joffset) = (sign(uy), 0); exit the algorithm. 

6. If (|uy| ≤ 𝜀), then: t = |dPx|/|ux|; (ioffset, joffset) = (0, sign(ux)); exit the algorithm. 

7. Write tVec = dP/u and boolean flags b3 = (tVecx ≤ tVecy), b4 = (tVecy ≤ tVecx).    

8. t = min(tVecx, tVecy);   (ioffset, joffset) = (sign(uy) ∙ b4, sign(ux) ∙ b3). 

End of the algorithm. 

 

In practice, visiting all texels is not always necessary and effective, since height maps almost always 

contain large areas (plains, valleys, etc.) not involved in shadow constructing (provided not very low 

sun altitude). We localize such areas and skip them when our checking algorithm reaches such area 

border. To localize the areas, the mipmap {hmax, hmin} of maximum and minimum heights is created. It 

is an ordered set of two-channel textures (R and G components) with the following properties: 

1) For 0th map (the first one): 

- dimensions are two times smaller than height map - 2m-1 × 2m-1 (similar to classic mipmaps [27]); 

- each (i0, j0)th texel stores hmax, hmin values sampled from height map using 3 × 3 matrix (see Fig. 5a); 

2) For kth map (except 0th): 

- dimensions are two times smaller than (k-1)th map, but 1 × 1 map is not created; 

- each (ik, jk)th texel stores hmax, hmin values sampled from (k-1)th map using 2 × 2 matrix (see Fig. 5b). 
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Figure 5: Sampling matrices for constructing mipmap {hmax, hmin}: (a) 3 × 3, (b) 2 × 2 

   



Note, that in 3 × 3 matrix sampling points are upper right corners of 0,…,8th texels of height map, 

and sampling is performed using bilinear interpolation (GL_LINEAR, see Eq. (1)). In 2 × 2 matrix 

sampling points are centers of 0,…,3th texels of (k-1)th map, and sampling is performed using the 

"nearest neighbor" principle (GL_NEAREST). The mipmap {hmax, hmin} is constructed "on the fly" on 

the GPU by means of developed fragment shader once before visualization. 

Let the mipmap {hmax, hmin} contain just 2 maps (for 

simplicity). Introduce the following definitions (see Figure 6): 

- l is level of detail (LOD): 0 is height map, 1 and 2 are 0th 

and 1st maps of mipmap {hmax, hmin}; 

- (i, j) are (row, column) numbers of start texel at 0th LOD; 

- (icur,l, jcur.l), (inext,l, jnext,l) are (row, column) numbers of 

current and next texel along the ray at lth LOD; 

- Pout is output point of the ray in start texel; 

- Pout,l is output point of the ray in (icur,l, jcur.l)th texel; 

- P is the point on relief model (in OCS), corresponding to P’;     

- Pmin,l, Pmax,l are the minimum and the maximum points of 

relief model (in OCS), corresponding to (icur,l, jcur.l)th texel (at 0th 

LOD Pmin,l equals to Pmax,l). 

The progress along the ray, accelerated by means of the 

mipmap {hmax, hmin}, is implemented in our developed 

algorithm A2. 

 

Algorithm A2 

1. Initialization. 

Calculate P and (i, j), as well as kshadow by equation (4).  

Set Pin = P’ in the algorithm A1. 

Calculate Pout and (inext,0, jnext,0) by means of algorithm A1. 

Set Pin = Pout in the algorithm A1. Set l = 2, k = 1. 

2. Ray-casting loop. 

Do loop while at least one of (icur,0, jcur.0) will go beyond 

height map dimensions: 

Calculate (icur,l, jcur,l) from (inext,0, jnext,0). 

Calculate Pout,l and (inext,l, jnext,l) by means of algorithm A1. 

If l > 0, then do minimum height test: 

Calculate Pmin,l based on Pout, l and hmin sampled 

from (icur,l, jcur,l)th texel. 

Calculate for the ray v = (Pmin,l - P) the flag 

bshadow by equations (2) and (3); 

If bshadow equals 1, then k = kshadow, exit the loop. 

Do maximum height test: 

If l equals to 0, then:  

Calculate Pmax,0 based on Ps (see Fig. 

4) and h sampled from (icur,0, jcur,0)th 

texel. 

Otherwise: 

Calculate Pmax,l based on Pout, l and hmax sampled from (icur,l, jcur,l)th texel. 

Calculate for the ray v = (Pmax,l - P) the flag bshadow by equations (2) and (3); 

If bshadow equals to 1, then: 

 If l equals to 0, then k = kshadow, exit the loop. 

