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Abstract—Modern internal combustion engines have several
advanced exhaust treatment systems to meet emission standards
and legislation. In case of Selective Catalytic Reduction (SCR) for
diesel engines, a catalyst (“AdBlue”) is used as consumable. This
incurs costs for the operator of diesel vehicles and provides an
incentive to unlawfully circumvent and shut down those systems.

This case study presents how the Eclipse KUKSA stack has
been used to realize an anti-tampering system for commercial
heavy-duty trucks exhaust systems. We show, how the in-vehicle
KUKSA.val software and the KUKSA.cloud components can be
used to collect relevant data from a real heavy-duty truck and
send them to the cloud for further analysis.

I. INTRODUCTION

Modern vehicles with internal combustion engines are
equipped with exhaust treatment systems that drastically re-
duce the emission of harmful exhaust gases. Modern exhaust
treatment systems for diesel engines include an SCR (Selective
Catalytic Reduction) system to reduce emission of nitrogen
oxides (NOx). An SCR converts NOx into harmless nitrogen
(N2) and water (H20) with the help of a catalyst fluid. The
catalyst, an urea (CO(NH2)2) - water solution, is a fluid, also
called “Diesel exhaust fluid” (DEF) [1] or “AdBlue”

Just like the fuel itself, the DEF is a consumable. Costs
for an operator can reach up to 1500 USD/year for a com-
mercially operated heavy truck. This provides the incentive to
maliciously interfere with the correct operation of the exhaust
treatment system. There are companies that offer facilities
and services to disable these systems. Common tampering
methods are small hardware modules connected to internal
busses or diagnostics interfaces of a vehicle injecting faulty
data regarding the level of the catalyst or measured NOx

values, combined with disabling components of the exhaust
treatment. For common engines, tampering hardware (see
Figure 1 for an example) can be obtained for a one-time
investment of less than 30 USD. A vehicle modified in such
a way can still operate with its full performance but will emit
harmful substances significantly above the legal limit. Such
manipulation is difficult to detect, without randomly inspecting

trucks on the road, which is cost- and time consuming and does
not scale.

DIAS1, a joint European research and development project,
has the goal to help prevent or uncover these manipulations.
The DIAS approach to detect tampering is two-fold: Inside a
vehicle, data from various sensors is gathered and a valida-
tion of the gathered data can be performed to detect values
inconsistent with current operating conditions. As computa-
tional power in a vehicle is limited and it is to be expected
that tampering methods get more intricate (this has already
happened in the past), the gathered data is transmitted to a
cloud backend, where a more complex analysis over longer
time frames is possible.

Fig. 1: Typical AdBlue Emulator

Getting data from a vehicle in a safe and secure manner is a
challenging and recurring task when developing applications
for connected vehicles. Not only is this task very complex,
most of the time the solution is not portable due to the het-
erogeneity and specifics of the underlying system architecture.
The KUKSA.val project aims to ease this task by abstracting

1https://www.dias-project.com/
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Fig. 2: Genivi VSS structure

the underlying systems through the provision of a server with
which other applications in the vehicle can interact based on
a standardized data model and API. By doing so applications
can collect vehicle data in a safe, secure and, most importantly,
portable manner.

In this case study we outline the system architecture and
data model for an integrated system to detect exhaust treatment
tampering and present a prototype that has been created using
components from Eclipse KUKSA which is an open source
software stack for building connected vehicle ecosystems.
We present how to access data in a heavy-duty truck and
introduce the necessary extensions enable the KUKSA data
feeder component to work with heavy-duty vehicles. Finally,
a working prototype of the system has been tested in a real
heavy-duty truck.

II. BUILDING BLOCKS

In our system we use various existing technologies and
standards, which we will explain in the following.

A. Genivi VSS

The Genivi Vehicle Signal Specification (VSS) [2] intro-
duces a domain taxonomy for vehicle signals. The goal is to
create a common understanding of vehicle signals in order to
reach a “common language” for vehicle data independent of
the protocol or serialization format. VSS can be used as stan-
dard in automotive applications to communicate information
related to the vehicle, which is semantically well defined. It
focuses on vehicle signals, in the sense of classical sensors and
actuators usually connected to the “deeply-embedded” ECUs
as well as data which is more commonly associated with the
infotainment systems. A simplified structure of the VSS model
is shown in Picture 2.

A VSS tree consists of three basic types of nodes: Branches
describe the hierarchy of signals (e.g. Vehicle.Cabin),
sensors describe values that are expected to change during the

operation of a vehicle (e.g. Vehicle/Speed), and attributes
that are expected to be static over the lifetime of a vehicle (e.g.
Vehicle/VehicleIdentification/VIN).

