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Abstract  
In this paper we design end-to-end neural network for the low-resource lip-reading task and 

audio speech recognition task using 3D CNNs, pre-trained CNN weights of several state-of-

the-art models (e.g. VGG19, InceptionV3, MobileNetV2, etc.) and LSTMs. We present two 

phrase-level speech recognition pipelines: for lip-reading and acoustic speech recognition. We 

evaluate different combinations of front-end and back-end modules on the RUSAVIC dataset. 

We compare our results with traditional 2D CNN approach and demonstrate the increase in 

recognition accuracy up to 14%. Moreover, we carefully studied existing state-of-the-art 

models to be use for augmentation. Based on the conducted analysis we have chosen 5 most 

promising model’s architectures and evaluated them on own data. We have tested our systems 

on a real-word data of two different scenarios: recorded in idling vehicle and during actual 

driving. Our independently trained systems demonstrated acoustic speech accuracy up to 90% 

and lip-reading accuracy up to 61%. Future work will focus on the fusion of visual and audio 

speech modalities and on speaker adaptation. We expect that fused multi-modal information 

will help to further improve recognition performance compared to a single modality. Another 

possible direction could be the research of different NN-based architectures to better tackle 

end-to-end lip-reading task. 
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1. Introduction 

The ability to use a natural-to-human way of communication greatly improve the interaction quality 

of modern computer vision-based assistive systems. Speech is the usual way for humans to 

communicate. At the same time, the accuracy and robustness of automatic speech recognition (ASR) 

systems is not satisfactory in many practical conditions of use (e.g. in acoustically noisy conditions, 

while driving a car or being in a crowded place, etc.). In these cases, the advantage of using visual 

information about speech (lip-movements) in addition to audio is undeniable and is used in a number 

of state-of-the-art systems. 

In current research, we tried to approach the problem of automatic audio-visual speech recognition 

from a computer vision and machine learning perspective. We developed and research two independent 

integral (end-to-end) systems for automatic recognition of Russian speech with limited vocabulary 

using CNN-based deep neural networks architectures. Moreover, we tried to consider the problem of 

acoustic speech recognition as a purely computer vision task by using images of speech spectrograms 

in order to train the networks. 

There is no doubt that in recent years the active development of machine learning field has pushed 

the results in many other areas with automated lip-reading is no exception. However, despite all the 

achieved progress, the development of end-to-end speech recognition systems based on audio and visual 
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information is still a new direction. Practically no research has been carried out in this field for the 

Russian language. There is no out-of-the-box solution accepted by researchers to the development of 

such systems. There are no representative open-access datasets for training NN models that have the 

required parameters, such as a sufficient number of speakers, phone-viseme labelling, vocabulary size 

adequate for the task, etc. (there are almost no public datasets available for languages other than 

English). The combination of these factors allows us to state a significant gap in the field of research. 

One of the main goals of this study is to bring the recognition efficiency of automatic systems closer to 

the level of human speech perception in noisy conditions, which is an extremely important task. 

In this paper, we present lip-reading pipeline and acoustic speech recognition pipeline with the use 

of deep 3D CNNs. We trained and evaluated our models using RUSAVIC [1] dataset on a limited 

vocabulary of 50 phrases. To handle the over-fitting problem due to the increased number of parameters 

from the 3D kernels, we applied the idea from [2] to inflate the pre-trained weights of the several state-

of-the-art models, such as MobileNetV2 [3], DenseNet121 [4], NASNetMobile [5], etc. 

2. Related works 

The classical approach towards audio-visual speech recognition involves a two-stage pipeline, 

including informative features extraction and classification using the sequence model. Usually the 

processes in two stages are independent. The most popular feature extraction approaches were based 

on dimension reduction and compression, such as Discrete Cosine Transform [6, 7]. Followed in the 

second stage by a sequence model (e.g. Hidden Markov Model) to tackle the temporal dependency from 

the extracted features for classification [8-10]. 

Although this two-stage pipeline methods have made significant progress over the decades, all such 

methods directly separate the feature extraction process from the classifier’s training process, resulting 

in the extracted features might not be the optimal for classification. In the recent years, deep learning 

approaches have been proposed and achieved the state-of-the-art performance [11-16]. To date, the 

classical approach to AV speech recognition have been gradually replaced by the end-to-end trainable 

neural networks. In a raw approximation they behave somewhat similar to the traditional methods: a 

sequence of the mouth images is fed into the convolutional network to extract the features [17,18], 

which a further passed to a back-end model (RNN, LSTM, GRU or other) to account for the temporal 

dependency for classification [19 - 21]. Since the calculated gradient can be send back from back-end 

model to the front-end, the entire network is end-to-end trainable. Recent advances demonstrated that 

the learned features are more suitable for speech recognition and lip-reading than the standalone features 

calculated by traditional methods [22]. 

