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Abstract  
Modeling and rendering large scenes with thousands of plants is still a challenging problem. 

Geometric models of individual plants consist of millions of triangles each and their 

complexity must be reduced in advance to make real-time rendering possible. Existing 

solutions usually implemented as a part of plants generator, make an ecosystem simulator an 

indivisible all-in-one solution which is hard to modify and integrate. The proposed algorithm 

performs approximate instancing over a set of plants represented with a specific structure. 

Groups of structurally similar branches are replaced with instances of one of them during the 

clustering process. Also, a new fast and universal procedural plants generation method is 

proposed. This algorithm collects statistics of spatial distribution of branches in the original set 

of plants and creates new plants trying to imitate parameters from original ones using instances 

of existing branches. Our generator is able to amplify the amount of plants in the ecosystem 

with small time and memory overhead. Unlike most existing algorithms the whole process is 

independent from the original plants generator in our solution. 
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1. Introduction 
 

Generating and rendering of complex scenes with vegetation is an important and challenging task 

with applications such as computer games, landscaping and architecture visualization. Procedural 

modeling is an interesting and widely used approach to synthesize a large variety of vegetation. The use 

of procedural modeling techniques can help graphics artists to create complex scenes in less time than 

if they were completely shaped by hand using 3D modeling software. Procedural modeling is not 

intended to fully replace the work of artists, but to collaborate with their productivity and get more 

diverse and detailed results.  

Procedural generation has been studied for decades, but despite this, there are a lot of challenges in 

implementing this approach in real-time applications. The most important are three of them. First is 

creating procedures and algorithms that synthesize realistic and detailed models, which is basically the 

main task of procedural modeling itself. The second challenge is controllability: with the abstraction 

provided by procedural models, artists should retain an acceptable level of control over certain details 

of the generated scenes. The third challenge is managing the large amount of data that is generated by 

procedural algorithms. This is a less studied problem and the main focus of this research. 

Most procedural algorithms assume that all needed data should be prepared before the rendering 

process. In modern applications we usually need detailed models with hundreds of thousands of 

triangles and large scenes with thousands of models, so every algorithm intended to create procedurally 

large scenes faces a memory consumption problem. The data should be processed so it would be 

possible to store it on a user's hard drive and at the same time should remain in form easy for rendering. 

Existing ways to solve this problem are described in the related works section. Most of them reduce a 
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large set of unique plants or their parts to a relatively smaller set by replacing similar models with 

instances of one of them [2] or generate plants from a predefined set of pieces [4],[5]. These algorithms 

are able to dramatically reduce the amount of generated data but all of them are generator-specific. This 

can be a challenge when it comes to implementing such system in some complicated application, such 

as computer games. Modern approaches usually lead to ecosystem modeling and rendering as a solid 

and indivisible process which is performed by a large and highly interconnected system ([5],[9]). In 

practice, it usually means that game developers should re-create this system as a part of their game 

engine to make a modeled ecosystem match specific to game logic.  

This paper demonstrates how some essential parts of ecosystem modeling can be separated from 

others and work as independent modules. To show the capabilities of this system, results of its work 

with two different generators are presented. The first one is created especially for this project, while the 

second is taken from a third-party open-source project.   

 

2. Related works 
 

According to Hart [6], [7], applications that use procedural synthesis of geometry may be classified 

into two paradigms: data amplification and lazy evaluation. 

Applications that follow the data amplification paradigm synthesize all geometry before the 

rendering process. Recent surveys of procedural generation [11], [12] show data amplification is mostly 

used in the industry. According to them, preparation of scene with procedural generation usually 

consists of two separate steps: plants generation and placing in a landscape. With this approach 

individual trees are generated using an offline process: either procedural generation or manual 

generation by an artist. There are many frameworks for generating models of individual trees, such as 

SpeedTree [1], Xfrog [15] or SideFX TreeGenerator [16].  

Then large scenes are created by placing instances of tree models. As a result all the trees in forest 

originate from a relatively small number of models, usually with precomputed LODs (we call this “tree 

library” further). Such tree instances can be placed manually or based on some spacing algorithm, but 

they are often repeated in an unrealistic fashion due to few unique trees in the original tree library. The 

number of original trees in this approach is very limited because of data size needed to represent a single 

tree, which is at least several megabytes. Due to this limitation, placed trees do not correctly match the 

surroundings, especially in complex urban scenes with many obstacles. Even modern complex placing 

algorithms, such as [17], do not correctly represent the plants growth response to their environment. 

