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Abstract  
Since the modern systems of automated road surface form design have allowed us to abandon 

the two stages road axis design – the map projection and the cross projection – in favor of 

defining the road axis as a spatial curve in the form of parametric splines, the smoothness of 

connection of curves and surfaces comprising the roadway remains an open question. The 

authors further develop the cyclographic method in road surface formation and study the 

problem of smoothness of connection of ruled surfaces segments generated through the 

cyclographic mapping of a spatial curve. The present paper considers the aspects of smooth 

connection of polynomial spline curve segments and the respective cyclographic projections, 

as well as ruled surface segments that are directed by these curves. The results of the study 

allow one to pre-define the desirable order of smoothness of the connected curve segments and 

ruled surface segments comprising the road surface forms on the stage of road axis design and 

subsequent road surface formation. This fact can serve as the basis for development of CAD 

systems for road surface forms of general and special purpose. 

 

Keywords  1 
Cyclographic method, mapping, geometric modeling, roads, road surface forms, smoothness 

of connection, ruled surface. 

1. Introduction 

The modern automated road design has demand for development of the design methods and the 

mathematical apparatus of the applied geometric model. The design method dominating in this area at 

the moment is the Delaunay triangulation method commonly applied in road design CAD systems 

[1,2,3]. There are, however, certain areas where the triangulation method does not provide the required 

geometric parameters of the resulting model of road surface form. Let us consider a vehicle as a particle 

point following a curvilinear trajectory ( )r r t . It is known that the first derivative of radius-vector 

( )r t  with respect to parameter t defines the velocity vector, while the second derivative defines the 

acceleration vector, and the third derivative defines the jerk vector [4,5]. Obviously, frequent and rapid 

changes in acceleration are frequent and rapid jerks that can potentially damage cargo, injure passengers 

and drivers. It is therefore essential to assure smoothness of jerk variation function as well as its 

continuity. This requires moving trajectory continuity of up to the fourth derivative of its vector function 

[4]. Specific areas of road design demand geometric models featuring segments of curves and surfaces 

generating road surface forms to have high orders of smoothness, such as, for example, highway design, 

virtual road surface formation models for testing self-driving capabilities of artificial intelligence, etc. 

[6] 

There is a sufficient number of scientific publications on the topic of smoothness of connection of 

spatial curve segments defining the road axis. However, assuring smoothness of connection of surface 

segments forming the road surface remains an open question. At the moment there is a relatively low 

number of Russian studies dedicated to development of new geometric models of road surface forms 
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with specified geometric parameters. One of such studies worth mentioning is the mathematical model 

proposed by Professor Salkov N. A. [7]. It constitutes a system of equations describing road surface 

form as a ruled non-developable surface. Another noteworthy model was proposed by Professor 

Mufteev V. G. [4,8]. It is based on high-quality spline curves. 

The authors of the present paper have proposed a geometric model of road surface formation through 

the method of cyclographic mapping [9,10]. As with other models of road surface formation, the core 

of this model is a spatial curve modeling road axis. This curve along with its cyclographic projection 

serve as directrices for ruled surfaces that form the carriage way, the road shoulder and the slopes. The 

proposed geometric model allows one to acquire an analytical solution to the problem of mathematical 

description of the formed ruled surfaces. However, the question of smoothness of connection of formed 

ruled surface segments remains open and requires dedicated studying.  

It is therefore the objective of the present paper to study smooth connection of segments of ruled 

surfaces forming road surface forms. The starting point of the study is the correlation between 

smoothness of connection of surfaces segments and smoothness of connection of segments of the 

corresponding directrices. Here each pair of directing segments of a single ruled surface segment are 

bijectively correspondent in cyclographic mapping as a prototype and its cyclographic image.  

2. Aspects of connection of road surfaces and curves formed through the 
method of cyclographic mapping 

The studies of capabilities of the method of cyclographic mapping in road surface formation 

conducted by the authors yielded two geometric models [9]. The first of these models is based on the 

classic cyclographic projection of a spatial curve and allows one to acquire road surface forms in the 

form of developable surfaces. The analysis of the existing body of construction literature [1,2,7] and 

the typical solutions applied in road surface design showed that a different model is required. This 

model is derived from the first one by means of a specific transformation and allows one to acquire 

road surface forms in the form of non-developable surfaces. 

The classic cyclographic representation features half-angle at the mapping cone vertex between its 

axis and its generatrix α=45° [11]. Obviously, this value of half-angle α does not result in road surface 

forms that comply with the current standards and road design rules. The authors have acquired the 

equations for cyclographic mapping of a spatial curve that allow for constant half-angle value within 

limits (0°, 90°) as well as variable half-angle as a function of a certain parameter t [9,12]. Such 

cyclographic projections were called β- and β(t)-projections respectively. These projections made the 

basis of the first and the second geometric models of road surface formation [9]. 