The major advantage of modern approach is that entire system consists of an end-to-end trainable 

front-end and back-end neural network (so two-stage process no longer exists). Thus, the learned 

features are more connected to the task that the network is trained on. The first work which proposed 

to use the CNNs to replace the independent features extractor was [23]. In turn, the first work that 

proposed to use the LSTM for classification and achieved a significant improvement was [24]. Other 

researchers in [11] proposed to take advantages of large-scale lip-reading dataset to train a front-end 

followed by the LSTM module at the end for classification. The researchers in [15] proposed a neural 

network to extract the audio features and tried to fuse them with video information. 

It is generally accepted that visual features extracted from images by 2D CNNs are suitable for some 

computer vision tasks (e.g. image classification, lip-reading, gesture recognition etc.) [25,26]. However, 

it is more natural to learn spatio-temporal features by using a 3D CNNs as the front-end for feature 

extraction. Nonetheless, according to our knowledge only a few works have researched the use of 3D 

CNN for lip-reading [15, 16, 27, 28]. In addition, these works usually apply only a shallow version of 

3D CNNs with no more than 3 convolutional layers. Obviously, this approach contradicts to the 

common rule that a deep network is expected to do better than a shallow one. Thus, the question of how 

to train a deep neural network without over-fitting on standard audio-visual datasets is still open and 

practically not studied.  

Convolutional neural network architectures have been developed for image and video processing for 

a long time. In the work [29] an approach to extract features independently from each frame using a 2D 

CNN have been proposed to re-use the pre-trained weights of ImageNet [30] model. In the work [31] 



the 3D CNNs for video action recognition have been introduced as a natural extension of the 2D 

convolution. The researchers in the work [32] went beyond using the shallow CNN version and explored 

the deep 3D CNN version with replacing all 2D operations with their 3D counterparts. 

3. Data & Preprocessing 

Almost no publicly-accessible audio-visual Russian speech datasets are available and suitable for 

NN training. The most recent one was introduced in the work [1] and was specifically designed for the 

task of robust speech recognition in acoustically-noisy car environment.  

The multi-speaker audio-visual corpus RUSAVIC (RUSsian Audio-Visual speech In Cars) includes 

a continuous Russian speech with multi-angle video and audio data. It contains recordings of 20 native 

Russian speakers. The database stores audio and video recordings of Russian speech, as well as labelling 

information. The recording and labelling of audio-visual data was carried out using the created software 

package [33] designed to capture, synchronize and combine audio and video data from two or more 

smartphones located in the vehicle cabin. Recording of the speech corpus was carried out both in traffic 

conditions and in the idling of a vehicle, i.e. in full-scale and semi-natural conditions, as close as 

possible to the real conditions of functioning. 

Each speaker performed 10 recording sessions and was captured by three smartphones from three 

different angles with FullHD 1920 × 1080 video resolution and 60 fps recording rate. During each 

recording session speaker uttered 50 phrases, which are the most frequent driver requests for 

smartphones (according to open source data of several state-of-the-art speech recognition engines, such 

as AlexaAuto, YandexDrive, GoogleDrive, etc.). The basic structure of the corpus is depicted in the 

Figure 1, and some snapshots of the speakers during the recordings are shown in Figure 2. 

3.1. Visual data 

Detecting a region-of-interest (ROI) that contains the mouth motion is the first and very important 

step in building a reliable automated lip-reading system. Thus, our first target is to crop this ROI (mouth 

region) from each frame of the video. To this end we applied the state-of-the-art solution of MediaPipe 

Face Mesh [34] that is able to estimate 468 3D face landmarks. 

 

 

Figure 1: Basic structure of the RUSAVIC dataset 
 



 
Figure 2: Snapshots of the RUSAVIC [1] speakers during the recording session 

 

Face Mesh employs machine learning to infer the 3D surface geometry and provides real-time 

performance critical for real-life speech recognition scenarios. The general pipeline consists of two 

deep neural network models working together: (1) A detector that computes face locations (operates on 

the full image) and (2) a 3D face landmark model (operates on the detected locations) that predicts the 

approximate surface geometry via regression. The basic structure of this pipeline depicted in the Figure 

3. 

