
Approximate Instancing for Modeling Plant Ecosystems

Albert Garifullin
1,3, Vladimir Frolov1,2 and Anastasiya Khlupina 2

1 Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
2 Keldysh Institute of Applied Mathematics, Miusskaya sq., 4, Moscow, 125047, Russia1
3 Gaijin Entertainment, https://gaijinent.com, Snezhnaya st., 26, Moscow, 129323, Russia

Abstract
Modeling and rendering large scenes with thousands of plants is still a challenging problem.

Geometric models of individual plants consist of millions of triangles each and their

complexity must be reduced in advance to make real-time rendering possible. Existing

solutions usually implemented as a part of plants generator, make an ecosystem simulator an

indivisible all-in-one solution which is hard to modify and integrate. The proposed algorithm

performs approximate instancing over a set of plants represented with a specific structure.

Groups of structurally similar branches are replaced with instances of one of them during the

clustering process. Also, a new fast and universal procedural plants generation method is

proposed. This algorithm collects statistics of spatial distribution of branches in the original set

of plants and creates new plants trying to imitate parameters from original ones using instances

of existing branches. Our generator is able to amplify the amount of plants in the ecosystem

with small time and memory overhead. Unlike most existing algorithms the whole process is

independent from the original plants generator in our solution.

Keywords
Vegetation, ecosystem simulation, plant modeling, approximate instancing

1. Introduction

Generating and rendering of complex scenes with vegetation is an important and challenging task

with applications such as computer games, landscaping and architecture visualization. Procedural

modeling is an interesting and widely used approach to synthesize a large variety of vegetation. The use

of procedural modeling techniques can help graphics artists to create complex scenes in less time than

if they were completely shaped by hand using 3D modeling software. Procedural modeling is not

intended to fully replace the work of artists, but to collaborate with their productivity and get more

diverse and detailed results.

Procedural generation has been studied for decades, but despite this, there are a lot of challenges in

implementing this approach in real-time applications. The most important are three of them. First is

creating procedures and algorithms that synthesize realistic and detailed models, which is basically the

main task of procedural modeling itself. The second challenge is controllability: with the abstraction

provided by procedural models, artists should retain an acceptable level of control over certain details

of the generated scenes. The third challenge is managing the large amount of data that is generated by

procedural algorithms. This is a less studied problem and the main focus of this research.

Most procedural algorithms assume that all needed data should be prepared before the rendering

process. In modern applications we usually need detailed models with hundreds of thousands of

triangles and large scenes with thousands of models, so every algorithm intended to create procedurally

large scenes faces a memory consumption problem. The data should be processed so it would be

possible to store it on a user's hard drive and at the same time should remain in form easy for rendering.

Existing ways to solve this problem are described in the related works section. Most of them reduce a

GraphiCon 2021: 31st International Conference on Computer Graphics and Vision, September 27-30, 2021, Nizhny Novgorod, Russia.

EMAIL: albgar-14@yandex.ru (A. Garifullin); vfrolov@graphics.cs.msu.ru (V. Frolov); nastya_75@mail.ru (A. Khlupina)
ORCID: 0000-0003-3802-1774, (A. Garifullin); 0000-0001-8829-9884 (V. Frolov); 0000-0003-0622-2512 (A. Khlupina)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

large set of unique plants or their parts to a relatively smaller set by replacing similar models with

instances of one of them [2] or generate plants from a predefined set of pieces [4],[5]. These algorithms

are able to dramatically reduce the amount of generated data but all of them are generator-specific. This

can be a challenge when it comes to implementing such system in some complicated application, such

as computer games. Modern approaches usually lead to ecosystem modeling and rendering as a solid

and indivisible process which is performed by a large and highly interconnected system ([5],[9]). In

practice, it usually means that game developers should re-create this system as a part of their game

engine to make a modeled ecosystem match specific to game logic.