There are few approaches that are able to generate complex and diverse forest scenes with acceptable 

memory footprint and do not have limitations mentioned above. Deussen et al. in [2] developed a system 

for realistic modeling and rendering of plant ecosystems. In this work individual plants are generated 

using a procedural approach. Then the geometric complexity of the scene is reduced by approximate 

instancing, in which similar plants, groups of plants, or plant parts are replaced by instances of 

representative objects before the scene is rendered. A simple example of approximate instancing is 

shown on Figure 1. Assuming that the characteristics of each plant are described by a vector of real 

numbers, a clustering algorithm is applied to the set of these vectors in order to find representative 

vectors. There are a number of complex ecosystem generators based generally on the same concept. For 

example, in [13] a method for simultaneous generation of several similar plants with shared data is 

proposed. Another approach is described in [4]. This paper presents a method to create plant models 

from a finite set of pieces and a set of rules that define the matching possibilities of the pieces. In [5] 

this concept is implemented in an ecosystem simulation system. A set of branch modules is generated 

from predefined prototypes, and modules are combined to represent tree structure at each growth step. 

Authors simulate the growth of each module and plant as connected sets of modules with morphological 

and physiological parameters. 



 
Figure 1: Simple example of approximate instancing. Black branches are replaced with instances of 
colored ones. 

These ecosystem generators are able to create realistic scenes, but take a lot of time and memory. 

More importantly, such systems are very complex and interconnected, which makes them hard to 

modify and even harder to integrate in any project. In the case of video games, such ecosystem generator 

needs to be re-implemented as a part of the game engine. 

Another possible solution was proposed by Kenwood et al. [3]. In this paper L-systems are used to 

generate individual trees. The L-system grammars are algorithmically modified to use instance cache 

for tree branches. Instances can represent a range of structures, from a single branch to multiple 

branches or even an entire tree. This method was implemented by B. Carey [14]. Despite the significant 

reduction in the amount of required memory, L-system grammars for tree generation is a restricted 

approach. They produce rather simple and not very realistic models as they don't take into account many 

biological factors and tree interaction.  

With lazy evaluation real-time visualization of large procedural scenes is possible without the need 

to store a large amount of data. For this, the procedural synthesis is performed on demand only when 

the system needs data. Unlike data amplification, which is a sequential approach, lazy evaluation 

usually follows an asynchronous client-server architecture. Hart [6], [7] proposed a scene graph 

technology called Procedural Geometric Instancing (PGI) that employs lazy evaluation.  

Also, Predictive Lazy Amplification method was proposed in [8]. It is a combination of data 

amplification and lazy evaluation paradigms. The described system is available to generate large scenes 

with relatively small memory usage. However, the lazy evaluation for plants rendering is uncommon in 

modern real-time graphics applications because of the need to create a specific separate graphics 

pipeline for it and all the challenges to make it consistent with other rendering processes. 

The problem of managing large amounts of data taken from procedural algorithms is the less studied 

part of plants ecosystem generation. It is rarely discussed separately which leads to the fact that common 

solution for it does not exist. All current approaches are specific and exist as an addition to the 

procedural plant generator. As a result, data compression algorithm needs to be re-invented in every 

new ecosystem simulator. 

 

3. Proposed method 

3.1. General pipeline 
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Figure 2: General pipeline 

Figure 2 shows a general pipeline using proposed plant data compression and amplification 

algorithms. It consists of 5 main steps. At first, some procedural plants generator creates a set of plants 

in a specific format used for clustering, it gets some input data based on its own requirements. Some 

other things, such as terrain generation can be done on this step too. Then “raw” plants data input 



processed by branch clustering algorithm and a single set of branches from all plants is created and then 

divided into several clusters – groups of similar branches. This process is based on the branch distance 

function, which represents the similarity of two branches. Next, for each cluster a center is found. 

Branches in centers form a set of basic branches and all others are replaced with instances of them. This 

set of instances is then amplified in a module called “synthetic trees generator”. It creates new trees 

similar to original ones, constructing them from instances of basic branches. Then amplified data is 

used for the second clustering step, where the same algorithm is applied to whole trees. This step is 

optional, but very useful for impostor generation. The final step is post-processing, which is expected 

to include impostors generation and preparing simplified geometry for rendering with different levels 

of detail. 

The proposed algorithm contains only the steps 2-4 while the first and the last steps are performed 

by external modules. Clustering and synthetic tree generation will be described in sections below. 