In addition, the mouth region crops can also be generated based on the face landmarks identified in 

the previous frame and only when the Model could no longer detect face presence the face detector is 

invoked to relocalize the face region. The pipeline is implemented as a graph that uses face landmark 

subgraph from the Face detection Module (Fig. 3, left) and renders using face renderer subgraph. We 

used the same BlazeFace detector as in original work [35]. The 3D face landmark model employed 

transfer learning and was trained with several objectives: it simultaneously predicts 3D landmark 

coordinates on synthetic rendered data and 2D semantic contours on annotated real-word data. 

The 3D landmark network (Fig. 3, stage 2) receives as input a cropped frame and outputs the 

positions of the 3D points, as well as the probability of a face being present and aligned in the input. 

The Face landmark module performs a face landmark detection in the screen coordinate space, where 

the X- and Y- coordinates are normalized screen coordinates. Example of the detected 468 face 

landmarks is shown in the Figure 3, right.  

 

 
Figure 3: Applying Face Mesh ROI landmark localization pipeline to the RUSAVIC dataset 

 



3.2. Acoustic data 

One of the first works, that treated raw acoustic signal as an image was [36]. The authors proved 

that between the first two convolutional layers, the CNN learns (in parts) and models the phone-specific 

spectral envelope information of 2-4 ms speech. They demonstrated advantages of using the CNN-

based approach to yield ASR performance.  

In current research we handle acoustic speech processing by obtaining spectrograms of the uttered 

phrases from the raw audio data with its further processing by the integral CNN-LSTM network. We 

implement this using librosa library [37]. It is a python package for music and audio analysis. It is 

structured as collection of submodules. A spectrogram is calculated by computing the fast fourier 

transform (FFT) over a series of overlapping windows extracted from the raw audio signal. The process 

of dividing the signal in short term sequences of fixed size and applying FFT on those independently is 

called Short-time Fourier transform (STFT). The spectrogram is then calculated as the squared complex 

magnitude of the STFT. The general process of calculating spectrogram from the raw acoustic signal is 

depicted in the Figure 4. 

4. Proposed methodology 

End-to-end approach to automatic speech recognition assumes the training of only one neural 

network that combines all the stages of the traditional approach. At the same time, this presupposes the 

presence of certain structural blocks of the network, which we divide into four sequential processing 

stages: 

1. Inputs, which is a sequence of cropped mouth images in case of lip-reading or a spectrogram 

images in case of acoustic speech recognition. 

2. Front-end-module, to extract features from the inputs. We used a 3-4 3D CNN layers for the 

visual features extraction in the lip-reading system and a number of pre-trained CNNs for acoustic 

speech recognition. 

3. Back-end module, to model the temporal dependency and summarize the features into a single 

vector that represents the score for each phrase. 

4. Classification module, to compute the probabilities of each phrase. In both systems represented 

by a softmax layer.  

The most of the existing end-to-end systems fall into this structure. In this paper we focused on the 

inputs (visual and audio data preprocessing) described in Section 3 and front-end modules which will 

be introduced in the following sections. 

 

  
Figure 4: Spectrogram generation from raw acoustic signal 

4.1. Building automated lip-reading system 

General network architecture of our 3D CNN-based automated lip-reading system is presented in 

the figure 5. We compare our lipreading results with the recent work [33] that used deep 2D CNNs, 

which were originally proposed to solve image-base tasks. The general approach with applying 2D 



CNNs on lip-reading data is to concatenate the features independently extracted from each frame. On 

the other hand, 3D convolution can process the dynamics (at least short-term dynamics) and is proven 

to be useful in many other computer vision-related tasks followed by the recurrent network at the back-

end. However, due to the difficulty of training a vast number of parameters introduced by the three-

dimensional kernel in current research we explore only 3 to 4 layers network with 3D convolution.  

Cropped mouth frames sequences are first normalized to the size of 224×224 and then split into 

batches of 30 frames with 50% overlap (15 frames) before fed into the network. On all 3D CNN layers, 

we use three-dimensional kernel, followed by the batch normalization, Rectified linear units and 3D 

max-pooling. Specifically, in case of 3-layer network the number of kernels were 32, 64 and 128 

respectively for each layer. In case of 4-year network the number of kernels were 32, 32, 64 and 128 

respectively for each layer. The front-end visual features extraction part of our model ends with one 

densely connected layer with 512 neurons in it. 

The back-end of the model consists of 2 (Long-short term memory) LSTM layers. LSTM is a type 

of recurrent neural networks, which are well-known for the ability to model temporal dependency and 

are typical back-end modules used in many computer vision and speech recognition tasks. Among 

RNNs, LSTM is proven to be useful when dealing with the exploding and vanishing gradient problem 

[38]. Specifically, we use a two-layer LSTM with a hidden state dimension of 512 for each cell in the 

first layer and 256 in the second, followed by 50 phrases classificatory represented by densely connected 

linear layer. 