This paper demonstrates how some essential parts of ecosystem modeling can be separated from

others and work as independent modules. To show the capabilities of this system, results of its work

with two different generators are presented. The first one is created especially for this project, while the

second is taken from a third-party open-source project.

2. Related works

According to Hart [6], [7], applications that use procedural synthesis of geometry may be classified

into two paradigms: data amplification and lazy evaluation.

Applications that follow the data amplification paradigm synthesize all geometry before the

rendering process. Recent surveys of procedural generation [11], [12] show data amplification is mostly

used in the industry. According to them, preparation of scene with procedural generation usually

consists of two separate steps: plants generation and placing in a landscape. With this approach

individual trees are generated using an offline process: either procedural generation or manual

generation by an artist. There are many frameworks for generating models of individual trees, such as

SpeedTree [1], Xfrog [15] or SideFX TreeGenerator [16].

Then large scenes are created by placing instances of tree models. As a result all the trees in forest

originate from a relatively small number of models, usually with precomputed LODs (we call this “tree

library” further). Such tree instances can be placed manually or based on some spacing algorithm, but

they are often repeated in an unrealistic fashion due to few unique trees in the original tree library. The

number of original trees in this approach is very limited because of data size needed to represent a single

tree, which is at least several megabytes. Due to this limitation, placed trees do not correctly match the

surroundings, especially in complex urban scenes with many obstacles. Even modern complex placing

algorithms, such as [17], do not correctly represent the plants growth response to their environment.

There are few approaches that are able to generate complex and diverse forest scenes with acceptable

memory footprint and do not have limitations mentioned above. Deussen et al. in [2] developed a system

for realistic modeling and rendering of plant ecosystems. In this work individual plants are generated

using a procedural approach. Then the geometric complexity of the scene is reduced by approximate

instancing, in which similar plants, groups of plants, or plant parts are replaced by instances of

representative objects before the scene is rendered. A simple example of approximate instancing is

shown on Figure 1. Assuming that the characteristics of each plant are described by a vector of real

numbers, a clustering algorithm is applied to the set of these vectors in order to find representative

vectors. There are a number of complex ecosystem generators based generally on the same concept. For

example, in [13] a method for simultaneous generation of several similar plants with shared data is

proposed. Another approach is described in [4]. This paper presents a method to create plant models

from a finite set of pieces and a set of rules that define the matching possibilities of the pieces. In [5]

this concept is implemented in an ecosystem simulation system. A set of branch modules is generated

from predefined prototypes, and modules are combined to represent tree structure at each growth step.

Authors simulate the growth of each module and plant as connected sets of modules with morphological

and physiological parameters.

Figure 1: Simple example of approximate instancing. Black branches are replaced with instances of
colored ones.

These ecosystem generators are able to create realistic scenes, but take a lot of time and memory.

More importantly, such systems are very complex and interconnected, which makes them hard to

modify and even harder to integrate in any project. In the case of video games, such ecosystem generator

needs to be re-implemented as a part of the game engine.

Another possible solution was proposed by Kenwood et al. [3]. In this paper L-systems are used to

generate individual trees. The L-system grammars are algorithmically modified to use instance cache

for tree branches. Instances can represent a range of structures, from a single branch to multiple

branches or even an entire tree. This method was implemented by B. Carey [14]. Despite the significant

reduction in the amount of required memory, L-system grammars for tree generation is a restricted

approach. They produce rather simple and not very realistic models as they don't take into account many

biological factors and tree interaction.

With lazy evaluation real-time visualization of large procedural scenes is possible without the need

to store a large amount of data. For this, the procedural synthesis is performed on demand only when

the system needs data. Unlike data amplification, which is a sequential approach, lazy evaluation

usually follows an asynchronous client-server architecture. Hart [6], [7] proposed a scene graph

technology called Procedural Geometric Instancing (PGI) that employs lazy evaluation.