Let us consider the way road surface formation is performed. The road axis is given in the form of 

a spatial curve ( ) ( ( ), ( ), ( ))P t x t y t z t  of smoothness kC , 0:Rt T t T   , 1, 2, ...   k  . A 

cyclographic projection  (1,2)P t  of the spatial curve ( )P t  is constructed [9,10]. The curves ( )P t  and 

 (1,2)P t  combined generate a ruled surface Φ (Figure 1). In order to achieve the desirable width, this 

surface is then trimmed by means of vertical cylindrical surfaces constructed through curves  (1,2)eP t

equidistant with respect to the orthogonal projection  1P t  of road axis ( )P t . This way the projecting 

cylindrical surfaces constructed through the curves  (1,2)eP t  upon intersection with the ruled surface 

Φ form the sought spatial curves of carriage way edges  (1,2)m t  (Figure1). Obviously, the road axis 

( )P t  and the acquired edges  (1,2)m t  constitute road surface form directrices. It should be noted that 

the cyclographic projection  (1,2)P t  in general consists of two branches. Figure 1 illustrates 

construction of carriage way edge  (1)m t  of one of the two branches of the cyclographic projection, 

namely  (1)P t . 



 
Figure 1: Carriage way edge  (1)m t  construction scheme

 
 

2.1. Aspects of connection of cyclographic projection segments  

The initial object in road surface formation is the trajectory that is the road axis. Every subsequent 

construction relies on the road axis. In most cases the road axis is given in the form of a spline curve 

consisting of a number of segments connected with a certain order of smoothness [1,4,8,13,14,15]. In 

the previous studies of the cyclographic approach in road surface formation the authors have established 

the correspondence between the smoothness of connection of the initial spline segments (road axis 

segments) and the respective cyclographic projection segments [16]. In addition, the following 

statement has been proven: subsequent fulfillment of equations of continuous derivatives of polynomial 

vector functions describing segments of order up to k inclusive in the points of connection of spline 

curve segments 
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The above statement is true for a spatial polynomial spline curve with fixed boundary conditions. 

As follows from this statement, meeting certain conditions guarantees smoothness 
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
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of cyclographic projections. But is it at all possible to achieve smoothness kС  of connection of 

cyclographic projections given the same initial conditions (smoothness kС  of connection of the initial 

curve segments)? Paper [16] proves another statement: subsequent fulfillment of equations of 

continuous derivatives of polynomial vector functions describing segments of order up to k+1 inclusive 

in the points of connection of spline curve segments 
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to achieve smoothness kС  in the points of connection of the respective cyclographic images. This 

statement is true in the case of a spatial polynomial spline curve with free boundary conditions. 

Development of effective algorithms of cyclographic formation of composite curves and surfaces 

applied in road surface form design requires one to consider the correspondence between the 

smoothness of connection of the initial polynomial spline curve segments and smoothness of connection 

of the respective cyclographic projection segments. 

2.2. Connection smoothness of ruled surfaces segments 



Let us consider smoothness of connection of segments of a ruled surface formed by directing curves 

( )P t  and  P t , where 
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represents a cyclographic β-projection of this segment. The ruled surface ( )Φ t,l  under consideration is 

defined by the following equations:  
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where ( ) ( ( ), ( ), ( )), ( ) ( ( ), ( ),0) P t x t y t z t P t x t y t    .  

A segment of the studied ruled surface Φ  is depicted on figure 2. Let us express the first partial 

derivatives from the equations (1): 
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As follows from the definition of a smooth kC  surface ( )Nk  [17], there have to be continuous 

partial derivatives of orders up to k inclusive of coordinate functions  ,X t l ,  ,Y t l , and  ,Z t l  in 

every point of such surface. The following condition also has to be true: 
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Obviously, the geometric condition (4) indicates linear independence of vector derivatives 
/
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/
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 at every point of the surface. Since ( )P t  is 

a polynomial spline segment, the condition (4) is fulfilled. It is also obvious that partial derivatives 
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It is once again obvious that every partial derivative acquired subsequently through equations (3) 

starting with the second order is equal to zero: 
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For this reason a segment of ruled surface Φ  constructed on the basis of a polynomial spline segment 

and its cyclographic projection has smoothness .C  



 
Figure 2: A segment of ruled surface Φ  

 

Connection of polynomial spline segments 
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of connection that forms a composite spline curve and subsequent construction of a cyclographic 

projection of said curve allows one to construct a composite ruled surface Φ . Segments of this surface 

are formed by the segments of directrices ( )P t  and ( )P t . Smoothness of connection of ruled segments 

at the common generatrix depends on smoothness of connection of the initial spline curve segments. 