We trained and evaluated the proposed network on the phrase-level lip-reading dataset RUSAVIC. 

The number of target phrases is 50. We took 8 repetition of each phrase for the training and 2 for the 

testing for each speaker. Hence, the network has learned to discriminate between 50 target phrases 

based purely on the lip movements information. 

 
Figure 5: Network architecture of the end-to-end 3D CNN-LSTM lip-reading system 

4.2. Building acoustic speech recognition system 

Basic architecture of the end-to-end 2D CNN spectrogram-based acoustic speech recognition system 

is depicted in the Figure 6. We preprocess the raw acoustic data and obtain phrase-level spectrograms 

in accordance with the pipeline presented in the section 3.2. This step is followed by spectrogram 

normalization (we tested 2 types of input dimensions 224×224 and 299×299 depending on the pre-

trained model). 



Pre-trained weights are proven to be useful in many image-based tasks. Therefore, we tried to get 

the best use of modern transfer learning approaches and applied five different pre-trained deep CNN 

architectures, namely VGG19 [39], InceptionV3 [40], MobileNetV2 [3], DenseNet121 [4] and 

NASNetMobile [5]. 

VGG19 is 26-layer deep convolutional neural network with >143 million of trainable parameters. 

The default input size for this model is 224×224. The model is trained for the large-scale image 

recognition scenarios. 

InceptionV3 is 159-layer deep network with >23 million of trainable parameters, developed 

specifically for mobile vision scenarios and big-data scenarios. 

MobileNetV2 is 88-layer CNN with >3.5 million of trainable parameters. It uses inverted residual 

blocks with bottlenecking features and has a drastically lower parameter count than the original 

MobileNet. MobileNets support any input size greater than 32×32, with larger image sizes offering 

better performance. 

DenseNet121 is 121-layer network with >8 million of trainable parameters. DenseNets have several 

compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, 

encourage feature reuse, and substantially reduce the number of parameters. 

NASNetMobile has >5 million of trainable parameters. It is a scalable architecture for image 

classification and consist of two repeated building blocks termed Normal Cell and Reduction Cell. In 

current research we applied the latest 769 layers architecture. 

The layers with pre-trained weights are followed by a 50 neuron softmax classification layers, that 

provides final recognition result. 

5. Evaluation experiments 

In this section we evaluate and compare the proposed architectures on different speakers of the 

RUSAVIC dataset. Maximum number of epochs was 50 and training was interrupted if the accuracy 

does not increase for 5 epochs. For each speaker the train and test data were splitted into 80 : 20 percent 

ratio. In total we trained a three speaker-dependent lip-reading system and three acoustic speech 

recognition systems, based on the available amount of data. 

We summarize the lip-reading recognition results in the Table 1 and acoustic (spectrogram-based) 

speech recognition results in the Table 2. The first two systems (ID1 and ID2) were trained on the data, 

recorded in the idle vehicle, parked on the busy crossroads. The system #3 was trained with the actual 

driving data. 

 

 
Figure 6: Network architecture of the end-to-end acoustic speech recognition system  

 

According to the table 1, the 3D CNN-based architecture clearly outperforms the traditional CNN 

for lip-reading both: in vehicle idling conditions 61% vs (47 to 55 %) and 57% vs (46 to 53 %) accuracy 

on the phrase-level recognition, and driving conditions 59% vs (51 to 54 %) accuracy. The 2D CNN 

results were from the recent paper [33] evaluating speaker-dependent recognition systems on 

RUSAVIC dataset. Thus, in all systems 3D CNNs demonstrated significant improvements in the terms 

of recognition accuracy. Interestingly, despite the fact that driving requires rather active head turns we 



did not found much difference in recognition accuracy between the models trained on driving data 

versus models trained on data recorded in a parked vehicle.  

Another interesting finding was that using a slightly deeper 3D CNN (from 3 to 4 spatio-

convolutional layers) results in increasing recognition accuracy up to 3% absolute. However, due to the 

limited amount of Russian lip-reading data available, further increase in network’s depth does not lead 

to further improvements of recognition accuracy. 

It can be seen from the Table 2, that spectrogram-based acoustic speech recognition generally 

performed better than the lip-reading. These results are within expectation range since acoustic 

information usually convey much more speech-related information that the lips movements. We 

achieved the maximum result of 90% recognition accuracy on the speaker #2 using pre-trained weights 

of the VGG19 model. In turn, the lowest recognition results were demonstrated by the model with 

NASNetMobile pre-trained weights (59%), which was trained on the driving data.  