Also, Predictive Lazy Amplification method was proposed in [8]. It is a combination of data

amplification and lazy evaluation paradigms. The described system is available to generate large scenes

with relatively small memory usage. However, the lazy evaluation for plants rendering is uncommon in

modern real-time graphics applications because of the need to create a specific separate graphics

pipeline for it and all the challenges to make it consistent with other rendering processes.

The problem of managing large amounts of data taken from procedural algorithms is the less studied

part of plants ecosystem generation. It is rarely discussed separately which leads to the fact that common

solution for it does not exist. All current approaches are specific and exist as an addition to the

procedural plant generator. As a result, data compression algorithm needs to be re-invented in every

new ecosystem simulator.

3. Proposed method

3.1. General pipeline

Plants
generator

Branches
clustering

Synthetic trees
generator

Trees clustering Post-processing

Figure 2: General pipeline

Figure 2 shows a general pipeline using proposed plant data compression and amplification

algorithms. It consists of 5 main steps. At first, some procedural plants generator creates a set of plants

in a specific format used for clustering, it gets some input data based on its own requirements. Some

other things, such as terrain generation can be done on this step too. Then “raw” plants data input

processed by branch clustering algorithm and a single set of branches from all plants is created and then

divided into several clusters – groups of similar branches. This process is based on the branch distance

function, which represents the similarity of two branches. Next, for each cluster a center is found.

Branches in centers form a set of basic branches and all others are replaced with instances of them. This

set of instances is then amplified in a module called “synthetic trees generator”. It creates new trees

similar to original ones, constructing them from instances of basic branches. Then amplified data is

used for the second clustering step, where the same algorithm is applied to whole trees. This step is

optional, but very useful for impostor generation. The final step is post-processing, which is expected

to include impostors generation and preparing simplified geometry for rendering with different levels

of detail.

The proposed algorithm contains only the steps 2-4 while the first and the last steps are performed

by external modules. Clustering and synthetic tree generation will be described in sections below.

Impostors generating together with LOD system and effective rendering are not in focus in this paper,

but as most commercial applications would have it, our implementation contains these algorithms to

prove that it is possible to generate and render different levels of details for proposed plants structures.

3.2. Clustering and approximate instancing

The generator provides a set of trees with some specific structure. This structure represents plant

hierarchically. In this section and further we will assume that branch is a structure, composed of

segments, joints, leaves, and all of them are from child branches of all joints and from child branches

of child branches and so on recursively. The branch itself with no child branches would be named main

stick. Figure 3 shows structure of a branch.

Each branch has type and level, if branch B has level N, then all child branches of its joint will have

level N+1. Type is a natural number, describing some generator specific set of features, needed for

rendering and further processing. Usually, all branches of a tree have one type representing plant

species. The plant itself is a level 0 branch.

Figure 3: Branch structure

The memory amount needed to store even a thousand high-detailed trees is unacceptable for real-

time applications, so the data should be compressed significantly. The clustering algorithm, described

in this section, is able to construct a set of basic branches and instancing data from given plants. The

instances of these basic branches will form plants with look and structure very similar to original ones.

This process is called approximate instancing. Unlike most existing solutions, the described algorithm

is able to perform it based only on a given plant structures, without knowledge about how the generator

works. The clustering algorithm consists of 4 main steps as shown on Figure 4.

Instance 1

Instance 2

Instance 3

Instance N_1

Instance 1

Instance 2

Instance 3

Instance N_2

Instance 1

Instance 2

Instance 3

Instance N_3

1 2 3

45

Original trees Branches Clusters

Basic branches with instance dataReconstructed trees

I II

III

IV

Figure 4: Clustering process. Original set of trees is decomposed to the set of branches (I). Then this
set is clustered (II). A basic branch is taken from every cluster and all others are replaced with its
instances (III). Finally, a set of trees can be reconstructed from basic branches and instance data (IV).

3.3. Branch distance function

Clustering is an abstract procedure that can be applied to any set of objects as long as we know

distances between them. In the next section the branch distance function is described.