Impostors generating together with LOD system and effective rendering are not in focus in this paper, 

but as most commercial applications would have it, our implementation contains these algorithms to 

prove that it is possible to generate and render different levels of details for proposed plants structures.  

 

3.2. Clustering and approximate instancing 
 

The generator provides a set of trees with some specific structure. This structure represents plant 

hierarchically. In this section and further we will assume that branch is a structure, composed of 

segments, joints, leaves, and all of them are from child branches of all joints and from child branches 

of child branches and so on recursively. The branch itself with no child branches would be named main 

stick. Figure 3 shows structure of a branch. 

Each branch has type and level, if branch B has level N, then all child branches of its joint will have 

level N+1. Type is a natural number, describing some generator specific set of features, needed for 

rendering and further processing. Usually, all branches of a tree have one type representing plant 

species. The plant itself is a level 0 branch. 

 
Figure 3: Branch structure  

 

The memory amount needed to store even a thousand high-detailed trees is unacceptable for real-

time applications, so the data should be compressed significantly. The clustering algorithm, described 

in this section, is able to construct a set of basic branches and instancing data from given plants. The 

instances of these basic branches will form plants with look and structure very similar to original ones. 



This process is called approximate instancing. Unlike most existing solutions, the described algorithm 

is able to perform it based only on a given plant structures, without knowledge about how the generator 

works. The clustering algorithm consists of 4 main steps as shown on Figure 4. 
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Figure 4: Clustering process. Original set of trees is decomposed to the set of branches (I). Then this 
set is clustered (II). A basic branch is taken from every cluster and all others are replaced with its 
instances (III). Finally, a set of trees can be reconstructed from basic branches and instance data (IV). 

3.3. Branch distance function 
 

Clustering is an abstract procedure that can be applied to any set of objects as long as we know 

distances between them. In the next section the branch distance function is described. 

The branch is called normalized if it has an axis aligned bounding box with unit size and its main 

stick is co-directional with x axis. 

Let B be the set of all normalized branches, then  

𝑑 ∶  𝐵 𝑥 𝐵 →  [0,1]: 𝑑(𝑎, 𝑎) =  0, 𝑑(𝑎, 𝑏) =  𝑑(𝑏, 𝑎) 
is a distance function. Define simple distance function first: 

𝑑𝑠  =  1 −  𝑎 ∗ 𝑚𝑠𝑡𝑟𝑢𝑐𝑡  + (1 − 𝑎) ∗ 𝑚𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , 

𝑚𝑠𝑡𝑟𝑢𝑐𝑡 describes the level of structural similarity of branches. It is based on a joints matching process. 

Assume that we have two main sticks of normalized branches S1 and S2. Let's create pairs of joints (one 

from the first stick, second from another) that have distance <= δ. Then he will choose pairs so that the 

sum of the distances between the joints in them is the smallest, and each joint is included in no more 

than one pair. The leaves are also taken into consideration. We do not make a pair of two joints if one 

of them has a leaf, and the other does not. Give each pair a weight 𝑤 ≥  0 based on the difference of 

stick thickness in joints and branches levels. If 𝑖 = (𝑆1. 𝑙𝑒𝑣𝑒𝑙, 𝑆2. 𝑙𝑒𝑣𝑒𝑙)  𝑡ℎ𝑒𝑛  𝑤 ≤ 𝑓𝑖, 𝑓𝑖 – constant, 

level importance. 

Then the comparing process is continued with child branches belonging to matched joints. If there 

are more than one of them, we look over all possible pairs and choose the best fitted ones. Figure 5 

illustrates this process – first, the main sticks joints are mapped, then its child branches are compared. 

Finally, we got a set of matched joints pairs and their weights for them and sum them all. Then calculate 

the maximum weight sum. 



𝑾 =  ∑ 𝒘𝒊𝒊  ,         𝑾𝒎𝒂𝒙 = ∑ 𝒏𝒊 ∗ 𝒇𝒊𝒊  , 

𝑛𝑖 – is a number of joints with 𝑙𝑒𝑣𝑒𝑙 =  𝑖 in both branches, then 𝒎𝒔𝒕𝒓𝒖𝒄𝒕  =  
𝑾

𝑾𝒎𝒂𝒙
. 