In addition to that, we perform experimental study and assess several state-of-the-art model 

architectures in order to research which of them provides better pre-trained weights for the task of 

automated speech recognition with using spectrograms as the network input. According to the obtained 

results, the most suitable for this task was VGG19 model, that achieved from 79 to 90% recognition 

accuracy. On the other hand, the lowest recognition results demonstrated NASNetMobile architecture, 

with only 59 to 61% speech recognition accuracy on all three systems. These results are almost the 

same that the one achieved by the 3D CNN lip-reading system with four spatio-temporal layers.  

However, the advantage of VGG19 model is easily explained by fact that it has more than 143 

million of trainable parameters, when the NASNetMobile only provides slightly more than 5 million 

trainable parameters. Thus, it is natural that VGG19 generalized better on the provided lip-reading data, 

since it was initially trained on much bigger amount of visual data. However, the disadvantage of using 

this architecture might be its resource-costly to the computational power of the device. E.g. it is not 

optimal to use it on smartphones or similar resource-dependent devices. 

 

Table 1 
Lip-reading visual recognition results comparison: 3D CNN vs traditional 2D CNN [33] 

ID Architecture Number 
of 3DCNN 

layers 

LSTM layers Recognized 
classes 

Accuracy, % 
(epoch) 

1 

3DCNN 3 1) 512 neurons with L2 
regularization = 0,001  

2) 256 neurons with L2 
regularization = 0,001  

50 

58 (21) 

3DCNN 4 61 (17) 

1 2DCNN - - 47-55 

2 

3DCNN 3 1) 512 neurons with L2 
regularization = 0,001  

2) 256 neurons with L2 
regularization = 0,001  

55 (20) 

3DCNN 4 57 (15) 

2 2DCNN - - 46-53 

3 

3DCNN 3 1) 512 neurons with L2 
regularization = 0,001  

2) 256 neurons with L2 
regularization = 0,001  

56 (39) 

3DCNN 4 59 (34) 

3 2DCNN - - 51-54 

 
 
 
  



Table 2 
Spectrogram-based audio speech recognition results and comparison of several CNN architectures 

ID CNN architecture Optimizer Input size Recognized 

classes 

Accuracy, % 
(epoch) 

1 

InceptionV3 

Adam=0,0001 

299×299 

50 

79 (25) 

VGG19 224×224 87 (26) 

MobileNetV2 224×224 74 (27) 

InceptionResNetV2 299×299 79 (25) 

NASNetMobile 224×224 61 (28) 

2 

InceptionV3 299×299 81 (27) 

VGG19 224×224 90 (23) 

MobileNetV2 224×224 73 (21) 

InceptionResNetV2 299×299 81 (27) 

NASNetMobile 224×224 64 (29) 

3 

InceptionV3 299×299 73 (37) 

VGG19 224×224 79 (33) 

MobileNetV2 224×224 66 (35) 

InceptionResNetV2 299×299 73 (36) 

NASNetMobile 224×224 59 (38) 

6. Conclusions 

In this paper we have successfully demonstrated the capability and feasibility of designing an end-

to-end neural network for the low-resource lip-reading and audio speech recognition task using 3D 

CNNs, pre-trained CNN weights of several state-of-the-art models (e.g. VGG19, InceptionV3, 

MobileNetV2, etc.) and LSTMs. We were able to achieve a state-of-the-art accuracy of 90 % for 

acoustic speech and 61% for lip-reading with 50 recognizable classes. To the best of our knowledge 

current research is one of the first attempts to work with Russian audio-visual speech. 

We presented two phrase-level speech recognition pipelines: for lip-reading and acoustic speech 

recognition. We evaluated different combinations of front-end and back-end modules on the RUSAVIC 

dataset. We compared our results with traditional 2D CNN approach and demonstrated that even 

shallow 3 to 4 spatio-convolution layer network can outperform traditional approach up to 14 % 

recognition accuracy. Moreover, we carefully studied existing state-of-the-art models to be used for 

augmentation and transfer learning in the field of image processing and computer vision. Based on the 

conducted analysis we have chosen 5 most promising model’s architectures and provided recognition 

results for each. 

In the current research, we have studied Russian audio-visual speech from a computer vision 

perspective. We have tested our systems on real-word data of two different scenarios: idling vehicle 

and actual driving. Our independently trained systems demonstrated acoustic speech accuracy up to 

90% and lip-reading accuracy up to 61%. Future work will focus on the fusion of visual and audio 

speech recognition systems and on speaker adaptation. We expect that fused multi-modal information 

will help to further improve recognition performance compared to a single modality. 
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