The branch is called normalized if it has an axis aligned bounding box with unit size and its main

stick is co-directional with x axis.

Let B be the set of all normalized branches, then

𝑑 ∶ 𝐵 𝑥 𝐵 → [0,1]: 𝑑(𝑎, 𝑎) = 0, 𝑑(𝑎, 𝑏) = 𝑑(𝑏, 𝑎)
is a distance function. Define simple distance function first:

𝑑𝑠 = 1 − 𝑎 ∗ 𝑚𝑠𝑡𝑟𝑢𝑐𝑡 + (1 − 𝑎) ∗ 𝑚𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ,

𝑚𝑠𝑡𝑟𝑢𝑐𝑡 describes the level of structural similarity of branches. It is based on a joints matching process.

Assume that we have two main sticks of normalized branches S1 and S2. Let's create pairs of joints (one

from the first stick, second from another) that have distance <= δ. Then he will choose pairs so that the

sum of the distances between the joints in them is the smallest, and each joint is included in no more

than one pair. The leaves are also taken into consideration. We do not make a pair of two joints if one

of them has a leaf, and the other does not. Give each pair a weight 𝑤 ≥ 0 based on the difference of

stick thickness in joints and branches levels. If 𝑖 = (𝑆1. 𝑙𝑒𝑣𝑒𝑙, 𝑆2. 𝑙𝑒𝑣𝑒𝑙) 𝑡ℎ𝑒𝑛 𝑤 ≤ 𝑓𝑖, 𝑓𝑖 – constant,

level importance.

Then the comparing process is continued with child branches belonging to matched joints. If there

are more than one of them, we look over all possible pairs and choose the best fitted ones. Figure 5

illustrates this process – first, the main sticks joints are mapped, then its child branches are compared.

Finally, we got a set of matched joints pairs and their weights for them and sum them all. Then calculate

the maximum weight sum.

𝑾 = ∑ 𝒘𝒊𝒊 , 𝑾𝒎𝒂𝒙 = ∑ 𝒏𝒊 ∗ 𝒇𝒊𝒊 ,

𝑛𝑖 – is a number of joints with 𝑙𝑒𝑣𝑒𝑙 = 𝑖 in both branches, then 𝒎𝒔𝒕𝒓𝒖𝒄𝒕 =
𝑾

𝑾𝒎𝒂𝒙
.

To calculate spatial similarity level, a density field for each branch is calculated. Density field is a

3d array where each cell represents some region in the branch bounding box and the value shows how

many joints and leaves are inside this region. Exact weight of each joint and leaf depends on its size

and some predefined constants. 𝑚𝑠𝑝𝑎𝑡𝑖𝑎𝑙 is a Normalized Mean Square Error (NMSE) between density

fields of branches. To calculate 𝑑 from 𝑑𝑠 we rotate one of the branches around its main stick and find

𝑑𝑠= 𝑑𝑠(α) for different angles α. Finally 𝑑 = 𝑑𝑠(𝛼).
О

сь
 Y

Ось X

О
сь

 Y

Ось X

О
сь

 Y

Ось X

О
сь

 Y

ё

ё

1 2

3 4

3.4. Implementation

The branch distance function described above is a mainly mathematical abstraction, but with some

optimizations it can be implemented rather effectively. The main idea is to use only a fixed set of

rotations (30, 60, 90 degrees etc.) and create density fields for each rotation before clustering process.

Also, it's obvious that we should never put very dissimilar branches in one cluster, which means that

distance, as soon as it exceeded some limit 𝑑𝑚𝑎𝑥, means “branches are not similar at all”. In

implementation of this algorithm, possible distance is estimated during the calculation. As soon as the

estimation of minimal distance exceeds the limit, the process is finished.

The implemented algorithm is also able to handle branches with different bark and leaves textures

in one cluster. Id’s of needed textures are saved for every instance in the cluster and then used by

renderer. The only limitation is that we assume leaves in all original trees to be two-sided quads with

semi-transparent texture and the same size.