To calculate spatial similarity level, a density field for each branch is calculated. Density field is a 

3d array where each cell represents some region in the branch bounding box and the value shows how 

many joints and leaves are inside this region. Exact weight of each joint and leaf depends on its size 

and some predefined constants.  𝑚𝑠𝑝𝑎𝑡𝑖𝑎𝑙 is a Normalized Mean Square Error (NMSE) between density 

fields of branches. To calculate 𝑑 from 𝑑𝑠 we rotate one of the branches around its main stick and find 

𝑑𝑠= 𝑑𝑠(α) for different angles α. Finally 𝑑 =  𝑑𝑠(𝛼). 
О

сь
 Y

Ось X

О
сь

 Y

Ось X

О
сь

 Y

Ось X

О
сь

 Y

ё

ё

1 2

3 4

 

3.4. Implementation 

 
The branch distance function described above is a mainly mathematical abstraction, but with some 

optimizations it can be implemented rather effectively. The main idea is to use only a fixed set of 

rotations (30, 60, 90 degrees etc.) and create density fields for each rotation before clustering process.  

Also, it's obvious that we should never put very dissimilar branches in one cluster, which means that 

distance, as soon as it exceeded some limit 𝑑𝑚𝑎𝑥, means “branches are not similar at all”. In 

implementation of this algorithm, possible distance is estimated during the calculation. As soon as the 

estimation of minimal distance exceeds the limit, the process is finished. 

The implemented algorithm is also able to handle branches with different bark and leaves textures 

in one cluster. Id’s of needed textures are saved for every instance in the cluster and then used by 

renderer. The only limitation is that we assume leaves in all original trees to be two-sided quads with 

semi-transparent texture and the same size. 

Branch distance calculation algorithm is implemented on GPU using OpenGL compute shaders.  

All needed data is prepared on the CPU side and put into several Shader Storage Buffer Objects. 

Compute shader's threads perform the algorithm described above and fill the buffer with distance 

between all branches (distance table). Using this distance table hierarchical clustering is performed on 

the CPU side. Assume that we have 𝑁 branches {𝐵1  … 𝐵𝑁} and table of distances {𝑑𝑖𝑗} between them. 

Then hierarchical clustering algorithm creates several sets (levels) of clusters – on first level there are 𝑁 

clusters {𝐵1} … {𝐵𝑁} and the next level is created from the previous one by merging two closest clusters 

in one. The process stops when it is impossible to merge clusters without having dissimilar branches 

(𝑑 ≥  𝑑𝑚𝑎𝑥) in one of the clusters. To calculate distance between clusters from 𝑑𝑖𝑗, Ward distance is 

used. The clustering algorithm and its theoretical basis described in [10]. 

The overall complexity level of this algorithm is 𝑂(𝑛2), where n is the number of branches for 

clustering. The Table 1 shows time needed for clustering for different n. The compression ratio = 

number of branches / number of clusters is the main indicator that shows how much clustering can 

reduce the amount of memory required. It highly depends on 𝑑𝑚𝑎𝑥 parameter. With high value almost 

Figure 5: nodes mapping for structural distance calculation. (1), (2) – normalized branches to be compared. 
(3) Node mapping of main sticks. (4) The same process on child branches from mapped nodes 



every number of branches can be packed in a rather small set of clusters, with low value the compression 

ratio is nearly constant. Table 2 represents compression ratio for different 𝑑𝑚𝑎𝑥  values and different 

number of branches. 

 

Table 1 
Clustering time 

Number of branches Clustering time (seconds) 

1250 11.86 
2500 49.97 
3750 111.09 
5000 195.31 
6250 291.78 

 
Table 2 
Compression ratio of the proposed method 

Number of 
branches 

𝑑_𝑚𝑎𝑥 =  0.6 𝑑_𝑚𝑎𝑥 =  0.65 𝑑_𝑚𝑎𝑥 =  0.7 𝑑_𝑚𝑎𝑥 =  0.75 

1250 31.6 70.6 133.4 240.2 
2500 30.2 83.5 192.6 357.7 
3750 34.2 98.0 266.0 532.0 
5000 34.6 103.2 275.1 550.2 
6250 35.4 107.4 322.4 680.8 

 

Figure 6 and 7 shows the same small group of trees with different number of clusters. There is no 

simple answer for what 𝑑𝑚𝑎𝑥 is optimal, lower value results in more diversity with larger memory 

requirements. To measure visual quality decrease after clustering, NVidia FLIP [23] and SSIM [24] 

metrics are used. The images of clustered trees group were compared with images of the original group. 

Images from different points were taken and then averaged. Table 3 shows FLIP and SSIM values for 

different 𝑑𝑚𝑎𝑥.  

 

 
Figure 6: One group of trees without clustering and clustered with different d_max parameter and 
memory needed for each group. Due to leaves, the difference is incomprehensible. On fig. 7 it is better 
visible, the same scene is rendered. 