B. W3C VISS

While VSS describes the structure of signals in a vehicle,
the W3C Vehicle Information Service Specification (VISS) [3]
defines a websocket-based protocol to access such signals
using either a query response pattern or publish/subscribe
mechanism. Currently, the second iteration of VISS, VISS2
is under development2. Being a network-based API VISS is
a good fit for modern Vehicle Computer Architectures, where
different safety and security zones are separated by hypervi-
sors or container technologies. Instead of linking to software
components, they can be accessed through the network by
other (micro-)services running in other containers, hypervisor
domains or computers. Basic encryption, authentication and
integrity can be provided by using standard TLS mechanisms.

C. Eclipse KUKSA

Eclipse KUKSA provides building blocks for the creation
of ecosystems around applications in connected vehicles. On
a high-level Eclipse KUKSA differentiates between the in-
vehicle side and the cloud backend. The in-vehicle platform
allows and simplifies the execution of applications in a ve-
hicle. With the cloud backend it is possible to handle the
data originating from the in-vehicle applications. In addition,
KUKSA.cloud can manage the distribution and roll-out of
applications to the vehicle.

D. Eclipse KUKSA.val

Eclipse KUKSA.val3 is an in-vehicle component from the
Eclipse KUKSA stack. KUKSA.val is a server that man-
ages VSS data and provides them via the VISS protocol
to other applications running in the vehicle in a safe and
secure manner. Written in C++, KUKSA.val offers a small
footprint making it suitable running in a vehicle computer.
KUKSA.val implements Version 1 of the VISS protocol with
some extensions, most notably a security mechanism based on
JSON Web tokens [4] providing fine-grained access control to
each element in the VSS tree. Additionally, it supports dy-
namic extension/modification of the VSS tree during runtime
and provides a Python library wrapping the VISS websocket
protocol to simplify application development. KUKSA.val is
optimized to run in a light-weight container environment.

E. Eclipse KUKSA.cloud

The cloud backend of the Eclipse KUKSA ecosystem4 is
a composition of multiple open source projects and KUKSA
specific components. Many of the adopted technologies are
coming from the community around the Eclipse IoT working
group. The current version of the KUKSA.cloud is tailored to
run in a Kubernetes environment and can be deployed with a

2https://github.com/w3c/automotive
3https://github.com/eclipse/kuksa.val
4https://github.com/eclipse/kuksa.cloud
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KUKSA.cloud specific Helm Chart. Besides the management
of applications on a vehicle, the KUKSA.cloud allows the
ingestion of data coming from the vehicles. In this case study
we are mainly dealing with the data aspect where the data
ingestion is covered by running Eclipse Hono 5 within the
KUKSA.cloud.

Eclipse Hono is a communication hub that provides in-
terfaces and endpoints for connecting a large numbers of
IoT devices to a backend and enables interaction with them
in a uniform way regardless of the device communication
protocol. In that regard, Eclipse Hono has a “southbound”
API designated to be used by the IoT devices like in our case
heavy-duty vehicles and a “northbound” API which allows
other applications in a cloud backend to consume the data
coming from the devices. Similarly, it is also possible to send
data through the northbound API from the cloud backend to
devices connected at the “southbound” API. To support a wide
range of devices and implementations, Eclipse Hono offers
the “southbound” API for a number of protocols like HTTP,
MQTT or CoAP through different protocol adapters which
are implemented as individual micro-services. These protocol
adapters internally convert the messages to the AMQP 1.0
protocol which is currently used for Hono’s “northbound” API.
Since Eclipse Hono is designed to be highly scalable, it is a
feasible option for ingesting data from a large fleet of vehicles.

Furthermore, we are using a Hono-InfluxDB connector 6

that is maintained within the KUKSA.cloud project . This
connector listens at the “northbound” API of Eclipse Hono
for new data and then writes it into the time-series database,
InfluxDB 7. Storing the data into a database makes it easily
accessible for further processing or visualization like in our
case using a Grafana8 dashboard.

F. SAE J1939

While VSS, VISS and KUKSA.val offer useful abstrac-
tions dealing with vehicle data and enable rapid function
development, the majority of data in a vehicle originates
from deeply embedded ECUs connected to low bandwidth
busses such as CAN [5]. Standard CAN is a simple two-wire
communication protocol where messages are identified by 11
or 29 bit identifiers including up to 8 bytes of payload.