Branch distance calculation algorithm is implemented on GPU using OpenGL compute shaders.

All needed data is prepared on the CPU side and put into several Shader Storage Buffer Objects.

Compute shader's threads perform the algorithm described above and fill the buffer with distance

between all branches (distance table). Using this distance table hierarchical clustering is performed on

the CPU side. Assume that we have 𝑁 branches {𝐵1 … 𝐵𝑁} and table of distances {𝑑𝑖𝑗} between them.

Then hierarchical clustering algorithm creates several sets (levels) of clusters – on first level there are 𝑁

clusters {𝐵1} … {𝐵𝑁} and the next level is created from the previous one by merging two closest clusters

in one. The process stops when it is impossible to merge clusters without having dissimilar branches

(𝑑 ≥ 𝑑𝑚𝑎𝑥) in one of the clusters. To calculate distance between clusters from 𝑑𝑖𝑗, Ward distance is

used. The clustering algorithm and its theoretical basis described in [10].

The overall complexity level of this algorithm is 𝑂(𝑛2), where n is the number of branches for

clustering. The Table 1 shows time needed for clustering for different n. The compression ratio =

number of branches / number of clusters is the main indicator that shows how much clustering can

reduce the amount of memory required. It highly depends on 𝑑𝑚𝑎𝑥 parameter. With high value almost

Figure 5: nodes mapping for structural distance calculation. (1), (2) – normalized branches to be compared.
(3) Node mapping of main sticks. (4) The same process on child branches from mapped nodes

every number of branches can be packed in a rather small set of clusters, with low value the compression

ratio is nearly constant. Table 2 represents compression ratio for different 𝑑𝑚𝑎𝑥 values and different

number of branches.

Table 1
Clustering time

Number of branches Clustering time (seconds)

1250 11.86
2500 49.97
3750 111.09
5000 195.31
6250 291.78

Table 2
Compression ratio of the proposed method

Number of
branches

𝑑_𝑚𝑎𝑥 = 0.6 𝑑_𝑚𝑎𝑥 = 0.65 𝑑_𝑚𝑎𝑥 = 0.7 𝑑_𝑚𝑎𝑥 = 0.75

1250 31.6 70.6 133.4 240.2
2500 30.2 83.5 192.6 357.7
3750 34.2 98.0 266.0 532.0
5000 34.6 103.2 275.1 550.2
6250 35.4 107.4 322.4 680.8

Figure 6 and 7 shows the same small group of trees with different number of clusters. There is no

simple answer for what 𝑑𝑚𝑎𝑥 is optimal, lower value results in more diversity with larger memory

requirements. To measure visual quality decrease after clustering, NVidia FLIP [23] and SSIM [24]

metrics are used. The images of clustered trees group were compared with images of the original group.

Images from different points were taken and then averaged. Table 3 shows FLIP and SSIM values for

different 𝑑𝑚𝑎𝑥.

Figure 6: One group of trees without clustering and clustered with different d_max parameter and
memory needed for each group. Due to leaves, the difference is incomprehensible. On fig. 7 it is better
visible, the same scene is rendered.

Table 3
FLIP (and SSIM) mean error. For the case with leaves (fig.6).

Number of
trees

𝑑_𝑚𝑎𝑥 = 0.6 𝑑_𝑚𝑎𝑥 = 0.65 𝑑_𝑚𝑎𝑥 = 0.7 𝑑_𝑚𝑎𝑥 = 0.75

10 0.027
0.052

0.027
0.053

0.029
0.055

0.029
0.055

25 0.0385
0.076

0.038
0.077

0.039
0.077

0.039
0.078

100 0.043
0.049

0.043
0.081

0.044
0.077

0.05
0.078

Figure 7: changes in tree structure after clustering with different d_max. Same scene as of fig. 6.