Table 3  
FLIP (and SSIM) mean error. For the case with leaves (fig.6). 

Number of 
trees 

𝑑_𝑚𝑎𝑥 =  0.6 𝑑_𝑚𝑎𝑥 =  0.65 𝑑_𝑚𝑎𝑥 =  0.7 𝑑_𝑚𝑎𝑥 =  0.75 

10 0.027 
0.052 

 

0.027 
0.053 

0.029 
0.055 

0.029 
0.055 

25 0.0385 
0.076 

 

0.038 
0.077 

0.039 
0.077 

0.039 
0.078 

100 0.043 
0.049 

0.043 
0.081 

0.044 
0.077 

0.05 
0.078 

 

 
Figure 7: changes in tree structure after clustering with different d_max. Same scene as of fig. 6. 

 

4. Synthetic trees generator 
 

Plants compression algorithm described in the previous section is time consuming and moreover, 

many procedural generation algorithms can take up to several minutes for a single tree. It usually 

happens because they try to be biologically precise and simulate light, water and nutrients distribution. 

However, often there is no need to be so precise. This section will describe an algorithm to amplify the 

original tree set i.e. create new plants from basic branches taken from the clustering step. The general 

pipeline for it is shown on fig. 8. 

Each plant or separate branch can be described with some set of parameters such as type, length, 

thickness, number of segments and child branches etc. These parameters can be treated as random 

variables and we assume that they are equally distributed for plants with the same type (plant type is set 

by generator and can denote plant species in a biological sense and some features). The probability 

distribution for all these random variables is estimated based on a given group of branches and random 

variable generators with which these distributions are created.  

To make things easier we consider that the type of random variable is known in advance based on 

some empirical consideration, e.g., branch length is normally distributed and number of segments is a 

discrete random variable with values from 1 to 100. 

The second important part of the preparation step is calculating 2D and 3D density fields for a whole 

scene with a group of branches. Then finally a set of new “synthetic” plants is created. Each plant is 

composed of basic branch instances. The type of a tree, its size, number of segments and parameters of 

child branches are all from random number generators made on the preparation step. After it a plant is 

“inspected” with some heuristic that can decide if something in the generation went wrong and plant 

should be recreated.  
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Figure 8: a synthetic tree generation pipeline. (1) An optimal place for tree is chosen, (2) Choose a 
place on a tree where to grove new branch and choose basic branch. (3) Set size and orientation of 
branch instance. (4) Recalculate density field and estimate its quality. (5) Decide whether we should 
grow another branch, plant the tree or refuse it and start again. 

This generator works much faster than most procedural tree generators, it actually spends several 

seconds for preparation and then only a few milliseconds per constructed plant, while most procedural 

plants generators spend seconds or even minutes for a single tree. Table 4 shows generation time 

comparison for different procedural algorithms. The quality of the result is generally dependent on a 

number of given examples and the diversity of the original generator. The results of its work with 

different generators are presented on Figure 9 and Figure 10. Plants on the right on these scenes are 

created procedurally and then simplified by clustering, plants on the left are “synthetic”. Synthetic 

plants generally look similar to procedural generated ones. So, the synthetic trees generator provides a 

universal and fast way to amplify the number of generated plants from existing parts. 

 

Table 4 
Generation time comparison. 

Generator Nodes count per tree Generation time 

Our “synthetic trees” generator 30000 - 50000 3-5 msec 
Our procedural trees generator 30000 - 50000 2-4 sec 

Self-organizing trees generator [20] 225000 21 sec 
Plastic trees generator [21] 9000 64 sec 

“Inverse” trees generator [22] 400-500 40-60 min 
SnappyTree generator [18] 4000-5000 130-150 msec 

 



          
Figure 9: synthetic (left) and original (right). Synthetic mimic main features but can have less 
diversity and worse interaction with environment. 

 

Figure 10: large scene with synthetic (left) and original (right) trees. On a large scale differences 
become less visible 

5. Conclusion 
 

A new method for reducing memory requirements for vegetation scenes is proposed. It is based on 

the approximate instancing concept and reduces the plants’ geometry to the instances of a relatively 

small set of basic parts, which are chosen during the clustering process. Also, a method of constructing 

new plants, similar to procedurally generated ones, from basic parts, is proposed. Both methods could 

work with any procedural plant generator until it can provide plant structure data in a specific form. It 

makes it possible to use this method as a “black box” in different generators.  