In addition to CAN, SAE J1939 [6] standard is a higher
level protocol that uses the CAN Bus technology as a physical
layer. It is used for communication and diagnostics among
vehicle components. Originating in the car and heavy-duty
truck industry in the United States, it is now widely deployed
in heavy-duty vehicles around the world. In addition to the
standard CAN Bus capabilities, SAE J1939 supports node
addresses, and it can deliver data frames longer than 8 bytes
(up to 1785 bytes). Signals are not identified by the raw CAN
ID, but by a Parameter Group Number (PGN), that is encoded

5https://www.eclipse.org/hono/
6https://github.com/eclipse/kuksa.cloud/tree/master/utils/hono-influxdb-

connector
7https://github.com/influxdata/influxdb
8https://grafana.com/oss/grafana/

in the 29 bit CAN identifier, where data belonging to a PGN
can span multiple CAN messages.

III. ANTI TAMPERING SYSTEM

As lined out in the introduction, a resilient anti-tampering
system relies on in-vehicle components as well as a powerful
cloud backend. In the vehicle data needs to be collected and
transmitted. As upcoming vehicle platforms include powerful
computing units, data can be processed on-board to detect
many naive forms of tampering. However, compared to the
cloud, a vehicle’s computational resources are still limited.
Sending gathered data to a cloud backend gives the chance
to run more complex algorithms. For example more precise
engine models and longer time frames can be taken into
account. Also, even with modern vehicle computers it is to
be expected that cloud services can be updated faster.

A. Architecture

Figure 3 shows the overall system architecture and compo-
nents. The prototype is built around a Raspberry Pi 4 SBC
running Linux, allowing a desk setup as well as connecting
to a vehicle. Additionally, a Pi is roughly comparable to
upcoming vehicle computers in terms of computing power
and memory. Data is received using the standard Linux socket
CAN interface. This way either simulated CAN traces can be
played or the Pi can be connected to an existing CAN network.
Raw CAN/J1939 data is processed by the DBCFeeder (see
Section III-C) and converted to valid VSS signals that are fed
into the KUKSA.val server.

The cloudfeeder component connects to the KUKSA.val
server and collects the required data in VSS format via VISS.
It will then upload the collected data to the cloud. Optionally,
(pre)processing on the vehicle is possible.

B. VSS Model

Not all the signals required for monitoring the exhaust
system are part of the VSS standard catalog. However, the
standard tree provided by VSS can be extended with custom
signals. Figure 4 shows all signals collected for our exhaust
treatment monitoring. While algorithms for anti-tampering de-
tection probably need to be parameterized differently depend-
ing on each specific engine type, the input data required from
a vehicle will be similar. By mapping data to a common VSS
model, the software module for accessing data and transmitting
it to a cloud backend can be reused across different vehicles.

C. Reading J1939 data

As mentioned in Section II-F, relevant data from heavy-
duty vehicles is available via the J1939 protocol based on
CAN. To read data from a real truck we equipped the Pi with
a dual channel CAN shield9. As most vehicles have several
CAN buses and not all data is available on all of them, a dual
channel shield gives the opportunity to easily tap two busses
at once.

9https://wiki.seeedstudio.com/2-Channel-CAN-BUS-FD-Shield-for-Raspb
erry-Pi/
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Fig. 3: Exhaust Anti-Tampering System Architecture

KUKSA.val already offered a python-based DBCFeeder
component to read CAN data and map it to the VSS tree.
A DBC file is an ASCII file describing which CAN frames
contains which signals and what conversions are required. This
is important, as most CAN data is not directly encoded in SI
units, but instead the range and resolution is space-optimized
for a specific use case, so often an offset and scale factors
need to be applied. However, we discovered the DBCFeeder
was only able to deal with raw CAN frames, and was not
J1939 aware.

For this case study we extended the KUKSA DBCFeeder
with J1939 support. As the DBCFeeder included in
KUKSA.val is Python-based, we leveraged support of an
existing Python J1939 implementation10. When dealing with
a J1939 system and an associated DBC file describing J1939
PGN units, the DBCFeeder can be started with the “-j1939”
option. This will switch the Raw CAN reader normally used
by the DBCFeeder with the J1939 stack reassembling PGN
data from the raw CAN frames, before decoding and mapping
the data to VSS. As multiple DBCFeeder instances can run
in parallel, you can process raw CAN frames or J1939 PGN
data at the same time (see Figure 5). The initial J1939 support
developed has also been merged upstream, so it is available
to all KUKSA.val users.