4. Synthetic trees generator

Plants compression algorithm described in the previous section is time consuming and moreover,

many procedural generation algorithms can take up to several minutes for a single tree. It usually

happens because they try to be biologically precise and simulate light, water and nutrients distribution.

However, often there is no need to be so precise. This section will describe an algorithm to amplify the

original tree set i.e. create new plants from basic branches taken from the clustering step. The general

pipeline for it is shown on fig. 8.

Each plant or separate branch can be described with some set of parameters such as type, length,

thickness, number of segments and child branches etc. These parameters can be treated as random

variables and we assume that they are equally distributed for plants with the same type (plant type is set

by generator and can denote plant species in a biological sense and some features). The probability

distribution for all these random variables is estimated based on a given group of branches and random

variable generators with which these distributions are created.

To make things easier we consider that the type of random variable is known in advance based on

some empirical consideration, e.g., branch length is normally distributed and number of segments is a

discrete random variable with values from 1 to 100.

The second important part of the preparation step is calculating 2D and 3D density fields for a whole

scene with a group of branches. Then finally a set of new “synthetic” plants is created. Each plant is

composed of basic branch instances. The type of a tree, its size, number of segments and parameters of

child branches are all from random number generators made on the preparation step. After it a plant is

“inspected” with some heuristic that can decide if something in the generation went wrong and plant

should be recreated.

Instance 1

Instance 2

Instance 3

Instance 1

Instance 2

Instance 3

Instance 1

Instance 2

Instance 3

1 2 3

4
5

Figure 8: a synthetic tree generation pipeline. (1) An optimal place for tree is chosen, (2) Choose a
place on a tree where to grove new branch and choose basic branch. (3) Set size and orientation of
branch instance. (4) Recalculate density field and estimate its quality. (5) Decide whether we should
grow another branch, plant the tree or refuse it and start again.

This generator works much faster than most procedural tree generators, it actually spends several

seconds for preparation and then only a few milliseconds per constructed plant, while most procedural

plants generators spend seconds or even minutes for a single tree. Table 4 shows generation time

comparison for different procedural algorithms. The quality of the result is generally dependent on a

number of given examples and the diversity of the original generator. The results of its work with

different generators are presented on Figure 9 and Figure 10. Plants on the right on these scenes are

created procedurally and then simplified by clustering, plants on the left are “synthetic”. Synthetic

plants generally look similar to procedural generated ones. So, the synthetic trees generator provides a

universal and fast way to amplify the number of generated plants from existing parts.

Table 4
Generation time comparison.

Generator Nodes count per tree Generation time

Our “synthetic trees” generator 30000 - 50000 3-5 msec
Our procedural trees generator 30000 - 50000 2-4 sec

Self-organizing trees generator [20] 225000 21 sec
Plastic trees generator [21] 9000 64 sec

“Inverse” trees generator [22] 400-500 40-60 min
SnappyTree generator [18] 4000-5000 130-150 msec

Figure 9: synthetic (left) and original (right). Synthetic mimic main features but can have less
diversity and worse interaction with environment.

Figure 10: large scene with synthetic (left) and original (right) trees. On a large scale differences
become less visible

5. Conclusion

A new method for reducing memory requirements for vegetation scenes is proposed. It is based on

the approximate instancing concept and reduces the plants’ geometry to the instances of a relatively

small set of basic parts, which are chosen during the clustering process. Also, a method of constructing

new plants, similar to procedurally generated ones, from basic parts, is proposed. Both methods could

work with any procedural plant generator until it can provide plant structure data in a specific form. It

makes it possible to use this method as a “black box” in different generators.

6. References

[1] SpeedTree IDV Inc, 2017. URL: http://www.speedtree.com/

[2] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, P. Prusinkiewicz, Realistic modeling

and rendering of plant ecosystems, in: Proceedings of the 25th annual conference on Computer

graphics and interactive techniques, 1998, pp. 275-286.

[3] J. Kenwood, J. Gain, P. Marais, Efficient Procedural Generation of Forests, Journal of WSCG,

22(1) (2014) 31-38.