 

6. References 
 

[1] SpeedTree IDV Inc, 2017. URL: http://www.speedtree.com/ 

[2] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, P. Prusinkiewicz, Realistic modeling 

and rendering of plant ecosystems, in: Proceedings of the 25th annual conference on Computer 

graphics and interactive techniques, 1998, pp. 275-286. 

[3] J. Kenwood, J. Gain, P. Marais, Efficient Procedural Generation of Forests, Journal of WSCG, 

22(1) (2014) 31-38. 

[4] V. Burkus, A. Kárpáti, Animated Trees with Interlocking Pieces, in: Proceedings of CESCG 2018: 

The 22-nd Central European Seminar on Computer Graphics, 2018. 

[5] M. Makowski, T. Hädrich, J. Scheffczyk, D. L. Michels, S. Pirk, W. Pałubicki, Synthetic 

silviculture: multi-scale modeling of plant ecosystems, ACM Transactions on Graphics (TOG) 

Figure  SEQ Figure \* ARABIC 10: large scene with synthetic (left) and original (right) trees. On a large scale differences become less 

visible 



38(4) (2019) 1-14. 

[6] J. C. Hart, The object instancing paradigm for linear fractal modeling, in: Proceedings of the 

conference on Graphics interface ’92. San Francisco, CA, USA: Morgan Kaufmann Publishers 

Inc., 1992, pp. 224–231. 

[7] J. C. Hart, Procedural synthesis of geometry, in Texturing & Modeling: A Procedural Approach, 

Third Edition, Morgan Kaufmann, 2003. 

[8] C. S. Cordeiro, L. Chaimowicz, Predictive lazy amplification: synthesis and rendering of massive 

procedural scenes in real time, in: Proceedings of IEEE SIBGRAPI Conference on Graphics, 

Patterns and Images, 2010, pp. 263-270. 

[9] G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, M.-P. Cani, Authoring 

landscapes by combining ecosystem and terrain erosion simulation, ACM Transactions on 

Graphics (TOG) 36(4) (2017) 1-12. 

[10] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd ed., Springer, New 

York, 2009, pp. 520–528. 

[11] J. Freiknecht, Procedural content generation for games, Ph.D. Thesis, 2021. URL: 

https://madoc.bib.uni-

mannheim.de/59000/1/Procedural%20Content%20Generation%20for%20Games.pdf 

[12] J. Freiknecht, W. Effelsberg, A survey on the procedural generation of virtual worlds, Multimodal 

Technologies and Interaction 1(4) (2017) 27. 

[13] J. Kim, Modeling and optimization of a tree based on virtual reality for immersive virtual landscape 

generation, Symmetry 8(9) (2016) 93. 

[14] B. Carey, Procedural Forest Generation with L-System Instancing, Master’s thesis, 2019. URL: 

https://nccastaff.bournemouth.ac.uk/jmacey/MastersProject/MSc19/02/MastersReport.pdf  

[15] Greenworks Organic Software. Xfrog procedural organic 3D modeler, 2017. URL: 

http://xfrog.com 

[16] SideFX Tree toolset, 2020. URL: https://www.sidefx.com/tutorials/tree-generator 

[17] T. Niese, S. Pirk, M. Albrecht, B. Benes, O. Deussen, Procedural Urban Forestry, arXiv preprint 

(2020) arXiv:2008.05567. 

[18] P. Brunt SnappyTree procedural trees generator, 2012. URL: http://www.snappytree.com/  

[19] J. Komppa C++ port of SnappyTree generator, 2015.URL: https://github.com/jarikomppa/proctree  

[20] W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, P. Prusinkiewicz, Self-

organizing tree models for image synthesis, ACM Trans. on Graphics 28(3) (2009) 1-10. 

[21] S. Pirk, O. Stava, J. Kratt, M. A. Massih Said, B. Neubert, R. Měch, B. Benes, O. Deussen, Plastic 

trees: interactive self-adapting botanical tree models, ACM Transactions on Graphics 31(4) (2012) 

1-10. 

[22] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, B. Benes, Inverse procedural modelling 

of trees, Computer Graphics Forum 33(6) (2014) 118-131. 

[23] P. Andersson, J. Nilsson, T. Akenine-Möller, M. Oskarsson, K. Åström, M. D. Fairchild, FLIP: a 

difference evaluator for alternating images, Proceedings of the ACM on Computer Graphics and 

Interactive Techniques 3(2) (2020) 1-23. 

[24] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error 

visibility to structural similarity, IEEE transactions on image processing 13(4) (2004) 600-612. 

 