D. Processing and Transmitting

CloudFeeder is a module that retrieves the observed signals’
values from the in-vehicle KUKSA.val-server, pre-processes

10https://pypi.org/project/j1939/

the retrieved data using a custom pre-processor script, and
finally transmits the result data to the cloud via MQTT. The
pre-processor script can be changed depending on the kind of
processing that is desired on-board the vehicle.

Figure 6 shows the sequence of how the CloudFeeder
works. In our setup the CloudFeeder is set up to transmit
data to an Eclipse Hono instance running in the cloud.

E. Cloud setup

The CloudFeeder uses MQTT to connect to an Eclipse
Hono MQTT protocol adapter. We are using the KUKSA.cloud
InfluxDB Connector, which receives data from Hono and puts
it into the time-series database InfluxDB.

A custom diagnostic routine 11 can access the data from
the InfluxDB and perform analysis on historic data to detect
anomalies that can not be detected in a vehicle. The cloud
analytics can be updated more frequently to keep up with
novel tampering methods, and it can perform more compute
intensive analytics, such as incorporating detailed models of
a specific internal combustion engine. Having the data of a
larger number of vehicles at hand also offers the potential to
apply more sophisticated algorithms for automated anomaly
detection.

The raw and processed data stored in InfluxDB can also be
monitored in custom Grafana Dashboards (see Figure 7c).

IV. REAL-WORLD TEST

To validate our setup we tested it in a real truck. The
test vehicle used by the DIAS project is a Ford Otosan F-
MAX heavy duty truck (Figure 7a. This truck is modified, so
that the in-vehicle CAN busses and measurement equipment
is available for easy access in the cabin (Figure 7b). It is
important to note, the truck’s ECUs do not need to be modified.
The only component required to enable this use case is the
Raspberry connected to the vehicle’s busses providing a run-
time for the in-vehicle part of the software stack and Internet
access. In a series production vehicle, it is expected, that
the software running on the Pi will be running on a Vehicle
Computer inside the truck alongside other services. Figure 7c
shows a Grafana dashboard that is updated live during the test
drive.

During the test drives in the Stuttgart region the system
performs as expected. The major challenge is dealing with
intermittent Internet connectivity. While our simple prototype
still has some potential for optimization in this regard, it is not
a blocker for the DIAS use case: Anti-tempering monitoring
does not require real-time data. Real-time analysis is done
directly on the vehicle, and any errors are logged similar to
other error conditions. In cases of no connectivity, data can
be cached in the vehicle and transmitted once connectivity is
available again.

The availability of connectivity hardware can be expected
for all vehicles in the near future. In fact, many heavy-duty
trucks already contain some form of connectivity for fleet

11https://github.com/junh-ki/dias kuksa/
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management purposes. Additionally, existing or upcoming
legislation might require to provide connectivity hardware to
a vehicle: In the EU, the eCall regulation [7] already requires
cellular connectivity in every passenger vehicle type-approved
after March 2018, China already requires telemetry for all
EVs [8] and a legislative initiative by the German ministry
of transport aims to require that all vehicles with autonomy
functions have to be connected “all the time” [9].

V. CONCLUSION & OUTLOOK

We have introduced the problem of exhaust treatment
system tampering. Potential cost savings incentivize actors
to unlawfully interfere with the correct function of heavy
vehicle’s exhaust treatment system. The DIAS research project

tries to tackle this problem using a combination of on-board
and off-board diagnostic of vehicle data. In this case study, we
have presented a system for Exhaust System Anti-Tampering
monitoring using open source components from the Eclipse
KUKSA ecosystem.

We were able to collect the relevant data from heavy-duty
trucks, processing them on board the vehicle and transmitting
them to the cloud for further analysis. The system has been
tested extensively with simulated CAN traces and inside a real
heavy-duty truck. To enable this we extended KUKSA.val with
J1939 support and provided it upstream.

In the future, the system can be extended with more robust
caching during times of no connectivity. Additionally, the
data received from CAN busses can be authenticated. While
most communication in contemporary vehicle is unencrypted
and unauthenticated, there are upcoming standards providing
security on the level of automotive field busses such as CAN.
One example is AutoSar SecOC [10], that can provide authen-
tication of individual CAN messages. On vehicles supporting
such standards, they are a good first line of defense.

This example showcases the applicability of open source
components in the automotive domain. While the technology
behind exhaust treatment systems, and advanced tampering
detection mechanisms are highly proprietary in nature, it is still
possible to leverage the power of open software and standards.
By using the open VSS standard and existing open source
components on modern vehicle computers, applications for
gathering, processing and transmitting data to a cloud backend
can be realized in a fast and cost-effective manner.
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