Let us express the equations for partial derivatives of order k from the equations (1): 
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Figure 3 depicts the connected ruled segments ( , )n nr r t l  and 1 1( , )n nr r t l   with pairs of directrices 
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Here smoothness kC  corresponds to smoothness 1kC
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corresponds to smoothness kC  depending on the boundary conditions set for spline curve 
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formation (see subsection 2.1). Based on the equations (5), (6), (7) and the respective geometric 

representation, as well as the above definition of ruled surface segment smoothness, the following 
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Figure 3: Connection of ruled surface segments 

 

As one can conclude from the above, the smoothness 1kC   of connection of ruled surface segments 

directed by a spatial spline curve P  and the respective cyclographic projection P  at the common 

generatrix corresponds to the smoothness 1kC

  of connection of cyclographic projection segments given 

fixed boundary conditions of the initial polynomial spline curve. If the boundary conditions are free, 

ruled surface segments are connected with smoothness kC . Obviously, equations (11) can serve as the 

basis for formation of a smooth composite ruled surface applicable as the carriage way of a road. 

3. Results of experiments 

Let us consider an example. Consider a polynomial spline curve ( )P t  consisting of third-degree 

Bezier curve segments given in the following form: 
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conditions: second derivatives in boundary points are equal to zero. Then the equations of the three 

polynomial spline curve segments 
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where 0 1t  . 

Let us substitute the coordinate functions of vector equations for segments 
01 12 23( ), ( ), ( )P t P t P t  into 

the equation for the cyclographic β-projection (half-angle β at the projecting cone vertex is equal to 

1 rad) of the following form [9,11,12]:  
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where e tg . 

Let us express the acquired equations for cyclographic projection ( )P t  segments in the following 
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As follows from the first statement presented in subsection 2.1 and considering that the smoothness kC  
has order k = 2, we conclude that smoothness of connection of cyclographic projection segments in the 

current example equals 1C . 

By substitution of the acquired coordinate functions for vector equations of the initial spline curve 

( )P t  segments and its respective cyclographic projection ( )P t  into the equations (1) we acquire the 

parametric equation of the three linear surface Φ  segments: 
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where 4 3 249 89,6 25,1 14,5 101,28t t t tM     , 4 3 239,3 58,55 0,9 13,47 101,27t t t tN     . 
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where 4 3 214,44 57,76 61,81 8,1 100,28t t tM t    , 4 3 214,05 56,21 57,8 3,19 96,4t t tN t    . 

 

Figure 4 illustrates the acquired segments of the surface Φ . The visualization is performed in Maple 

computer algebra system. 

 
Figure 4: Visualization of the segments of the ruled surface Φ   

 

Starting from (11), let us find partial derivatives of the acquired equations for the segments of the 

surface Φ  at the points of the common generatrix. The partial derivatives with respect to parameter l, 

as pointed out earlier, are equal to zero starting with the second one. In this regard, the partial derivatives 

with respect to parameter t are presented below: 
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As we see from the presented results of partial derivatives calculation, the first partial derivatives 

with respect to parameter t are equal, while the second partial derivatives are not. Therefore, the ruled 

surfaces segments are connected with smoothness 1C . 

Let us now consider a case, where the initial spline curve ( )P t  has free boundary conditions. This 

allows us to specify an additional condition of equality of derivatives of order (k + 1) at the points of 

connection of its segments. As we know, the derivative of order (k + 1) of a polynomial spline 
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0 , Rt T T   is constant. In the considered case it is the third derivative. Then the 

equations of the initial segments 
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where 0 1t  . 

Let us apply the algorithm above and acquire new equations for the ruled surface Φ segments. Let 

us check whether their second derivatives with respect to parameter t at the points of the common 

generatrix are equal: 
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The equality of the second derivatives with respect to parameter t along the common generatrix 

follows from the calculation results. This means that ruled surface segments are connected with 

smoothness 2C . It is possible to draw a conclusion that smoothness kC  or 1kC

  of connection of 

cyclographic projection segments determines smoothness of connection of the constructed segments of 

ruled surfaces of respective degrees k and (k - 1). This conclusion confirms the theoretical results 

acquired in subsection 2.2. 

4. Conclusion 

The paper considers the problem of smoothness of connection of segments of ruled surfaces acquired 

through cyclographic mapping of a spatial spline curve and applied in road surface form modeling. The 

results of theoretical studies and numerical experiments have shown that ruled surface segments 

directed by segments of a polynomial spline curve and its cyclographic projection are connected with 

order of smoothness equal to the order of smoothness of connection of the cyclographic projection 

segments. The results of the studies on smoothness of connection of ruled surface segments within the 

proposed geometric model can find application in formation of road surface forms of general and special 

purpose. 
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