Otherwise: l = l-1. 

Otherwise: 

 Set (icur,l, jcur,l) = (inext,l, jnext,l). Calculate (icur,0, jcur.0) from Pout,l. 

Set Pin = Pout,l in the algorithm A1. Set l = 2. 

3. Set pixel color: C = kC. 

End of the algorithm. 

Figure 6: Progress along the ray at 
different LODs 
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5. Results 

Based on methods and algorithms proposed, a software complex for real-time rendering dynamic 

relief shadows was developed. The complex is a part of the VirSim virtual environment system [28], 

developed at the Federal State Institution "Scientific Research Institute for System Analysis of the 

Russian Academy of Sciences". 

We carried out a number of comparative shadow visualization tests using common cascaded shadow 

mapping method (CSM) varied in configurations, and our shadow ray casting implementation. For this, 

we integrated our solution into well-known NVidia CSM implementation, available at [5]. To stress-

test both methods, we created two tricky height maps: "spikes" with 5 elongated thin cones (see Figure 

7) and "steps", which yields a 3D model with non-closed surface (see Figure 8). Moreover, multiple 

tests were carried out using classic Grand Canyon height map of size 2K×2K (see Figure 9) and Puget 

Sound height map of sizes 1K×1K, 2K×2K and 4K×4K (see Figure 10), available at [24]. 

Figure 7 shows examples of cases where "spike"-test reveals hidden CSM method drawbacks: (a-c) 

some shadows are torn off from spikes or are passed through them; (e-g) sawtooth shadow edges are 

appeared (when increasing CSM resolution, edge appearance looks better, but sawtoothness remains 

still noticeable); (i) conical shape of spike shadow is lost (even at 4K CSM). Our ray casting 

implementation produces accurate spike shadows with smooth edges in all the above cases (d, h, j). 

Figure 8 illustrates results of reliability test where shadows of steps model, having front (visible) 

faces only from one side, are visualized. Due to enabled back face culling optimization, CSM method 

failed to produce some of the shadows (left image). In our implementation shadows are produced 

completely (right image), because object's height map is directly used, and there is no dependency on 

3D model construction and visualization methods. 

As tests on the Grand Canyon and the Puget Sound height maps showed, dynamic shadow loss is 

possible in CSM method at long (see Figure 9a) or middle (see Figure 10a, along the lake) distances 

due to insufficiently close/distant location of intermediate clipping planes. For the same reason, a 

sawtooth silhouette of elongated mountain shadows may appear (see Figure 10c). In our ray casting 

implementation all relief shadows are accurately drawn with high detailing, regardless of distances they 

are located at and sun altitude (see Figures 9b, 10b, 10d). 

All tests described were performed at 1920×1080 screen resolution on personal computer (Intel 

Core i7-6800K 3.40GHz, 16Gb RAM, Windows 10 Pro) equipped with graphics card NVidia GeForce 

RTX 2080 (2944 cores, 8 GB VRAM, 16x anisotropic filtering, 8x anti-aliasing). Table 1 contains 

results of performance measurement of the Puget Sound shadow rendering for both methods. 

 

Table 1 
Performance (in frames per second) of CSM with 4 splits/4K (first), and our ray-casting implementation 
(second) for different resolutions of Puget Sound height map and different sun altitudes 

 82° 41° 20° 10° 3° 

10242 486; 98  463; 52 471; 40 584; 32 591; 25 
20482 182; 34 178; 18 182; 16 185; 12 182, 10 
40962 83; 22 76; 10 80; 8 81; 6 80; 6 

 
As it is seen from Table 1, in considered sun altitude range our solution can provide real-time frame 

rates for height maps up to 10242. To overcome this, in the future we plan to conduct an extended 

research using modern NVidia RTX technology of hardware-software ray tracing acceleration. 
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Figure 7: Testing the quality of shadow rendering methods on "spikes" model using cascaded shadow 
maps [5] with 4 splits and map resolution of 1K (a, e), 2K (b, f) and 4K (c, g, i), and using our ray casting 
implementation (d, h, j) 
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Figure 8: Testing the reliability of shadow rendering methods on "stairs" model with non-closed 
surface: (a) cascaded shadow maps (4 splits, 4K), (b) our ray casting implementation 

 
Figure 9: Shadows rendered for Grand Canyon height map [24] using (a) cascaded shadow maps (4 
splits, 4K) and (b) our ray casting implementation 
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Figure 10: Shadow rendered for Puget Sound height map [24] using (a, c) cascaded shadow maps (4 
splits, 4K) and (b, d) our ray casting implementation 
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