[4] V. Burkus, A. Kárpáti, Animated Trees with Interlocking Pieces, in: Proceedings of CESCG 2018:

The 22-nd Central European Seminar on Computer Graphics, 2018.

[5] M. Makowski, T. Hädrich, J. Scheffczyk, D. L. Michels, S. Pirk, W. Pałubicki, Synthetic

silviculture: multi-scale modeling of plant ecosystems, ACM Transactions on Graphics (TOG)

Figure SEQ Figure * ARABIC 10: large scene with synthetic (left) and original (right) trees. On a large scale differences become less

visible

38(4) (2019) 1-14.

[6] J. C. Hart, The object instancing paradigm for linear fractal modeling, in: Proceedings of the

conference on Graphics interface ’92. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1992, pp. 224–231.

[7] J. C. Hart, Procedural synthesis of geometry, in Texturing & Modeling: A Procedural Approach,

Third Edition, Morgan Kaufmann, 2003.

[8] C. S. Cordeiro, L. Chaimowicz, Predictive lazy amplification: synthesis and rendering of massive

procedural scenes in real time, in: Proceedings of IEEE SIBGRAPI Conference on Graphics,

Patterns and Images, 2010, pp. 263-270.

[9] G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, M.-P. Cani, Authoring

landscapes by combining ecosystem and terrain erosion simulation, ACM Transactions on

Graphics (TOG) 36(4) (2017) 1-12.

[10] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd ed., Springer, New

York, 2009, pp. 520–528.

[11] J. Freiknecht, Procedural content generation for games, Ph.D. Thesis, 2021. URL:

https://madoc.bib.uni-

mannheim.de/59000/1/Procedural%20Content%20Generation%20for%20Games.pdf

[12] J. Freiknecht, W. Effelsberg, A survey on the procedural generation of virtual worlds, Multimodal

Technologies and Interaction 1(4) (2017) 27.

[13] J. Kim, Modeling and optimization of a tree based on virtual reality for immersive virtual landscape

generation, Symmetry 8(9) (2016) 93.

[14] B. Carey, Procedural Forest Generation with L-System Instancing, Master’s thesis, 2019. URL:

https://nccastaff.bournemouth.ac.uk/jmacey/MastersProject/MSc19/02/MastersReport.pdf

[15] Greenworks Organic Software. Xfrog procedural organic 3D modeler, 2017. URL:

http://xfrog.com

[16] SideFX Tree toolset, 2020. URL: https://www.sidefx.com/tutorials/tree-generator

[17] T. Niese, S. Pirk, M. Albrecht, B. Benes, O. Deussen, Procedural Urban Forestry, arXiv preprint

(2020) arXiv:2008.05567.

[18] P. Brunt SnappyTree procedural trees generator, 2012. URL: http://www.snappytree.com/

[19] J. Komppa C++ port of SnappyTree generator, 2015.URL: https://github.com/jarikomppa/proctree

[20] W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, P. Prusinkiewicz, Self-

organizing tree models for image synthesis, ACM Trans. on Graphics 28(3) (2009) 1-10.

[21] S. Pirk, O. Stava, J. Kratt, M. A. Massih Said, B. Neubert, R. Měch, B. Benes, O. Deussen, Plastic

trees: interactive self-adapting botanical tree models, ACM Transactions on Graphics 31(4) (2012)

1-10.

[22] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, B. Benes, Inverse procedural modelling

of trees, Computer Graphics Forum 33(6) (2014) 118-131.

[23] P. Andersson, J. Nilsson, T. Akenine-Möller, M. Oskarsson, K. Åström, M. D. Fairchild, FLIP: a

difference evaluator for alternating images, Proceedings of the ACM on Computer Graphics and

Interactive Techniques 3(2) (2020) 1-23.

[24] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error

visibility to structural similarity, IEEE transactions on image processing 13(4) (2004) 600-612.

